

THREADED INTERPRETIVE
LANGUAGES

THEIR DESIGN AND
IMPLEMENTATION

R.G. LOELIGER

BYTE BOOKS
70 Main St
Peterborough, NH 03458

Threaded Interpretive Languages

Copyright © 1981 BYTE Publications Inc. All Rights Reserved, No part of this
book may be translated or reproduced in any form without the prior written
consent of BYTE Publications Inc,

To Sandi, Jill and Guy

with love

Library of Congress Cataloging in Publication Data

Loeliger, R G
Threaded interpretive languages.

Biblicgraphy: p.

Includes index.

1. Programming languages (Electronic computers) 2. Interpreters
{Computer programs) [. Title,
QA76.7 163 001.64724 80-19392
[SBN 0 07-038360-X

H67590 HALHAL 89876543

Vi

PREFACE

[hin manuscript is the outgrowth of a sequence of events that began in JTuly
178, | had a very basic microcomputer with a very basic BASIC. Not the
tinl exciting combination. What I really wanted at that point was a compiler,
1 huel more or less decided that C looked like a reasonable language to imple-
mnt. My essential problem was how to bootstrap a C compiler. Clearly it
1ould be booted in BASIC, but the very thought appalled my sense of
Viphiness.

At the July 1978 National Computer Conference (NCC) at Disneyland, [
picked up a copy of Dr. Dobb’s Journal of Computer Calisthenics & Or-
thisdontia that had an article on FORTH. * “Aha,” | said, “an extensible inter-
preter.” Clearly a much better approach than BASIC to bootstrap a compiler.
[lie problem then was how to get my hands on FORTH. After a quick trip to
Manhattan Beach for a copy of FORTH, Inc's Microforth Primer for the Z80
and a two-week wait for the DECUS (DEC User's Society) FORTH manual for
the PDP-11, 1 had the ammunition for my own threaded interpretive language
{I'lL.) design.

By August 1978, six weeks after the NCC, 1 had an up and running version
ol a TIL called ZIP {Z80 Interpretive Processor} merrily extending itself in all
directions. I had net built the initial C bootstrap compiler simply because ZIP
was so much fun to play with.

Because there was so much controversy about languages for microcom-
puters during this time period, [decided to join the fray with a short article on
T'll.s and their advantages for small microcomputers. A call to BYTE magazine
tesulted in a request for a 200-page book manuscript rather than an article!
Months later, a 500-page manuscript resulted. TILs are not the only extensible
things in this world.

The main point is that TILs are fun. They are easy to write, easy to use, and
very useful tools for the small computer user. | have built several versions of

*FORTH is a registered trademark of FORTH, Inc, 2309 Pacific Coast
Highway, Hermosa Beach CA 90254.

Vi

ZIP, some in as little as twenty hours. All have been fun and all have been
used. When I bought UCSD Pascal for my system, I used ZIPDD (a disk-based
version of ZIP} to examine the Pascal files, specialize the [/O for my system,
and generate the disks to boot the compiler, The simple utility of threaded in-
terpretive languages is one of their nicest attributes,

There’s ne need to be a sottware guru to write and code a TIL. I certainly
don't fit in the guru class, and yet 1 managed. I hope that others will also
manage, and on something other than a Z80-based system, [have attempted to
explain what | did as well as how, When using the system, be inventive. That's
precisely how ZIP evolved,

As a final note, special thanks go to Shirley Kalle, Carol Lee, Vicki Haas,
and Velva Hinkle for typing the manuscript.

Dayton, Chio
August 1979

CONTENTS

1. QOVERVIEW
1.1 lIntroduction
1.2 WhatisaTIL?
.3 The Elements
L.4 The Attributes
.5 Implementation Notes
A HOW A TIL WORKS
2.1 Operator’s View
2,2 Dictionary Format
2.3 Quter Interpreter
2.4 Inner Interpreter
2.5 Defining Words and the Compiler Mode
2.6 Vocabularies
2.7 Synthesis
3. HUP, TWO, THREE, FOUR
3.1 AnInner Interpreter for a Generic Computer
3.2 An Inner Interpreter for the Z80
3.3 Double Time
4. THE TOWER OF BABEL REVISITED
4.1 Naming Conventions
4.2 Data Types
4,21 Numbers
4.2.2 Logical Flags
4.2.3 Strings and Things
4,2.4 Constants
4.2.5 Variables
42.6 Arravs
4.2.7 User Parameters
4.2.8 Systern Parameters
4.3 Operator Keywords
431 Stack Operators
4.3.2 Memory Reference Operators
4.3.3 Interstack Operators
4.3.4 Arithmetic Operators
4.3,5 Logical Operators

E-I RN - N S =

T e R Y R R R X A)
=T SR - N el F O X

e
[= a1

48

4.3.6 Relational Operators
4.3.7 Input/Output Operators
4.3.8 System Operators
4,3.9 Utility Operatars
4.4 Loop and Branch Keywords
4.41 BECWN...END
4.4.2 TF...ELSE...THEN
4.4.3 WHILE
4.4.4 DO..LOOP
4.4,5 Case Constructs
4.5 Compiling and Defining Keywords
45,1 CREATE
4,5.2 Compiling Directives
4.5.3 Parameter Defining Words
4.5.4 Defining USER Blocks
4.5.5 High Level Defining Words
4.5.6 Vocabulary Defining Keywords
4.6 Vocabulary Keywords
4.7 Babblings
ROUTINES, ROUTINES, ROUTINES
5.1 CoreTIL Design Notes
5.2 Quter Interpreter Design
5.3 Routine Routines
5.3.1 START/RESTART
5.3.2 INLINE
5.3.3 Token Extracting
5.3.4 SEARCH
5.3.5 NUMBER
5.3.6 QUESTICON

5.3.7 *STACK
5.3.8 S$PATCH
5.4 Doinglt

5.5 Arithmetic Routines
WORDS, WORDS, AN} MORE WORDS
6.1 The Word
6.2 A Classy Cross Reference
6.2.1 Arithmetic Keywords
6.2.2 Compiler Directives
6.2.3 Compile Mode Directives
6.2.4 Defining Words
625 /O
6.2.6 Interstack
6.2.7 Literal Handlers
6.2.8 Logical
6.2.9 Memory Reference
6.2.10 Program Control Directives
6.2.11 Relational

38

65

73
74
74
77
87

99
100
103
103
174

6.2.12 Stack
6.2.13 Subroutine
62,14 System
6.2.15 System [irectives
6.2.16 Systemn Variables
6.2.17 Utility
6.2.18 Vocabulary
6} SumTotal
7 1 XTENSION PLEASE
71 Introductions
7.2 Assemblers
7.2.1 Assembler Overview
7.2.2 Architecture and the Assembler
7.2.3 The Z80 Assembler
7.2.3.1 The Operands
7.2.3.2 The Constants
7.2.3.3 The Eight Bit Move Group
7.2.3.4 Sixteen Bit Move Group
7.2.3.5 Arithmetic and Logic Group
7.2.3.6 Rotate and Shift Group
7.2.3.7 Bit Addressing
7.2.3.8 Block Directed Instructions
7.2.3.9 Miscellaneons Instructions
7.2.3.10 Call and Return Group
7.2.3.11 Jump Instructions
7.2.3.12 Summary
7.2.4 Structured Assembly Code
7.2.41 BEGIN...END Loops
7.2.4.2 IF...ELSE... THEN
7.2.4.3 WHILE
7.2.4.4 DO, . LOOP
7.2.4.5 Construct Summary
7.2.5 Assembler Design Notes
7.3 Virtual Memory
7.3.1 The Device
7.3.2 Disk Access
7.3.3 Buffer Control
7.3.4 Screens
7.3.5 Data Manipulation
7.3.6 Loose Ends
7.4 Editor
7.4.1 Line by Line
7.4.2 InaLine
7.5 Cross Compilation
7.5.1 The End Result
7.5.2 The Process
7.6 Widget Sorters

X

17¢
180
180
182

210

220

224

226

X1

7.7 Floating Peint
7.7.1 Formats
7.7.2 Floating Keywords
7.7.3 Summary
7.8 Extension Summary
LIFEWITH ATIL
8.1 Starting Out
8.2 DProgram Structure
8.2.1 Vocabulary Definition
8.2.2 Data Type Definitions
8.2.3 Global Data Definitions
8.2.4 Procedure Definitions
8.2.5 Main Program
8.2.6 Physical Records
8.3 Program Design
8.3.1 Vertical Design
8.3.2 Program Executives
8.4 Entryand Test
8.4.1 Keyword Contention
8.4.2 Keyword Testing
8.5 Tricks of the Trade

Bibliography and Notes
Index

228

233
234
234
235

239

241

243
244
248

FL RS

Tt

fypteed P ttonnry Organization
Ehder fiterpreter Bxanyde

fagpn ool Meanory Configuration
fitssor hiterpreter Routines

t oele Hodies

¢ ONSTANT and 2GRO55

Vi mfsulary Structure

Memiary Map of Top 4 K Bytes on Typical Z80 System
Gymtent Memory Map

g Level Definition Example
Cuter Interpreter Flowchart
{uter Interpreter Code Design
'SIARCH Code Design

" XECUTE Code Design
NUMBER Code Design

INLINE Flowchart

TOKEN Flowchart

SEARCH Flowchart

NUMBER Flowchart

Z80 Processor Reyisters
A Cross-Compiled DUP Primitive

Two Comman Floating-Point Number Formats

I'ABLES

b1

3.2

3.3

Stepping Through the Pseudo-Code for Routine FUNNY
Z80 Register Assignment

A Z80 Inner Interpreter

XNl

i3
is
18
i9
20
24
25
34
35

71
79
a0

82

84
88
9¢
93
95

183

223

230

33
34

36

2 THREATHTY INTIRPRETIVE T ANGUAGLS

This text is tutorial in nature, It presumes a nonextensive famillarity with
computers and programming terminology. It is not for the rank amateur, nor
is it for the PhD in computer science. The former will not find it easy going and
the latter will not find anything new,

The examples in the text are directed toward the Zilog Z80 instruction set
simply because I own a Z80-based microcomputer. Any other microcomputer
would serve as well for illustration purposes,

1.2 What is a TIL?

To define a TIL, it is necessary to view it in the context of translation. A
translator is a computer program which converts source language into target
language. Each language has well-defined semantic and syntactic constructs, If
the source language is FORTRAN or Pascal and the target language is
assembly language or machine language, the translator is known as a com-
piler. If the source language is assembly language and the target language is
machine language, the translator is known as an assembler.

An interpreter for a source language accepts the source language as input
and executes it directly. It does not produce a target language but translates
directly to an action. A pure interpreter will analyze a source language state-
ment each time it is executed, Fortunately, these beasts are rare, Most inter-
preters actually employ two phases. The first phase translates the source
language to an intermediate language or internal form. The second phase then
interprets or executes the internal form. The internal form is designed to
reduce subsequent analysis and execution times. Most BASIC interpreters do
exactly this, with the first phase occurring during program input/edit and the
second phase occurring at run time.

A threaded code interpreter produces a fully analyzed internal form. The in-
ternal form consists of a list of addresses of previously defined internal forms.
The list is threaded together during the first translation phase. This first phase
is remarkably similar to that of a compiler and is generally called the compile
mode. During execution the interpreter executes consecutive internal forms
without performing any analyses or searches, since both were completed
before execution was evoked,

If the concept is extended to include a broad class of internal forms and a
method of interacting with the interpreter, a threaded interpretive language
{TIL) results. TILs are characterized by extensibility since they have the full
power of the compile mode to augment their existing internal forms, Qur TIL
will also allow pure interpretation directly from the input line. Most TILs
resort to stacks and reverse Polish notation to achieve an acceptable level of ef-
ficiency. I shall consider this class of threaded interpretive languages.

If the full scope of the desired TIL is known, the compile mode may be
deleted {since all internal forms are known), producing a threaded interpretive

LIVIRYILW 3

pregram., This type of program is useful for real-time, fixed process controllers
and system monitors with a fixed scope. These types of programs are generally
placed in read-only memory but require a minimal amount of programmable
memory to support system variables and stacks. It sounds impressive, Let’s see
I it isl

| .3 The Elements

There are certain elements that characterize any language implementation.
The elements that characterize threaded interpretive languages will be extend-
¢d to include those of an interactive terminal-directed implementation, The
presumptions will be based on a minimum system consisting of a keyboard, a
video display, a microcomputer with at least 8 K bytes of programmable
memory and some type of mass storage., An operating system or monitor
which supports program generation and modification is presumed to be
available,

The visible attribute of any language is the man-machine interface. The
keyboard and display device are critical since they are the means of interacting
with the system. The inputs to the system will be tokens separated by spaces.
A token may be composed of any sequence of ASCII {American Standard
Code for Information Interchange) characters that your system supports. A
token may be any of the following:

a number (integer, real, etc)

an operand (constant, variable, etc)

an operator (logical or arithmetic, such as +, —, <, >, etc}

a function (fixed subprogram that returns a result)

a subroutine (subprogram which performs some action but does
not necessarily return a result)

a directive (system control command)

a program {desired operation or action)

Examples of tokens could include @, +, TOKEN, Rumplestiltskin, <R, or
. Token lengths are only limited by the line length of your input device or
your own personal preference. The only token separator is an ASCII space (R
in this text). '

Consider a line-oriented 1/0O (input/output) scheme. An input line consists
of a sequence of tokens {separated by spaces) terminated by a carriage return.
In order to correct input errors, the 1/O routine must recognize a rubout or
backspace to erase the last character on the line and a line delete command to
erase the entire input line and return to the input mode. The input is im-
plemented using an input line buffer. Output is also line-oriented, Successful
completion of an input operation is usually followed by the system echoing a
message to the operator, The usual "OK” may be used, or any other sequence

UVERVIEW

1 | Overview

This text is intended for people owning either a microcom-
puter or minicomputer with minimal peripherals, those who
write software for these types of systems, and those who are
interested in learning about such systems.

1.1 Introduction

The topic of this book is the design of TILs {threaded interpretive
languages). The goal is to reverse the trend toward language standardization
advocated by the users of large computer complexes, Using FORTRAN to
write a program is fine if the compiler fits on the machine you own and pro-
duces efficient code. In general, this is not true for microcomputers and is only
marginally true for most minicomputers. If you have a real-time application,
you may have trouble. A threaded interpreter can solve your problem without
resorting to assembly language programming,

A threaded interpreter approach is a way of developing a standard,
nonstandard language. This is not quite as strange as it sounds. Embedded in
the language is a compiler which allows the user to extend the language and
redefine operators and data types. If you know what someone else's program
does, you can simply modify your existing language to encompass the defini-
tions of the other program and then directly execute it. The modifications may
be done by using either existing language constructs or machine language. In
either event the extensions are done using the existing language.

One point must be stressed, There is no right threaded interpretive language
and no right way to implement the language. It is strictly applications-
dependent. TILs can be used to write a program for a microcomputer monitor,
a general-purpose language, an editor, or a real-time program for sorting
widgets. [shall concentrate on developing an interactive interpreter which will
include some of the above as a subset and will support the generation of the
others.

2 THREATH T INTILRPRETIVE T ANGUIAGES

This text is tutorial in nature. It presumes a nonextensive famillarity with
computers and programming terminology. It is not for the rank amateur, nor
is it for the PhD) in computer science. The former will not find it easy going and
the latter will not find anything new,

The examples in the text are directed toward the Zilog Z80 instruction set
simply because I own a Z80-based microcomputer. Any other microcomputer
would serve as well for illustration purposes.

1.2 What is a TIL?

To define a TIL, it is necessary to view it in the context of translation. A
translator is a computer program which converts source langunge into target
langunge. Each language has well-defined semantic and syntactic constructs, If
the source language is FORTRAN or Pascal and the target language is
assembly language or machine language, the translator is known as a com-
piler. If the source language is assembly language and the target language is
machine language, the translator is known as an assembler.

An interpreter for a source language accepts the source language as input
and executes it directly. It does not produce a target language but translates
directly to an action. A pure interpreter will analyze a source language state-
ment each time it is executed. Fortunately, these beasts are rare, Most inter-
preters actually employ two phases. The first phase translates the source
language to an intermediate language or internal form. The second phase then
interprets or executes the internal form. The internal form is designed to
reduce subsequent analysis and execution times. Most BASIC interpreters do
exactly this, with the first phase occurring during program input/edit and the
second phase occurring at run time.

A threaded code interpreter produces a fully analyzed internal form. The in-
ternal form consists of a list of addresses of previously defined internal forms,
The list is threaded together during the first translation phase. This first phase
is remarkably similar to that of a compiler and is generally called the compiie
mode. During execution the interpreter executes consecutive internal forms
without performing any analyses or searches, since both were completed
before execution was evoked,

If the concept is extended to include a broad class of internal forms and a
method of interacting with the interpreter, a threaded interpretive language
{TIL) results. TILs are characterized by extensibility since they have the full
power of the compile mode to augment their existing internal forms. Qur TIL
will also allow pure interpretation directly from the input line. Most TILs
resort to stacks and reverse Polish notation to achieve an acceptable level of ef-
ficiency. [shall consider this class of threaded interpretive languages.

If the full scope of the desired TIL is known, the compile mode may be
deleted (since all internal forms are known), producing a threaded interpretive

(VIRVILW 3

program. This type of program is uselul {or real-time, fixed process controllers
and system monitors with a Fxed scope. These Lypes of programs are generally
placed in read-only memory but require a minimal amount of programmable
memory to support system variables and stacks. It sounds impressive. Let’s see
it isl

| .3 The Elements

There are certain elements that characterize any language implementation,
The elements that characterize threaded interpretive languages will be extend-
vd to include those of an interactive terminal-directed implementation. The
presumptions will be based on a minimum syslem consisting of a keyboard, a
video display, a microcomputer with at least 8 K bytes of programmable
memory and some type of mass storage. An operating system or monitor
which supports program generation and modification is presumed to be
available,

The visible attribute of any language is the man-machine interface. The
keyboard and display device are critical since they are the means of interacting
with the system. The inputs to the system will be tokens separated by spaces.
A token may be composed of any sequence of ASCII (American Standard
Code for Information Interchange) characters that your system supports. A
{oken may be any of the following:

a number (integer, real, etc)

an operand (constant, variable, etc})

an operator (logical or arithmetic, such as +, —, <, =, etc)

a function (fixed subprogram that returns a result)

a subroutine (subprogram which performs some action but does
not necessarily return a result}

a directive (system control command)

® a program {desired operation or action)

Examples of tokens could include @, +, TOKEN, Rumplestiltskin, <R, or
“ _ Token lengths are only limited by the line length of your input device or
your own personal preference. The only token separator is an ASCII space (R
in this text).

Consider a line-oriented 1/O (input/output) scheme. An input line consists
of a sequence of tokens (separated by spaces) terminated by a carriage return.
In order to correct input errors, the 1/O routine must recognize a rubout or
backspace to erase the last character on the line and a line delete command to
erase the entire input line and return to the input mode. The input is im-
plemented using an input line buffer. Output is also line-oriented. Successful
completion of an input operation is usually followed by the system echoing a
message to the operator. The usual “OK" may be used, or any other sequence

4 THRUADTTINTFRIRT TIV] T ANCAIAG '

you wish to use. If the system does not recognize a token, it will echo the token
followed by a question mark (7). [prefer this to the somewhat ubiquitous
“WHAT?" employed by others. A simpie question mark seems less threaten-
ing, Internal errors detected by the system result in an error message after
which control reverts to the operator,

This is about as simple an operator's interface as can be devised. It is also ex-
tremely effective and flexible. Several extensions to the above [/O scheme can
be implemented. I usually allow lowercase alphabetic characters as input, but
they are stored in the input buffer as uppercase. All system responses are in up-
percase, This clearly separates commands from responses. 1 also display a
marker at the end of any line that has been deleted. These are niceties that
make life easier. :

A central element that characterizes our TIL is a dictionary. Almost all of
the language is composed of dictionary entries. There is an entry for every
token defined in the system. Tokens other than input numbers are called
keywords. The dictionary is the medium that allows the system to locate
keywords, The dictionary is segmented into wvocabularies that contain
keywords associated with a particular function. A core vocabulary exists that
contains the primary language keywords. The core coexists with any specific
vocabulary such as an assembler or an editor vocabulary,

This TIL will contain defining words which create new dictionary entries,
The keyword attributes may be specified using machine or assembly code or
may be defined in terms of previously defined keywords using the compile
mode. The TIL will also contain defining words which create dictionary entries
of a generic type. Examples of these include constant and variable defining
words and other more complex operations.

Defining words are defined using more primitive defining words, Defining
words always create dictionary headers for the keyword being defined. The
headers form a linear linked list to facilitate identifying a specific keyword
when the dictionary is searched. One or more vocabularies may be searched
during a given dictionary search. I will consider several header forms and
search policies in greater detail later in the text.

Another central element in this TIL will be the use of stacks. These are the
standard LIFO (last-in, first-cut) push-down stacks supported by many
microcomputers and minicomputers, Specifically there are two stacks used to
implement the TIL. A data stack is used to store numbers and addresses of
operands. Operators generally expect data on the stack in a predefined order
and return results to the stack. A second stack called the return stack is used to
store program flow-control parameters. This stack can also be used for tem-
porary data storage (carefully). Two stacks are used to separate data from
control parameters. The data stack, commonly called just the stack, is always
16 bits wide, The return stack will always be called just that and is usually 16
bits wide. Sometimes the return stack is only 8 bits wide,

The element which is most unusual is the use of RPN (reverse Polish nota-
tion) to represent arithmetic or logic expressions. RPN specifies simply and ex-
actly the order in which expressions are to be evaluated. The operators come
after the operands. The general rules are:

OVTRVIEW §

® The identifiers, operands or numbers appear in the same order
in both infix notation and reverse Polish notation,

® The operators appear in the same order {from left to right) as
they are to be applied.

® The operators appear immediately after the identifiers.

I'or example:
7X6/4 — 7HcE < Bal/
J+(4X6-21/7 — JE4MsE xH2E-E7H/0+

The use of the data stack and reverse Polish notation allows an easy left-to-
right scan of an input line. As each number is scanned, its value is pushed onto
the stack. Binary operators pop two values from the top of the stack and push
the result onto the top of the stack. Unary operators simply replace the top
stack value,

One of the most common programming errors is mismanagement of the
stack because operators expect values on the stack. During interactive pro-
pram execution, stack underflow should be checked by testing for underflow.
Stack overflow can be tested using the *.” keyword. This keyword displays the
top stack value, destroying its value in the process. If the stack is empty, it
results in a stack underflow message. If a value should be on the stack, this
makes it available for verification. Gross stack overflow can cause the pro-
sram to self-destruct as I have proven many times.

The most useful element of the TIL is its compile mode. Keywords may be
defined in terms of previously defined keywords using the compile mode. This
produces a threaded list definition of the new keyword. In point of fact, a pro-
gram is nothing more than such a list produced by compiling the definition.
When the program is compiled, ie: the program keyword is defined, the com-
piler produces a list of the addresses of the previously defined keywords and
stores them in a dictionary entry, This list may also include literal handlers
tollowed by literals or program control directives tollowed by relative jump
constants. Literals allow numbers and labels to be embedded in the program.
Control directives allow program branches to be mechanized. Dictionary
searches to locate keywords associated with tokens, handlers, and directives
occur only during compilation. Execution of a program involves only a single
dictionary search to find the program since the threaded list contains all the
data required to execute the program, This also explains why a pure inter-
pretive mode is required. Without this mode it is impossible to execute a pro-
gram or keyword.

& THREAVEL INTIRIRETTVE 1 ANELIALTR

1.4 The Attributes e et e e e e e

There are several advantages to a TIL as well as several disadvantages. It all
depends on whose side you are on, The general trade-offs will be discussed
briefly.

A threaded interpretive language is generally fast compared to most inter-
preters available for microcomputers, and in some applications it is faster than
compiled code. My current TIL is about three times as fast as an integer
BASIC. TILs are slow relative to optimal assembled code. The very best com-
pilers are about 10 to 15% inefficient given a reasonable processor instruction
set. The very best microcomputer compilers are probably 15 to 50 % inefficient
if they are cross-compilers hosted on a large computer and if significant code
optimization is included, Microcomputer compilers are not as efficient, par-
ticularly if they are hosted on the microcomputer. The instruction sets of most
microcomputers do not support easy code optimization. Depending on the ap-
plication, a 100% inefficiency is not unusual in a microcomputer compiler.
This is roughly the inefficiency of a TIL. In a purely number crunching ap-
plication, however, a threaded interpretive language is nearly as efficient as
assembled code.

A major advantage of a TIL is the memory required to implement the
language. The core language can be contained in less than 4 K bytes, and an
assembler, editor, and virtual memory system requires an additional 2 or 3 K
bytes. Compare this to the 24 to 32 K bytes required to hest a compiler on a
microcomputer or minicomputer. Once the core language is available, an ap-
plication keyword can be added in an incredibly small space because the full
power of the core language is available. For example, a keyword to evaluate
an expression of the form Ax’+Bx+C normally requires less than 40 bytes.

If a real-time, stand-alone program is required, the program can be
developed and tested in an interactive mode. Then the program can be cross-
compiled to leave only the keywords needed for the application in the cross-
compiled version, All dictionary search bytes (the headers) may be removed,
leaving a minimal set of code. The resulting program can be placed in read-
only memory for dedicated machine hosting.

One of the nicest features of a TIL is the simplicity with which programs can
be developed and tested. A top-down approach is assumed since the TIL is
fully structured. Each function or subroutine is a keyword. In the interactive
mode, numbers in the input line are pushed to the stack, The keyword follows
and expects its parameters on the stack, The keyword leaves its results on the
stack where they can be popped and examined by the user with the “.”
keyword. A separate driver program is never needed to test a TIL keyword.

TIL coding ease is somewhere between that of a higher-order language and
an assembly-language—more difficult than the former and easier than the lat-
ter. The only difficult feature is tracking the order and number of items on the
stack. Checkout is so easy, however, that the total time to develop and test a
program is shorter than the time needed for either a higher-order language or
an assembly-language program.

VVERVIFW 7

[t should be noted that deslgning and Implementing a TIL is quite simple.
My FHent ceslgn took about six weeks of evenings to implement in machine
i ode, Don't panicl My preference is to hand-assemble and machine-code short
routines, A TIL is nothing more than a sequence of very short routines. Few of
the keyword routines, including the dictionary headers, are longer than 20
bytes.

1.5 Implementation Notes

Technically, the type of threaded interpretive language considered here is a
tree-structured, threaded code interpreter. There are two types of keyword
structures: primitives and secondaries, Primitives have code bodies that con-
nlat of the machine code which implements the action. Secondary code bodies
are lists of addresses of previously defined primitives and secondaries. It is ob-
vious that secondaries cannot be directly executed by the processor,

Primitives are closely akin to subroutines. Secondaries are akin to a list of
subroutines. The outer loop or executive of any TIL program is a secondary.
Fach call to a primitive from a secondary causes the machine code of the
primitive to be executed and then control is returned to the next instruction in
the secondary (ie: the next address in the threaded list). If the next instruction
to be executed is a secondary, the following instruction’s address is stored on
the return stack as the refurn address. When this new secondary completes all
of its threaded instructions, it retrieves the return address and returns to ex-
ecute the next instruction following its call location. This effectively creates a
tree structure, the end nodes of which are always primitives. This will be ex-
plained in much greater detail later in the text, since it is central to the opera-
tion of a threaded interpretive language.

There are many ways to implement a threaded interpretive language. A
typical TIL can be implemented using as few as forty to sixty primitives and
defining all other keywords as secondaries using this minimal set of primitives.
This is the technique used in FORTH, a typical TIL. A secondary does,
however, require more overhead time to execute than a primitive. Using a
minimal set of primitives results in a slower, less efficient language. It does
produce a much more portable language. These types of implementations are
also extremely memory conservative. Depending on the application, you may
be interested in defining a minimal set of primitives. I tend to make all user-
available operator definitions primitives. This results in faster programs at a
slight memory penalty.

The heart of the TIL is the inner interpreter. The inner interpreter contains
the routines which step from address to address in the threaded list of instruc-
tions, saving return addresses when a secondary is encountered, and retrieving
return addresses when a secondary completes. The inner interpreter code must
take as little time as possible since it determines how quickly the TIL can
operate, This is a case where time efficiency is far more important than

BOTIREADLLY INTLIRIRE TIVE T ANGTTAG LY

memory minimization.

The outer interpreter is the system executive used to implement the interac-
tive, terminal-directed operator’s interface. The outer interpreter supports
both a pure interpretive mode similar to a BASIC calculator mode and a com-
pile mode to extend the language. The outer interpreter will be written, oddly
enough, in TIL. Several variations on the outer interpreter theme will be con-
sidered, but all will be endless loops. How else can we return to the operator?

Some dictionary entries need not be contained in any vocabulary. These en-
tries fall into two general catagories. Certain system routines used to imple-
ment the outer interpreter are of absolutely no earthly use to the operator.
QOther routines such as the literal handlers and program-control directives are
available to the operator only indirectly. These routines are invoked by the
systemn only in the compile mode. It makes little sense to include header bytes
to locate something which cannot be used.

There are several ways to handle different data types. FORTRAN, for exam-
ple, treats all variables starting with I, J, K, L, M, or N as integers unless the
variable is specifically declared to be a real type. The operators then resolve
the data types based on a predefined precedence rule. The philosophy adopted
for the TIL will be substantially different. All operators will presume operands
of a given type. For example, the operator “+" presumes two 16-bit integers
on the stack and will replace the top two elements by their sum. If floating-
point addition is desired, an operator such as F+ must be used and it will
presume two floating-point number arrays on the stack. This places the
burden of data type resolution squarely on the programmer, What could be
simpler?

The threaded interpretive language | will investigate will be fully structured.
It supports branching and loop structures but not an unconditional jump
{GOTO). An experienced programmer can defeat this structured goal, but not
easily. | have no intention of telling anyone how this can be done.

The implementation will be directed toward defining a minimum threaded
interpretive language that supports self-generation of the remaining language.
Since the language contains a compiler, only a minimal amount of the
language need be hand-coded. The rest can be coded using the TIL itself.
About 2 K bytes of code are usually sufficient to allow this self-generation
capability.

i

FIECOW A TTD WOIRES ¢

2 | How a TIL Works

A fundamental difficulty in explaining how a threaded in-
terpreter works is the interdependence of the various
language elements. If there is a single unifying explanation,
 has escaped me, My approach is simply to draw sabers
and charge — not elegant, but usuaily effective.

2.1 Operator's View

The system operator has a rather myopic view of the inner workings of any
program, but the operator has the only seat in the house for interacting with
the systemn. All of the operator's input to the system consists of input lines,
generally composed of as many characters as the display will support on a
single display line. In the input submode, the system will indicate the input
point on the video display by a cursor symbol. | often use a blinking
underscore (an ASCII “__" alternating with a W) as a cursor. Since my editor
insists that the typesetter does not have a blinking character font, I will ignore
the input point and only consider entire lines of input in the text. Any subse-
quent system response will be underlined.

The input submode is called a submode because the system is devoting its
full resources to filling an input buffer. The system mode may be in either the
execute or compile mode during the input submode. Until the carriage return
key is pressed, the system will stay in the input submode. The system will
recognize three distinct commands in the input submode:

Backspace — This command will enter a space {l) at the cursor point and
move the cursor left one character position. If the cursor is at the first
character position of the line it will remain at the first position and not move,
Line Delete — This command will enter a line delete symbol at the current cur-
sor point, output a carriage return and line feed, and leave the cursor at the
first position of the next line,

10 THREADY INTTRIRETIVE TANGUALT

Carriage Return — This command causes the system to enter a space at the
cursor point, move the cursor right one character, and exit the input submade,

Any other character entered by the operator is simply displayed on the
video display at the current cursor location and the cursor is moved right one
character place. Concurrently, the character is moved to the line buffer which
is a one-for-one duplication of the display line (with one exception) up to the
point where the carriage return key is pressed. The exception is, of course, the
lowercase alphabet. Lowercase alphabetic entries are displayed as lowercase
but stored in the line buffer as uppercase. As previously mentioned, this allows
separation of commands from any later system response which will always be
in uppercase,

One other point is worth mentioning. When the last available character
place of the display line is entered, the input submode remains in effect. The
next entry will simply replace the last character on the line. The cursor will not
advance, Only a carriage return terminates the input submode.

Although this line buffer and display line scheme may seem complex, it is
well worth the trouble. It allows easy editing of the line. The line delete func-
tion, for example, eliminates the need to enter multiple backspaces to reach the
left end of a line in which there is an input error when the current entry point is
on the right end. It is easier to start over. My first microcomputer had a read-
only memory monitor without a line delete, backspace, or carriage return. The
last character in a command caused immediate execution of the command.
This crazy scheme required pressing the system master reset button to recover
from input errors and almost destroyed my index finger. Worse still, T occa-
sionally hit the power button instead of master reset, totally destroying the
resident programs. Be advised!

Consider that the execute mode and input submode are in effect, and the
cursor is at the first character position of a display line. The carriage return
key is pressed. The system will respond:

BOK

The cursor will then advance to the first entry position of the next line,

The line buffer is cleared (filled with blanks) until a keyboard printing
character key is depressed. In the example, depressing the carriage return key
causes the system to enter the execution mode. The system then scans the input
buffer from left to right looking for a token: a sequence of ASCII characters
terminated by a space. Finding nothing in the buffer in the example, it displays
a message to the operator indicating successful completion of all requested ac-
tions and returns to the input mode for the next command, Any time you see

BOK, you know the line buffer is empty,

Now consider the following input and response:

10. 1B EOK

TR AW A T WUlKY 1

In this case, the system will first find the token “1” in the buffer. lts first
response is to presume the token is a keyword, It searches the dictionary look-
ing fFor the keyword named 1, It finds such a keyword (since regardless of the
fumber base a 1 is a 1). The keyword 1 is a primitive which pushes a 1 to the
tata stack. Since the system is in the execution mode the system executes the
keyword to affect its action, tests for stack errors, finds none, and returns to
ncan the next token. The next token it finds is the ., This token is a second-
ary keyword which pops the top data stack, converts it to a string of ASCII
characters that represent the number in the current system number base, and
echo displays these characters followed by a space to the operator, The system
executes the “." keyword, which resuits in the 1l action. Again, no errors
are detected, so the system returns to scan the next token, Finding nothing fur-
ther in the line buffer, it displays BOK and returns to the input mode,
In the following sequence a slightly more complex action occurs:

DECIMALE10MHEXE BABEBOK

The keyword DECIMAL is the keyword which sets the system number base to
the decimal (or base 10) mode. This token is scanned and executed. The token
“10" ASCII will not be found in the dictionary. Since it is not a dictionary
keyword, the system will attempt to convert it to a number. Because all
characters in the token are in the valid decimal character set (0 thru 9) and the
execution mode is in effect, the system will convert the input from ASCII to a
string of binary numbers equivalent to the values of each character and then
convert this string to a single binary number using the current system number
base. The result is pushed to the stack. The system returns to scan the token
HEX. The keyword HEX sets the system number base to the hexadecimal or
base 16 mode. The token is scanned, located, and executed. The “.” token,
when executed, uses the hexadecimal number base to convert the top stack
value resulting in AW . The character A in hexadecimal is exactly equal to
the character 10 in decimal.

If the system detects a stack error, it will advance one display line and echo
some message, such as MSPEERROR (or MSTK , or whatever you like)
instead of MOK . It will then proceed to reset the stack pointer and system
variables to evoke the execute mode under operator control (ie: it enters the in-
put submode, where the operator must respond).

If the operator enters a keyword which is neither an existing keyword nor a
valid number in the current number base, the system will advance one display
line, echo the token followed by 7" and revert to the input submode. Any er-
ror of this type detected in the compile mode will result in the partially com-
piled keyword being deleted from the dictionary. The upshot of this is that for-
ward references are not allowed. A keyword cannot be referenced before it is
defined.

Obviously there is more to the operator's interface than has been illustrated
to this point. All of the essential features of the interface have been described.
What is lacking is a complete syntactic and semantic description of the
language. This is the subject of Chapter 4, “The Tower of Babel Revisited.” At

12§ HREADETY INTRRER]LIVE L ANCUALL

this point, [will pursue the subject of how the TIL works, not what it docs.

2.2 Dictionary Format

Since approximately 90% of a threaded interpretive language consists of
dictionary entries, an explanation of their general form is in order. Most dic-
tionary entries consist of a header and a body located in consecutive memory.
The header is optional. The header is used by a search algorithm to locate the
address of the first word in the body of a specific keyword. This address
(where the keyword is located) is called the word address of the keyword. The
headers form a linear linked list to facilitate location of the word address in a
reasonable length of time,

Several alternate header formats can be realized. The form 1 use for a
microcomputer consists of 6 bytes: the number of characters in the keyword
name (1 byte), the ASCII code for the first three characters in the keyword
name (3 bytes), and a pointer to the first header location of the preceding dic-
tionary entry (2 bytes}. The pointer is called the link address or link. A typical
dictionary organization for this type of implementation is shown in figure 2.1.

Note that 3 bytes are always allocated in this format for keyword names. 1f
there are fewer than three characters in the keyword name — <R, for example
— the unused characters can be anything since the search algorithm will be
designed to test only the length plus the number of characters specified by the
length up to a maximum of three. If there are more than three characters in the
keyword name, those characters in excess of three are not used to identify the
keyword. Thus DROP and DROX identify the same keyword but DROP and
DROPIT identify different keywords because their lengths are different.

The link address allows the search algorithm to step to the preceding header
if the current header does not match the token scanned from the input buffer.
The link address of the last dictionary entry has a value of zero. This is an easy
value to test for and indicates that the search has terminated unsuccessfully.
The zero value is unlikely to prove restrictive.

Some dictionary entries do not have headers. A typical example of this type
of entry is the literal handler for numbers. The system knows the word ad-
dress, but the operator does not. If a number is input to a keyword being de-
fined in the compile mode, the system will automatically load the word ad-
dress of the number literal handler to the threaded-code listing and then the
number. The operator has no reason to know the word address of the literal
handler. Header bytes are superfluous in this case.

Clearly, alternate header formats are possible. A common extension is to
allocate storage for up to five characters of the keyword name, This increases
the header requirements from 6 to 8 bytes. Although this does not appear to
cost much in terms of memory, it does. A 4 X- byte TIL usually contains about
150 keywords with headers. At 2 bytes extra per header, a 300-byte memory
penalty occurs. (For the more mathematically inclined, the answer is

HOW A T Wioltk o

- i HEADER FOR ELXECUTE

O s

END OF THE LiST 4

-—— WORD ADDRESS OF FXECUTE

BODY
- . HEADER FOR OROP
D
R
a
LINK
“—— WORD ADDRESS OF DROF
BODY

A4

\

|

I

i [- HEADER FOR <R
|

<
i3
—_— LINK
+—-— WORD ADDRESS OF <&
BODY
STARY OF THE Li5T - 3 HEADER FOR DUP
D
u
P
LINK
=—— WORD ADDRESS OF DUP
BODY

bgure 2,1: Typical dictionary organization.

4 K-bytes/150 keywords = 27 bytes/keyword. Few keywords exceed 20 bytes
in length, including the header bytes. The less than 30-byte average keyword
length is correct. The difference is due to a few long routines used to mechanize
the cuter interpreter and the headerless routines.)

The 2-byte link is standard as is the single token-length byte. Since the
keyword names are rarely over ten characters long, one bit of the length
character can be used to identify immediate keywords (keywords that are ex-
ecuted in the compile mode). I will expand my comments on this when
vocabularies are discussed.

The body of the dictionary entry contains the implementation details of the
keyword. The body may be active or passive. An active body produces an ac-

L4 LEREADITY INTERDPRI-TIVE T ANCGITAGT

tion and is associated with operands, dlrectives, programs, and similar func-
tions. A passive body contains data of some type. The firgt word (16 bits) of
the code body (ie: the contents of the word address) implicitly specifies the
code body type. This word is called the code address of the keyword, and it
always points to executable machine code. This routine either initiates the ac-
tion of an active body or manipulates the data of a passive body.

Active keywords (primitives or secondaries) have a body which consists of a
code address, a code body, and a return address. The code body of a primitive
always consists of machine code. The code body of a secondary always con-
sists of a list of word addresses of previously defined primitive or secondary
keywords. Embedded in this list may be literal handler word addresses fol-
lowed by literal data, or program-control directive-word addresses followed
by relative jump constants, Literals may be numbers or lists of ASCII data.
The relative jump constants allow the program sequence to be modified so that
loop and branch constructs can be mechanized.

The code address and return address of the code bodies control the tree-
structured nature of the language via the inner interpreter. The controlling
program or executive for the threaded interpretive language or program must
be a secondary. The code address of a primitive points to the first byte of the
code body of the primitive. The return address of the primitive transfers con-
trol to an inner interpreter routine which extracts the next word address of the
current secondary.

The consequence of this sequence is that a primitive is analogous to a
subroutine with a return terminating the machine code that implements the
keyword action. The code address of a secondary points to an inner interpreter
routine which saves the address of the next word address of the current sec-
ondary on the return stack and makes the first word address of the new sec-
ondary current. In effect, this is nesting down one level: looking for a primi-
tive in the new secondary to execute. The return address of a secondary points
to an inner interpreter routine which retrieves the word address on the return
stack and makes it current. This is in effect de-nesting one level: returning to
the next word address of the secondary that called the terminating secondary.

If all of this sounds confusing, don't panic — it is. Actually, it will all be
discussed again in this chapter when the inner interpreter is investigated and
when an implementation scheme is considered. To add a sense of mystery, the
passive code body discussion will be delayed until later.

2.3 Quter Interpreter

If the inner interpreter is the heart of a threaded interpretive language, the
outer interpreter is its soul. The outer interpreter establishes the man-machine
interface. All of the external attributes of the language are affected by the
design of this routine, The outer interpreter is written in TIL. A simple flow

HUIW A T11 WORKS 1§

diagram of (he outer interpreter will sufflce at this stage,
Pigure 2.2 ls one possible realization of an outer interpreter. The routines
gerform the following tasks:

HTART/RESTART — Initializes the stack pointers and system variables to
tslablish the execution maode under operator control. It is entered on start-up
or In the event a system-detected error occurs.

INLINE — This routine fills and displays the input line buffer via the input
keyboard. It recognizes backspace, the line delete command and terminates on
tarrlage return,

MASS — Fills the input line buffer from a mass storage device. A virtual
nemory mechanization is usually used.

I'OKEN — Scans the next token from the input line buffer and moves it to the
end of the dictionary space (the place where new routines will be added) in ex-
tended header form. (It must include all token characters in case it is a number
nr cannot be recognized.)

OK — If the line buffer is empty and the terminal is the input device, a suc-
censful end-of-line message is displayed to the operator.

BEARCH — Searches the dictionary looking for a keyword header that
inatches the token. Returns the word address of the token, if it is located, by
:)q;ﬁhing it to the stack. Always returns a flag on the stack indicating success or
ailure.

TEXECUTE — If the system is in the execute mode, the keyword is executed.
Note that both active and passive keywords have code addresses that point to
routines which perform some action. Control normally returns to 7JEXECUTE
unless an unconditional jump to the START/RESTART routine or system
monitor is executed or unless the keyword itself contains an endless loop. If the
nystem is in the compile mode, two events are possible. If the keyword is an
fimmediate keyword, it is executed. Immediate keywords are either compiler
ilirectives which implement literals and program control directives or a com-
pile mode termination divective. If the keyword is not immediate, its word ad-
dress is added to the threaded list of the new keyword being compiled. 7EX-
ECUTE tests for stack underflow or overflow errors before exiting,

ISTACK - If a stack error is detected following execution, an error message is
displayed and control is passed back to the operator via the
START/RESTART routine. If the error is detected while the compile mode is
in effect, the partially completed keyword defintion being compiled is deleted.
NUMBER — If the token is neither a carriage return nor a keyword, this
routine attempts to convert the token to a binary number using the current
system number base. (Number bases are in the set 2 thru 9, A thru Z with A =
10, B = 11, etc.} If a successful conversion occurs, one of two events can
result: if the compile mode is in effect, a literal handler followed by the number
is added to the keyword threaded list being compiled. If the execution mode is
in effect, the number is pushed to the stack.
QUESTION — If the token is not a carriage return, an existing keyword, or a
number, somebody goofed. The offending token is echo displayed to the

16 THRLADFY INTHRERELIVE Y ANGHAGEY

operator followed by “?” or WHAT? (or whatever) and control reverts to the

operator.

START ¢
RESTART

TOKREN

GLEAR YES
FA

NO

SEARCH

NG

NUMBER

YES
NO

YES

QK

PEXECUTE

FETACK

QUESTION

Figure 2.2: Quiter interpreter example.

[ITFT F1L IT] FYERFE T AT

It i obvlous from the description of the routines that two separate system
modes exist, a compile mode and an execution mode. In the execution mode,
cach token scanned from the input line is tested as follows:

@ If the line buffer is empty and the operator mode is in effect, an OK is
printed. Control is returned to get the next input line.

® If it is a keyword, it is executed.

® If it is a valid number, it is pushed onto the stack.

® If it is not recognized, it is echoed to the operator followed by "7,

During the compile mode a slightly more complex scheme is used. The compile
mode is building a new dictionary entry which may have branches or literal
data embedded in the threaded code. Two classes of keywords are important.
Immediate keywords are executed when encountered to allow the system to
generate appropriate sequences of threaded code to append to the keyword be-
ing defined or to terminate the compiler mode. That is, when an immediate
keyword is encountered in the compile mode, it is executed immediately. All
keywords which are not immediate are not executed. Their word addresses are
#imply added to the definition being compiled. In the compile mode, each
token scanned from the input line is tested as follows:

® [f the line buffer is empty and the operator mode is in effect, an OK is
printed, Control is returned to get the next input line,

® If it is located and is an immediate keyword, it is executed,

@ If it is found and it is not an immediate keyword, its word address is
added to the threaded list of the keyword being defined.

@ If it is a valid number, the number literal is added to the threaded list of
the word being defined followed by the number,

® If it is not recognized, it is echoed to the operator followed by “7” and the
partially completed keyword being defined is deleted.

Clearly, the method of re-establishing the execution mode is through the use of
an immediate keyword which terminates the definition.

The dictionary space for the system must be in programmable memory as
must be the input line buffers and the stack areas. The inner and outer inter-
preter and the core language may be in read-only memory, but normally they
are alse in programmable memory. One possible system configuration is
shown in figure 2.3. The dictionary pointer points to the next available
memory area where language extensions can be added. As definitions are
added, the language grows upward in memory.

As each token is scanned from the input buffer, its length plus all of its
characters are moved to the dictionary space. This is a convenient place to
held temporary data. The use of an extended dictionary format to hold tokens
is designed to allow easy enclosure of the characters to form a dictionary
header, but all characters must be moved in case it is a number or cannot be
located.

The data stack area builds downward and the language builds upward in the

1@ TTTREATI DY INTTTRPR]TIVE LANETIALTS

free memory area. When the two meet, the ball game ls over, Stack overllows
are fatal since they inevitably overwrite the language. Not much can be done
about this situation since a runaway stack will eventually overwrite the pro-
gram no matter where you initially hide the stack pointer.

TOP OF MEMORY 2 SYSTEM MONITOR READ_ONLY MEMORY

SYSTEM MONITOR RANDOM-ACCESS MEMORY

UNUSED ADDRESS S5SPACE

"——Y— DATA STACK POINTER
FREE DICTIONARY SPACE

“——l- DICTIONARY POINTER

! THREADED INTERPRETER LANGUAGE
P DICTIONARY AREA

INTERRUPT YECTOR AREA
0oan

Figure 2.3: Typical memory configuration.

2.4 Inner Interpreter

The crux of a threaded interpreter is the inner interpreter. The inner inter-
preter controls the order of execution of the machine code which mechanizes

YTy Moty wyremToopY

i language. It is composed of three short, fast routines, one of which has
theee ontrances as shown in figure 2.4, The layout of the bodies of dictionary
vAIFies is predicated an the inner interpreter routines. The dictionary bodies of
« primitive and a secondary are shown in figure 2.5 for a byte-addressed com-
jiuler.

All secondaries except the secondary which forms the outer loop of the
ihreaded program have a code address and a return address, The outer loop of
{liee program is a loop, The last word address of the cuter loop causes a jump
luik to the first word address of the loop. In the threaded interpreter being
shagussed, this outer loop is the outer interpreter. A glance back to figure 2.2
will verify this endless loop aspect of the outer interpreter. This outer loop is
thy executive for the program.

COLON COLON IS A PRIMITIVE WITHOUT A CODE
ADDRESS WHICH EXITS TO AEXT

BEME SEMI+2 SEM/ 1S A PRIMITIVE WHICH EYOKES SEW/,
NEXT AND RUN
NEXT
NEXT CAUSES MEXT AND RUN TG EXECUTE

#un } RUN EVOKES ONLY RUN
EXECUTE 5 EXECUTE 1S A PRIMITIVE WITH A HEADER

. WHICH EXITS TO RUN

X

€

LINK

WORD ADD. | EXEC#+2 :!

Figure 2.4: Inner interpreter routines.

The code body of the outer loop is a list of the word addresses of previously
dofined keywords, The inner interpreter maintains a register called the instruc-
tipn register. It contains the address of the next secondary instruction to be ex-
c¢uted. Since the outer loop is a secondary, there will always be a next second-
ary address to be executed. The inner interpreter routine which will execute
the next secondary instruction is called NEXT.

The routine NEXT extracts the word address of the next instruction pointed
te by the instruction register, places it in a word address register and in-
«rements the instruction register by two, In figure 2.5 if the instruction register
tontained WA +2, the routine NEXT would extract WA#1 and leave the in-
wruction register containing WA +4. It is desired to run the routine WA#1

LA INTEIREPW DIV T ANGLIAGT Y

words always create a dictionary header. All defining worda are evoked in the
execution mode, The keyword that initiates the compiler mode (ASCIL:) is a
defining word (ie: it is evoked in the execution mode and creates a dictionary
entry}, All defining words except “:" return the system to the execution mode
on completion, The compile mode is established by the keyword ”:” and ter-
minated by the keyword ;" or ;CODE, both of which re-establish the execu-
tion mode among other things. These latter two keywords are immediate
keywords and are executed only in the compile mode.

All defining words create a dictionary header from the token following the
defining word in the input buffer. (Note that the defining words must be
defined themselves before they can be evoked. Predefinitions of some routines
are necessary,)

The simplest defining word is CREATE. For example:

CREATERGODZILLA B EOK

This sequence will create a primitive header for a keyword named GOD-
ZILLA. The keyword CREATE first parses the token GODZILLA from the in-
put buffer and moves it to the dictionary space as 8GODZILLA. Next, it ad-
vances the dictionary pointer contents (a system variable called DP) by four to
enclose 8GOD in the dictionary. It extracts the address of the last keyword
header from the current vocabulary, encloses it in the dictionary as the link ad-
dress, and then replaces the current vocabulary address with the address of the
8 in the 8GODZILLA header. Finally, CREATE encloses the address of DI +2
(the code address) at the DP address location (the word address}.

CREATE simply creates a primitive dictionary header but does not reserve
any bytes in the code body of the word being defined. Creating GODZILLA is
far simpler than foreign film makers could possibly imagine. Basically, all
defining words evoke CREATE to form the dictionary header and then replace
the code address as appropriate. The compiler word “:” calls CREATE and
then replaces the code address with the address of the inner interpreter CO-
LON routine. Now you see why that funny name was selected for this inner in-
terpreter routine,

Although CREATE appears to be useless by itself, this is not true. For exam-
ple, a word could be defined to drop the top value from the data stack using
the sequence:

HEXECREATEEDROFEELIRC, ENEXTHBOK

First HEX establishes the system number base as hexadecimal. CREATE
creates a primitive keyword named DROP. The E1 is a valid hexadecimal
number and is pushed to the data stack since the execution mode is in effect.
The C, pops the data stack and encloses the low-order byte in the dictionary
(the E1). Finally, NEXT encloses the jump to the inner interpreter NEXT
routine in the dictionary. When DROP is evoked, the machine instruction E1
is executed, which pops the top of the data stack to the HL register pair and
then executes a jump to NEXT, The value popped to the HL register pair is

FETY AT WETED 33

sever used, The value is simply dropped from the data stack, This is a simple
vaapiple of extending the language using machine code to create a new
pimibive keyword,

An example of a compiling word is:

:I2DUPEDUPEDUP B B BOK

i fwye g keyword DUP has already been defined. This keyword duplicates the
I slack value leaving two copies of the value on the stack, The keyword
ANIP is designed to leave three copies of the previous top stack value on the
utatk by calling DUP twice. Here *.”" creates a 2DUP keyword dictionary entry
with the COLON routine code address in its word address (ie: it creates a
aeionclary dictionary header and then sets the system mode to the compile
tinsle}. The next token scanned is DUP. The search routine will locate its word
atldress since it is already defined. The outer interpreter routine JEXECUTE
will enclose the word address of DUP in the dictionary since the compile
ninde, not the execute mode, is in effect. This will occur again when the second
YHII" 1in the input buffer is scanned. The keyword ;” is an immediate keyword
which will be executed in the compile mode. It encloses the word address of the
wwer interpreter primitive routine SEMI in the dictionary and sets the system
marle to the execute mode. Here the language extension is a new secondary
Leyword created from existing keywords via the compile mode.

A typical defining word is CONSTANT. CONSTANT defines a passive
l.eyword which, when evoked, will push a constant value to the data stack.
An example of its use is:

DECIMAL M288MCONSTANT @2GROSS

Here the keyword DECIMAL sets the system number base to the decimal (10)
lae, the 288 is pushed to the stack as a binary number and CONSTANT
i reates the dictionary entry for the keyword 2GROSS with a code body whose
t unhtents are 0120, the hexadecimal equivalent of 288 decimal. When 2GROSS
I evoked it will always push hexadecimal 0120 to the data stack.

Obviously a definition of CONSTANT is required before 2GRQSS can be
tlefined. A formal definition of CONSTANT is:

HEXW:BCONSTANTECREATER, W;CODEM., ...

Here ”..." indicates machine code that will be entered following ; CODE. First
e)" creates a secondary dictionary header for CONSTANT and sets the
tompile mode. The CREATE and “,” word addresses are then placed in the
code body of CONSTANT. The ;CODE keyword is an immediate keyword
which places the word address of a routine called SCODE in the code body of
{ONSTANT and sets the system mode to the execute mode. The machine
code that follows ;CODE in the definition is machine-specific, but the action it
I to implement is universal. The code will extract the word pointed to by the
word-address register and push it to the data stack and then jump to the inner

BOLIREADVTINTIRPRE TIVE TANGLAGT Y

words always create a dictionary header. All defining words are evoked in the
execution mode. The keyword that initiates the compiler mode (ASCII :) is a
defining word (ie: it is evoked in the execution mode and creates a dictionary
entry), All defining words except *:” return the system to the execution mode
on completion. The compile mode is established by the keyword ”.” and ter-
minated by the keyword ;" or ;CODE, both of which re-establish the execu-
tion mode among other things. These latter two keywords are immediate
keywords and are executed only in the compile mode.

All defining words create a dictionary header from the token following the
defining word in the input buffer. (Note that the defining words must be
defined themselves before they can be evcked. Predefinitions of some routines
dre necessary,)

The simplest defining word is CREATE. For example:

CREATERGODZILLAREOK

This sequence will create a primitive header for a keyword named GOD-
ZILLA. The keyword CREATE first parses the token GODZILLA from the in-
put buffer and moves it to the dictionary space as BGODZILLA. Next, it ad-
vances the dictionary pointer contents {a system variable called DI?) by four to
enclose 8GOD in the dictionary. It extracts the address of the last keyword
header from the current vocabulary, encloses it in the dictionary as the link ad-
dress, and then replaces the current vocabulary address with the address of the
8 in the BGODZILLA header. Finally, CREATE encloses the address of DP+2
({the code address} at the DP address location (the word address).

CREATE simply creates a primitive dictionary header but does not reserve
any bytes in the code body of the word being defined. Creating GODZILLA is
far simpler than foreign film makers could possibly imagine. Basically, all
defining words evoke CREATE to form the dictionary header and then replace
the code address as appropriate. The compiler word “:” calls CREATE and
then replaces the code address with the address of the inner interpreter CO-
LON routine. Now you see why that funny name was selected for this inner in-
terpreter routine,

Although CREATE appears to be useless by itself, this is not true, For exam-
ple, a word could be defined to drop the top value from the data stack using
the sequence:

HEXECREATEEDROFPEEIRC, ENEXTHBOK

First HEX establishes the system number base as hexadecimal. CREATE
creates a primitive keyword named DROP. The El is a valid hexadecimal
number and is pushed to the data stack since the execution mode is in effect.
The C, pops the data stack and encloses the low-order byte in the dictionary
(the E1). Pinally, NEXT encloses the jump to the inner interpreter NEXT
routine in the dictionary. When DROP is evoked, the machine instruction E1
is executed, which pops the top of the data stack to the HL register pair and
then executes a jump to NEXT. The value popped to the HL register pair is

Meny A T71 WENEED 23

nrver used, The value is simply dropped from the data stack. This is a simple
vaatiple of extending the language using machine code to create a new
primbive keyword.

An example of a compiling word is:

:ZDUPEBDUPEDUPE; B ROK

itvre o keyword DUP has already been defined. This keyword duplicates the
I alack value leaving two copies of the value on the stack. The keyword
AP s designed to leave three copies of the previous top stack value on the
statk by calling DUP twice, Here “.” creates a 2DUP keyword dictionary entry
with the COLON routine code address in its word address (ie: it creates a
et omdlary dictionary header and then sets the system mode to the compile
tisisile). The next token scanned is DUP. The search routine will locate its word
atllress since it is already defined. The outer interpreter routine 7TEXECUTE
will enclose the word address of DUP in the dictionary since the compile
tinde, not the execute mode, is in effect. This will occur again when the second
I HII in the input buffer is scanned. The keyword ;" is an immediate keyword
which will be executed in the compile mode. It encloses the word address of the
uHer interpreter primitive routine SEMI in the dictionary and sets the system
nikle to the execute mode, Here the language extension is a new secondary
L.oyword created from existing keywords via the compile mode,

A typical defining word is CONSTANT. CONSTANT defines a passive
}oyword which, when evoked, will push a constant value to the data stack.
An example of its use is:

DECIMALM283MCONSTANT M2GROSS'

Here the keyword DECIMAL sets the system number base to the decimal (10)
hage, the 288 is pushed to the stack as a binary number and CONSTANT
¢ reates the dictionary entry for the keyword 2GROSS with a code body whose
tuntents are 0120, the hexadecimal equivalent of 288 decimal. When 2GROSS
In evoked it will always push hexadecimal 0120 to the data stack.

Obviously a definition of CONSTANT is required before 2GROSS can be
defined. A formal definition of CONSTANT is:

HEXW:BCONSTANTECREATES, M;CODEN....

Here “..." indicates machine code that will be entered following ;CODE. First
the '+ creates a secondary dictionary header for CONSTANT and sets the
tompile mode. The CREATE and “,” word addresses are then placed in the
«nde body of CONSTANT. The ;CODE keyword is an immediate keyword
which places the word address of a routine called SCODE in the code body of
{ ONSTANT and sets the system mode to the execute mode. The machine
code that follows ;CODE in the definition is machine-specific, but the action it
In to implement is universal. The code will extract the word pointed to by the
word-address register and push it to the data stack and then jump to the inner

24 THIRTADETY INTERPRTTIVE T ANCGUAGE

interpreter routine NEXT. Note that this code ls not executed when CON
STANT is defined, but is added to the dictionary definition of CONSTANT,

There are three levels of action: one when CONSTANT is defined, one
when 2GROSS is defined, and one when 2GROSS is evoked. When 2GROSS
is defined, the keyword CONSTANT is cailed. CONSTANT first creates a
primitive header called 2GROSS by the call to CREATE. The keyword “,” in
CONSTANT will pop the data stack and enclose the value in the dictionary,
In the example, it pops the hexadecimal 0120 (288 decimal) from the stack and
places it in the body of 2GROSS. The keyword SCODE in CONSTANT
replaces the code address of the word being defined by the address of the word
following its location and then returns to the inner interpreter routine NEXT.
The result is diagrammed in figure 2.6.

CONSTANT 2GRO5S
8 5
c 2
o G
N R
LINK LINK
COLON cA
CREATE o120
.
SCODE
M
A
c
i
N Figure 2.6: 2GROSS5 defined as a constant.
E
¢
o
3
E
NEXT

When 2GROSS is evoked, its code address points to the machine code
following the SCODE in CONSTANT. This code will be executed. However,
the inner interpreter routine RUN will leave the word-address register contents
at the address of the 0120 following the code address of 2GROSS, The machine
code, as explained, will extract the word located at the word-address register
location and push it to the stack (ie: it pushes hexadecimal 0120 to the stack}.
All constants defined using CONSTANT have code addresses which point to
the machine code in CONSTANT.

The keyword ;CODE is the critical factor in defining generic data types. It
allows the specification of actions (machine code) that allow the creation of
data types. The machine code that follows ;CODE is a generic primitive con-
sisting of a body and a return. The address for this primitive is always stored
in the word-address location of the word being defined.

So far, examples of defining new keywords directly in machine code by

FlEaw A LT WOl D 28

snmpiling new definitions and using defining words have been presented. Even
niore examples will be given in Chapter 4, “The Tower of Babel Revisited.”

A 6 Vocabularies

Although it has been mentioned that the dictionary is segmented into
vocabularies, no rationale for this has been presented. There are several
fensong for this segmentation. Fundamentally it presents a functional separa-
{1on of the language. A full-blown text editor may be desirable sometimes, but
n modest editor may be resident in the core language. By vocabulary control,
keyword names that could be in contention are resolved. Another reason for
tlifterent vocabularies is that certain keywords can be hidden. Compiler direc-
lives, for example, are only used in the compile mode. If the operator called
Iwese directives in the execution mode, stack errors would result and it is possi-
e tor the program to consume itself.

The basic vocabulary structure is a tree with the core language as the trunk,
liach vocabulary is named and its location exists in a passive keyword in the
vore, This is illustrated in figure 2.7. Note that some vocabularies are normaliy
fudden but may be linked to the core in special circumstances. QOthers may be
lvat by the simple expedient of not including headers.

ASSEMBLER Joa EDITOR

(’ Figure 2.7: Vocabulary structure.

L.

The vocabulary search order determines how keywords are located. Each
vocabulary is a linear-linked list by virtue of its header format. Two keywords
can have precisely the same identifying name. The first one located will ter-
minate the search. It is this keyword that will be used by the outer interpreter.
New definitions are always linked to the top of an existing vocabulary.
Redefining an existing keyword will cause any subsequent reference to use the
new definition, Any preexisting routine which calls the old definition will
continue to use the old definition. This results from the fact that the word ad-
dress of the old definition is extant in all preexisting routines. It has been com-
piled and will not change.

o
o

CORE
COMFILER

26 THREALNLY INLLRURE TIVE] ANGLIAGH

A dictionary search beging at the address containedl in the variable CON-
TEXT. This variable is set when the name of a vocabulary is used. For exam
ple, the keyword CORE is the core language vocabulary name and its use sets
CONTEXT to point tv» CORE which contains the address of the first dictionary
header in the core ianguage. New keyword definitions are linked to the
vocabulary specified by the variable CURRENT. The keyword DEFINITIONS
sets CURRENT to CONTEXT. Some defining words also affect CONTEXT.
The keyword “:”, which establishes the compiling mode, sets CONTEXT to
CURRENT while the defining word CODE, which evokes the assembler
vocabulary, sets CONTEXT to ASSEMBLER.

Keywords from different vocabularies can be interlaced in memory; they
need not be contiguous. New definitions are always added to the top of the
language. They build up in memory space and are linked to the CURRENT
vacabulary. A keyword FORGET will cause removal of dictionary entries in a
spatial sense, If the keyword name following FORGET is in the CURRENT
vocabulary, the keyword and all subsequent keywords will be forgotten.
FORGET sets CONTEXT to CURRENT, locates the keyword, resets CUR-
RENT to the link address of the located keyword and resets the dictionary
pointer DP to the first header byte of the located keyword. Care is advised in
the use of FORGET. [t is possible to forget the entire language.

The use of the keyword IMMEDIATE causes the top entry of the CURRENT
vocabulary to be made an immediate keyword (ie: can be executed only in the
compile mode).

Some comments are needed concerning immediate words, dictionary
headers, and lost vocabulary words. A standard technique for defining an im-
mediate keyword is to set a precedence bit somewhere in the header (generally
the length-parameter, high-order bit). If this bit is set, the keyword is executed
regardless of the mode. | do not like this technique. I usually establish a
separate compiler vocabulary for immediate words. This vocabulary is
searched only if the compile mode is in eftect. This prevents compiler direc-
tives from being executed in the execute mode. The compiler directives load
the word addresses of program-control directives to the dictionary and muck
around with the stacks, There is never a reason for executing a compiier direc-
tive in the execution mode. The program control directives do not have
headers and thus cannot be located by the search algorithm. The compiler
directives know the word addresses of their associated program control direc-
tives. No other keyword needs this information. The operator does not need to
know this information either.

2.7 Synthesis

Synthesizing this chapter is essential to understanding the threaded inter-
pretive language concept. All of the elements are interdependent. The dic-

T A TH Witk

Honary formats, the interpreters, the stacks, the defining words, the compiling
e, and the vocabularies are all predicated on the Form and function of each
uthur IF you do not feel comfortable with some element, try rereading it. If
thin does not work, continue to the end. You may find the answer to what's
hpping you.

201G ALY INGERPKD LIV L ANGLAL

3 | HUP, Two, Three, Four

Some people have been audacious enough to claim that 1
march to a different tune, Regardless of the validity of that,
1 tell the truth when I claim that your TIL had best march
quickly through your code. And tirelessly too!

3.1 An Inner Interpreter For A Generic Computer

To fully illustrate the actions of an inner interpreter, I'm going to resort to
the old generic computer trick. The generic computer [will construct is not
very sophisticated: the inner interpreter code will be written, a primitive and a
secondary will be written, and then we will execute some code — at least on
paper.

The computer to be built will have several registers, Registers are not all that
important, but the principles are easier to understand this way. The same end
results can be achieved using memory locations in machines with fewer
registers, The registers are all 16-bit registers as follows:

Registar Description

1 Instruction register. Contains the address of the next
instruction in the threaded list of the current secon-
dary.

WA Word Address register. Contains the word address
of the current keyword or the address of the first
code body location of the current keyword.

CA Code Address register.

RS Return Stack register.

SP Stack Pointer register.

PC Processor Program Counter register.

U DALY THIRLEE (L 29

Lhe instruction sel necessary to illustrate the inner interpreter is fairly sim-
ple. A byte-oriented addressing scheme is presumed (ie: I + 2 is the next word
i Inemory following memory word location [). All instructions are presumed
tin he one word in length. The following instruction set is assumed:

lnstruction Dascription

fith B The contents of the memory location word whose
address is in register A are loaded into register B
{a 16-bit indirect fetch from A to B}.

A A+n The contents of register A are incremented by the
constant n.

P S—A The S push down stack top entry is loaded to

. register A and the stack pointer is adjusted.

MM A-S The A register contents are loaded to the S push
down stack and the stack pointer is adjusted.

A =PC The contents of the A register are loaded into the PC.
The processor will fetch its next instruction from this
location.

IMP XX Unconditional jump to the address contained in the

word following the jump instruction.

Nuta A and B are any of |, WA, or CA.
S is either RS or SP,

{ho inner interpreter can be written as in listing 3.1.

Location Mnemonic Instruction Comment
0140 COLON PSH 1—-RS
0142 WA=
0144 JMP
0146 0104 } Jump to NEXT
0100 SEM! 0102 Code address of SEMI
0102 POP RS—I
0104 NEXT @1— WA
0106 I=1+2
0108 RUN @Wa—CA
010A WA =WA+2
010C CA-PC
0050 7E Dictionary
00562 XE header
0054 LA for EXECUTE
Q056 EXECUTE 0OOQB8 Code address of

EXECUTE

30 FHREADLDLDY INTERUED LIV TANGTHALEY

0058 POP SP—-WA
00BA JMP
005C 0108 Jump to RUN

Listing 3.1: Pseudo-code implementation of inner interpreter.

That's it! The entire inner interpreter is just 36 bytes long.

All of this may appear hopelessly complex or ridiculously simple. Unless the
details and beauty of the inner interpreter are appreciated, it is impossible to
fully understand a threaded interpretive language.

Some points about this inner interpreter implementation:

@ The I register is effectively the program counter for the threaded inter-
pretive language. It must be preserved by all primitive machine code.

® Only the inner interpreter machine code and primitive machine code are
ever executed.

® When the routine RUN completes, the WA register points to the address
of the code body of the keyword. This fact is important in passive
keyword definitions and in the COLON routine,

® The word address of SEMI, the value that terminates all secondaries,
contains a word address value equal to the address of SEMI. Thus SEMI
is a primitive.

® SEMI always executes NEXT and RUN; NEXT always executes RUN.

® The word address of all secondaries contains the address of the COLON
routine. When the PSH I— RS instruction is executed, it saves the word
address of the next instruction of the current secondary on the return
stack. The instruction WA —1 actually loads the word address of the first
instruction of the new secondary into the instruction register (see third
remark above).

@ The routine EXECUTE is used by the outer interpreter to execute a
keyword, The search algorithm returns the word address of a located
keyword on the stack. EXECUTE pops this word address into WA and
jumps to RUN. This causes the keyword to be executed but control
returns to the outer interpreter at completion since the [register contains
the word address of the keyword following the outer interpreter EX-
ECUTE location.

A modestly complex but fundamentally simple scenario will be developed to
illustrate several aspects of the inner interpreter. Assume that a constant with
value 288 has been defined as ZGROSS. A primitive routine called DUP that
duplicates the top stack exists. A secondary that duplicates the top stack value
twice is desired. It is defined as:

:HzDUPEDUFEDUPE: NRMOK

UL Twes TR POUR 31

A rouline named FUNNY is needed that leaves three values of 288 on the stack

e some funny reason, It is defined as:

Finally FUNNY will be executed as:

shown in listing 3.2.

Location

1000
1002

2000
2002
2004
2006
2008
200A
200C
200E
2010

2100
2102
2104
2108
2108
210A
210C
210E
2110
2112
2114

2080
2062
2064
2056
2068

2200
2202
2204

:HFUNNY M2GROSSHzDUPE; HBOK

FUNNYE ECK

I'he resulting memory contents after this sequence will be presumed to be as

Contents

0056
XXXX

30

up

LA

2008

POP SP—CA
PSH CA—SP
PSH CA—-SP
JMP }
0104

8C

ON

LA

0140
CREATE }

SCODE
@WA—CA
PSH CA—SP
JMP

0104 }

62
GR
LA

210E
0120

42
DU
LA

Comments

EXECUTE location in
outer interpreter

Dictionary header
for the

primitive DUP

DUP's word address
Code that duplicates
the stack

Jump to NEXT

Dictionary header

for the secondary

defining keyword CONSTANT
COLON Address

Actually addresses but

not important for

the example

Code to extract a

canstant and push it

Jump to NEXT

Dictionary header

for the constant

2GROSS

Pointer to CONSTANT code
Decimal 288 in hexadecimal

Dictionary header for
the secondary
2DUP

32 THKEADUL INTERPRETIVE TANGLUAGE,

2206 0140 COLON Address
2208 20086 DUP Address

220A 2006 DUP Address

220C 0100 SEMI Address

220E hF Dictionary header for
2210 UN the secondary FUNNY
2212 2200 linked to 2DUP
2214 0140 COLON Address
2216 20586 . 2GROSS Address
2218 22086 2DUP Address
221A 0100 SEMI Address

Listing 3.2: Memory contents after routine FUNNY has been compiled.

In the dictionary header for FUNNY, the link address points to 2IDUP since
consecutive definitions were entered by the operator.

The scenario will begin with the word address of FUNNY {2214) on the stack
and the outer interpreter just about to execute the EXECUTE word address {1
contains 1000). The step-by-step march of the processor through the code is
given in table 3.1.

While a careful examination of the code illustrates the principles, the exam-
ple is not exactly tiptoeing through the tulips. Stomping, maybe, but tiptoeing
— no. This is partially due to some not-too-neat scenario definitions. For in-
stance, the definition of 2DUP as a primitive requires one more instruction
than a DUP, or two more instructions than the 2DUP secondary form. If this
were done, a NEXT-RUN-COLON, NEXT-RUN-DUP and NEXT-RUN-SEMI
set of instructions would be replaced by the extra PSA CA—A instruction
needed to implement a primitive 2DUP keyword. FUNNY is a funny definition
simply because it is incomplete and does not do very much. If it were really re-
quired, a primitive machine-code keyword routine could be defined to both
generate the hexadecimal 0120 and push it to the stack three times. This is far
more efficient than the scenario definitions.

The code illustrated here uses post-indexing of the word and instruction
registers, In processors with pre-indexing indirect memory fetches, or in most
microcomputers, the indexing increments can occur before the fetches. This
will affect the inner interpreter code and other routines which access the word
and instruction registers.

3.2 An Inner Interpreter For the Z80

HUEE PWEL LTI LW D

HOMTING PG INSTRUCTION 1 wa CA Ra g
fLEd O @ WA 1000 DOTS izra
1HQ8 k=112 Q02 00BS 214 Set up to
11105 o108 gwa «Ca 1002 Q066 OQBB 214 run EXECUTE
fHOA WA WaA+2Z 1002 0068 Q056 2214
010G CA »PC 1002 0058 0068 2214

In implementing any inner interpreter, careful consideration should be given

[R(CUTE OOBB POPSP—WA 1002 2214 DOS8 — -
O0EBA JMP 0108 1002 2214 0058 - } Run EXECUTE
11N OloB @WA—CA 1002 2214 0140 — -
O10A WA =WA+2Z 1002 2216 0140 — } fﬁ}f&t" rn
0t0C CA~PC 1002 2216 0140 — -
| EHAIN 0140 PSH |-RS 1002 2216 0140 1002 - Nest dawn
G142 WA ~1 2216 2216 0140 1002 - ane
Clad JMP G104 2216 2215 0140 1002 - lavel
KK E 0104 @—WA 2218 2058 0140 1002
0106 1=1+2 2218 2086 0140 1002 Sot to
1N 0108 @WA—CA 2216 2056 210E 1002 SGROSS
O10A WA =WA+2 2218 2058 210F 1002 - run
010G CA-PC 2218 2058 210E 1002 -
{INYTANT 210 @WA—CA 2213 2058 0120 1002 - Fun CONSTANT
2100 PSH CA—SP 2218 2088 0120 1002 0120 } code 1o get
2112 JMF 0104 2219 2088 0120 1002 0120 the valug
HITK 1 0104 @—WA 2218 2206 0120 1002 0120
G108 I=1+2 2214 2206 0120 1002 a120 Set up o
N 0108 @WA—CA 2214 2308 0140 1002 0120 run
G10A WA=WA +2 221A 2208 0140 1002 0120 2 DUP
o100 CA—PC 2214 2208 0140 1002 0120
LI ON 0140 PSH 1-RS 221A 2208 0140 221A 1002 0120 Nost
0142 Wa—I 3208 2208 1040 221A, 1007 0120 down
0144 JMP 0104 3208 2208 0140 2Z1A, 1002 0120 ona lavel
PR 0104 @~ WA 2208 2006 0140 2214, 1002 0120
Q106 |=1+2 3204 2006 0140 2Z1A, 1002 0120 Setup to
1N 0108 @WA—~CA 3204 2006 2008 2214, 1002 0120 run the
0104 WA=WA+2 220A 2008 2008 2214, 1002 0120 first DUP
0100 CA—PC 27CA 2008 2008 221A, 1002 0120
[P 2008 POP SP—CA 220A 2008 ©120 221A, 1002 — Hun the
200A PSH CA—~SF 220A 2008 0120 221A, 1002 0120 f_” .
200C PSH CA~SF 220A 2008 0102 221A, 1002 01200120 [')'SP
200F JMP 0104 2204 2008 Q120 221A, 1002 ©120,0128
HUK 3104 @l—WA 2204 2006 0120 2214, 1002 0120,0120 Set up to
Q106 I=1+2 220C 2006 0120 221A, 1002 0120,0120 run the
N D108 @WA—CA 2200 2006 2008 2214, 1002 01200120 sacond
10A WA=WA+2 220C 2008 2008 2214, 1002 0120,0120 DUP
010C CA—PC 220C 2008 2008 221A, 1002 D120.0120
[2008 POP SP—CA 220C 2008 0120 2214, 1002 0120 Run the
200A PSH CA—SF 220C 2008 0120 2214, 1002 0120,0120 evond
200C PSH CA—SF 220C 2008 0120 2214, 1002 0120061200120 ¢ '
200E JMP 0104 220C 2008 0120 221A, 1002 0120,0120,0120
NUXT 0104 @—Wa 220C 0100 0120 2214, 7002 012001200120 } oo\ 000
0106 I=1+2 2206 0100 0120 221A. 1002 0120,0120,0120 { = ohuy
N 0108 @WA-CA 220E 0100 DI02 2214, 1002 0120,0120.0120 ¢ 1o
0104 WA —WA +2 220E 0102 0102 221A, 1002 0120,1020,0120
010 CA—PC 220E 0102 0102 2214, 1002 0120,0120,0120
SEMI 0102 POP RS~ 3214 0102 0102 1002 012001200120 | Denest 1 lwal
NEXT 0104 @ WA 221A 0100 0102 1002 0120.0120,0120 § oo oo
0106 1=1+2 2321C 0100 0102 1002 0120.0120,0120 [22\ 0
HUN 0108 @WA—CA 221C 0100 0102 1002 6120,0120,0120 2 LA
010A WA=WA+2 221C 0102 0102 1002 0120,0120,0120
010¢ CA—PC 221C 0102 0102 1002 0120.0120,0120
AEMI 0102 POP RS—1 1002 0102 0102 — 0120,0120,012C | Denest 1 lavel
NEXT 0104 @— WA 1002 XXXX 0102 0120,0120.0126 | Sstup torun

outer interpreter

Table 3.1: Stepping through the pseudo-code for routine FUNNY. e Tollowing

to maximizing the efficiency of the code in terms of execution speed. The faster
the routines, the more efficient the TIL. The Z80 is not an ideal microcomputer
for implementing a TIL. Fundamentally it does not have a high-speed, 16-bit,
indirect memory-addressing mode. It does have an 8-bit, implied memory-
addressing mode which can be used with a slight degree of difficulty to imple-
ment the inner interpreter.

ML ATE RN TREME TIVE ANGHTSG]

To mechanize the inner interpreter, the Z80 registers are assigned as in table
3.2,

Registar Pair Usage

AF 8-bit accumulator and program status word

BC Instruction register

DE Word address register and
scratch register

HL Scratch register

IX Return stack pointer

Y Address of NEXT

SP Data stack pointer

AF'

?)E, Scratch

HL’

Table 3.2: Z80 register assignment.

The HL register pair is also used as a 16-bit accumulator. The use of IY to con-
tain the address of NEXT provides a quick way to perform a 2-byte jump to an
absolute memory location (NEXT) via a JP (IY) instruction: an implied jump to
the address contained in 1Y,

The particular method of arranging the data and return stacks affects the
code used to implement the inner interpreter. The top 4 K bytes of my Z80
system are arranged as shown in figure 3.1, The system monitor uses the
system 1 K bytes of programmable memory for stacks and variable storage.
The threaded interpreter also uses this same area for its stacks,

FFFF ~VIDEQ REFRESH MEMORY AREA (1K)

Lo
FCoo ‘/_/m SYSTEM RAM (USER MEMORY) AREA

Figure 3.1: Memory
Feaoo map of top 4 K bytes
— - on typical Z80 system,

Fago [—] _—~2K EPROM SYSTEM MONITOR

A/
Fooo — -

The system programmable memory map is shown in figure 3,2. The first 128
bytes are reserved for input line buffers. The area immediately above the buf-
fer area is reserved for the system monitor and TIL system variables. The data
stack pointer is initialized to the top of this memory area and the return stack

FIRIES TW AT BCITIR 2

puinter to the middle of the memory. This implementation allocates 512 bytes
1o the data stack and about 300 bytes to the return stack with both stacks
hutlding downward in memary. Actually, [am cheating. The system monitor
i o threaded interpreter which explains why the TIL system variables are
[ncated here in my system, It is more typical to locate the TIL system variables
with the TIL code, The stack areas are more than adequate for any problem I
have ever encountered, even though only 1 K was allocated. The data stack is
wsed For temporary parameter storage. If great numbers of user variables are
feijulred, the top of the low-order memory should be partitioned into blocks
bor this data storage. (A TIL will not “create” memory. A 4 K-byte TIL and a
4 K byte BASIC leave the same free memory space — in any given system —
bt programs and variables, TIL programs tend to use less memory, leaving
more room for variables.)

[t n =+ DATA STACK POINTER

_— Figure 3.2: System Memory map.

LA = RETURN STACK POINTER

[irein
[-
s SYSTEM VARIABLES

Y] ﬁ\\\ -— 128 BYTE LINE BUFFER PLUS TERMINATORS

Assume the inner interpreter is to be located in low memory. One
mechanization of the inner interpreter is given in table 3.3. Several interesting
teatures can be learned from this specific mechanization as opposed to the
Meneric computer inner interpreter,

The Z80, as many other microcomputers, accesses the low-order byte in the
kirst memory location and the high-order byte as the second location when an
address (word) is accessed from memory. This order is maintained when the
return stack is accessed. This is obvious in both the SEMI and COLON
routine, as in table 3.3. It is clear from these routines that the implied, 8-bit ad-
dress scheme requires at least twice the number of instructions as the generic
computer with its single, indirect, 16-bit addressing instruction. Furthermore,
the use of the [X register for implied addressing is substantialiy slower than us-
ing the main Z80Q registers as may be noted from the “T" state or timing states
associated with each instruction.

The time efficiency of a TIL keyword can be computed from knowledge of
the inner interpreter timing and the keyword timing. Stepping from primitive

36 THREAPLDY AN LFREVRE LIV AN LA

LOCATION CONTENTS ASSEMBLY CODE “T STATES
0100 0201 SEMI: * 42

0102 DD4EQO LD C.{IX+0} 19
0105 DD23 INC X 10
0107 DD4600 LD B.{IX+0} 19
010A DD23 INC IX 10 = &8
o10C 0A NEXT: LD A, {BC} 7

010D 6F LD LA a
010E 03 INC BC 6
010F 0A LD A, {BC} 7
0110 67 LD H,A 4

0111 03 INC BC 6 = 34
0112 BE RUN: LD E,{HL} 7

0113 23 INC HL 6
0114 56 LD D, {HL} 7
0115 23 INC HL 6
0116 EB EX DE,HL 4
0117 E9 Jp {HL} 4 =34
0118 DD2B COLON: DEC X 10
011A DB7000 LD IX+01,B 19
011D DD2B DEC IX 10
011F DB7100 LD IX+01,C 19
0122 4B LD C.E a
0123 42 LD 8,0 a
0124 FDE2 4P £iv} 8 = 74
0126 07455845 DATA 7.E.X,E

012A 0000 DATA 00

012¢ 2E01 EXECUTE: *+2

012E E1 POP HL

012F 18€1 JR RUN

Table 3.3: A Z80 inner interpreter,

to primitive within a secondary always requires an execution of NEXT, RUN,
the primitive code body, and the return to NEXT for each step. A primitive
always terminates with a JP (IY) instruction as its return. Thus, for the Z80 in-
ner interpreter:

“T" Primitive = NEXT + RUN + body + JP (1Y)
34 + 34 + body + 8
76 + body

Primitive primitives are extremely inefficient, The primitive DROP requires

Y TWe THREE OUW 7

w slgle POR HL instruction in s code body with a “T" state requirement of
fen states, [the primitive code was simply strung together (that is, truly com-
pnledd), this keyword would require ten states rather than the eighty-six states
setfulred of the TIL definition, The “inefficiency” of the TIL is then:

total — body »
body

[IROP is thus 760% inefficient relative to compiled code. The arithmetic
multiply routine “*" requires 384 to 464 T states to complete. Thus “+” has an
wietficiency of 16 to 20% relative to compiled code,

I'he timing inefficiency of secondaries is more difficult to assess. It is clear,
however, that each call to a secondary requires a NEXT-RUN-COLON and a
NEXT-RUN-SEMI on entrance and exit. If we return to the 2DUP example of
lable 3.3, a DUP keyword costs thirty-two T states and a primitive 2DUP costs
lorty-three T states. Thus for 2DUP:

% Inefficiency = 100

Yeeondary = NEXT + RUN + COLON + NEXT + RUN + DUP
+ RET + NEXT + RUN + DUP + RET + NEXT
+ RUN + SEMI
4 +34+74+34+34+ 32 +8+ 34+ 34
+ 32 + 8+ 34+ 34 + 58

= 420 + 64 = 484
Primitive = NEXT + RUN + 2DUP + RET
344+ 34+ 43 + 8
76 + 43 = 119

The secondary form of 2DUP requires about four times as long to execute as
does the primitive form. The inefficiency of the 2DUP forms are:

Secondary = ‘-4-%;-—4—3 = 1026%

L 76
Primitive = a3 177 %
This explains why 1 prefer all operator-available keywords to be primitives.

The nice feature about a TIL is that the primitives can be as complex as
desired. In a truly time-critical application, it is possible to resort to machine
code. In applications that are not time-critical, the ease of defining keywords
as secondaries is available, The speed of the cuter interpreter is never a prob-
lem. Believe me, it is much quicker than the operator.

As should be clear from the Z80 inner interpreter example, care must be ex-
ercised in designing an inner interpreter. Not only must the register allocation
be optimized for inner interpreter speed, but the stack location and mechaniza-
tion must also be considered.

MCTTIRTATN T IR RIPRFTIVE | ANLTIATTY

3.3 Double Time e

Almost inevitably, the first thought that enters a programmer’s mind about
any program is: “How can | speed it up?” There are several ways to speed up a
TIL. Most fundamental is to select a processor with an optimal set of address-
ing modes. For instance, compare my Z80 with an indirect, 16-bit, addressing
machine. Naturally it helps to operate the chip at its maximum possible speed.
(I run a ZB80A processor at 2.5 MHz rather than its 4 MHz limit to insure
reliability) Almost all attempts to “speed up” a given processor and program
combination result in the "times 2” phenomenon — careful “tuning” may in-
crease the speed of an average routine by two, There are limits to how much is
gained by optimization.

The next question almost always involves microcoding a particular machine
to optimize its execution relative to a particular language. Microcode has
nothing to do with microcomputer code — it is a means of implementing a
usable processing instruction set through the use of a faster and more primitive
internal processor. This internal processor executes microcode to implement
the functions necessary to emulate the instruction set. The instruction set
which the processor executes can be changed by changing the microcode.

If this approach is used to mechanize the instructions required to implement
the inner interpreter, a faster TIL could result, one possibly twice as fast as the
same processor without the specialized instructions. Taking things one step
further, the inner interpreter and the primitives necessary to create all other
keywords (say forty to sixty primitives) could be microcoded. The inflexibility
of the instruction set is the disadvantage of this approach. Speed is gained in
the primitives themselves, but there is no option to use “machine code” since
the only “machine codes” are the primitives.

Among the 8-bit microcomputer chips available today, the Signetics 2650
probably has the best instruction set for TIL implementation, The RCA 1802 is
also reasonable, The more popular Z80, 8080, 6502 and 6800 are not the best
but they are viable. Integer TILs based on these microcomputers are only three
to four times as fast as integer BASICs. The expected upgrades to the 8-bit
microcomputers such as the 6809 should cure the speed problem. Most
minicomputers are fundamentally 16-bit machines and usually have more ad-
dressing modes than microcomputers. Minicomputers are generally far more
efficient than microcomputers in a threaded interpreter environment,

L THWEH OE BANTT HEVINED) a0

4 | The Tower of Babel
Revisited

A plethora of keyword actions is possible. I shall explore
o anuhset of the more common actions, Like g menu in a
{lunese restaurant, you have a choice from column A, col-
wmn B, ete, Tea and fortune cookies will not be provided.
ise typesetter does not have those fonts either,

4.1 Naming Conventions

Keyword names in this text were selected arbitrarily and capriciously, and
sometimes simply plagiarized from existing language standards. The main pur-
pose of the keyword names is to provide a degree of cohesiveness to the text.
Feel free to create your own language by creating your own names.

The action produced by the keyword name is the important point, not the
name itself. One, “uno,” and “ber” (Turkish) are all cognates. Some
mathematical terms such as + and — are more widely used but are still not
universal. The fundamentally English keyword names [use are designed to
trigger a personal internal recognition of the associated action. A French-,
German-, or Turkish-based TIL is just as viable and just as easy to generate,
After all, isn’t that what Babel was about?

Several relatively simple standards are used in my names for keywords. For
example, all of the keywords associated with bytes (as opposed to words)
prefix the equivalent word length keyword with the letter “C”. This C is bor-
rowed from FORTH, not C, (FORTH? Sil)

Keywords that always occur in pairs in a fixed order and may have other
keywords between their occurrence generally start with < if they are the left
keyword and end with > if they are the right keyword. I also use < if
something is entering the stack. This just keeps the water muddy.

A routine that has no dictionary headers but whose word address is known
by another keyword generally starts with *, The remaining characters are the
same as the calling keyword, Thus, IF knows the word address of the “lost”
keyword *IF.

40 THREATIT INTIRPRITIVE TANGHACTY

Finally, subroutines used by several keywords start with a $. Some of these
subroutines, such as the 1/0 (input/output) routines, are presumed to exist in
your system'’s software.

4.2 Data Types

In the following paragraphs, an integer language will serve as the baseline.
This is not to imply that floating-point threaded interpreters are not viable —
they are. An integer baseline language is easier to explain and implement on a
microprocessor that does not have floating-peint hardware. Integer versions
take maximum advantage of the inherently limited computational capabilities
of a microprocessor.

4,2,1 Numbers

There are innumerable ways to handle numbers in a threaded interpreter.
The method I shall propose is a very flexible, general method. Simpler schemes
are possible.

All number tokens in the input buffer are converted to binary integers for in-
ternal usage. This conversion takes place in the outer interpreter routine
NUMBER. Internally the integers may be 8 or 16 bits wide (byte or word) and
occasionally 24 bits wide, except when they are on the data stack. All data
stack numbers are 16 bits wide,

Numbers are converted to binary form from their input form using a system
variable called BASE. The number base must be in the set 2 thru ¢, A thru Z,
with A = 10, etc. (BASE controls both input and output.) Keywords named
BINARY, OCTAL, DECIMAL, and HEX preset the variable BASE to 2, 8, 10,
and 16, respectively, since they are the most commonly used bases. Note that a
leading “—" may be the first character in a number token but all other
characters must be in the set {0, ..., BASE—1}, ie: decimal numbers or base 10
numbers are in the set {0, ..., 9}. The numbers 0, —1, and 1 are usually de-
fined as constants with keyword names ¢, —1, and 1, respectively, since they
exist in all allowable number bases.

The internal forms of the binary number are first generated as 16-bit integers
by the outer loop routine NUMBER. The integers may be signed or unsigned,
depending on the application. Signed integers have the range:

—32768=n=32767
Unsigned integers have the range:

0=n=<65535

TH B I L ANLL IR YP 1Y 4L

A leading minus sign causes the two’s complement of the number to be taken
iller conversion to the internal binary form, A leading plus sign is not allowed
in a number.

When stored in memory as constants, variables, etc, or when stored in 2
definition as a number literal (preceded by the number literal handler), the full
16 bit range capability is not always required. Signed and unsigned numbers in
the ranges:

—128<n=127
0=n=<256

only require 8 bits, Memory utilization is minimized by storing these numbers
an bytes rather than words. This does require that the routines which place
these numbers on the stack have a predefined technique for expanding 8-bit
numbers to 16-bit numbers. The routines that do this expansion are established
by defining byte constants, byte variables, etc, and a byte-number literal
handler, .

There are two ways to handle the predefinition. One is to treat numbers in
the range O to 256 as bytes and treat all negative numbers as word length in-
tegers. This is consistent with allowing only positive byte constants, etc.
Although I have occasionally implemented this technique, an alternate form is
ulso available. By defining byte numbers as having the range 128 to 127, all
byte forms can be defined consistently. When byte forms are pushed to the
stack, all bits of the most significant byte are set equal to the MSB (most
significant bit) of the number byte. This is the standard twa's complement con-
vention,

Care must be exercised when using byte numbers. It is possible to leave a
number on the stack that exceeds the predefined range. These numbers cannot
be correctly stored into a byte variable. System error messages are generally
not included for this type of error since the tests to discover them adversely af-
fect execution speed. The burden is on the user to insure numeric correctness.

All of the attributes of the input number conversion are controlled by the
outer loop routine NUMBER. Caution must be used in naming tokens to insure
that this routine can be executed. It is possible on number entry to name a
keyword 2", Any attempt to input the number two would result in the search
algorithm finding the keyword “2” and performing the indicated action. As
long as “2” is defined as the constant two, the system is safe. Any other defini-
tion would effectively eliminate all number bases other than binary. The
number conversion routine is never reached if an existing keyword name pre-
empts a number. For this reason it is wise to include a character not in the set
{0 thru 9, A thru Z} in all keyword names of length two or less and to include
high-end alphabetic characters in keyword names of length three. This allows
large number bases before a collision occurs between a keyword and a poten-
tial number,

The outer loop NUMBER routine either pushes the converted binary
number to the stack if the execute mode is in effect, or adds a literal handler
word address and the number to the dictionary if the compile mode is in effect,

S ITIRUAUFIT INITIRTET TIYE | ATEAIAS §

The literal-handler word address may specify either a byte number (*C§) or
word number (*#). All of this is transparent to the programmer.

When the number literal handler *C¥# or "4 is executed, the instruction
register points to the location of either the byte or the first byte of the word
where the number is stored (ie: its address in the list of “instructions”). The
literal handler extracts the number from the instruction list, pushes the number
to the stack, and increments the instruction register to the instruction
following the number in the threaded list.

Using the literal format, byte-length numbers require 3 bytes and word-
length numbers require 4 bytes within the keyword being defined. The selec-
tion of the format needed is done by the system, based on the actual number
entered in the definition.

In purely integer TILs, an extension to this baseline can be included to fake
out the populace. Periods (decimal points) can be allowed in the input number.
The number conversion routine must be designed to ignore periods but this
allows “real” numbers.

4,2.2 Logical Flags

A logical flag is a parameter with two possible states, True or False. A com-
puter cannot directly recognize these states, so the standard convention is to
define True as 1 (non-zero) and False as 0 (zero). Certain relational testing
keywords return logical flags which are always a zero or a 1. A constant or a
variable may sometimes be treated as a logical flag. In this event any non-zero
number is by definition True. Care must be used in designing keywords that
expect a logical flag as an input parameter, Any non-zero number should be
treated as True, so that all bits of a flag must be examined, not just the LSB
(least significant bit). Flags are defined and stored in memory as variables,

4.2.3 Strings and Things

All systems that display data to the operator must have at least a rudimen-
tary form for handling strings of ASCII data. Displaying messages to the
operater implies some method of outputting an ASCII string. Displaying
numbers implies converting the numbers to a sequence of positional numbers,
converting these numbers to their equivalent ASCII number code, and display-
ing the resulting string,

In our threaded interpretive language, the tokens are ASCII strings. When
the outer interpreter moves a token to the dictionary space, it appends the
token length to the string as the first character of the string, This particular
string format is convenient for dictionary header formation as well as for input

THE OO AT RV LT 43

simber conversion. If the system does not recognize the token, an error
mensage s created from the data located at the DP (dictionary pointer) con-
tenla {the location of the unknown token in extended header format). This
whiing format has a lead number equal to the number of characters in the
atiing, and it is followed by the string itself.

When an output number conversion is requested, an alternate method of
ntting handling is used. In this circumstance, the unused high-order bit (except
ity parity in some input/output transfers) of the ASCII code format is
viiployed to mark the last character in the string, This bit is one set in the last
+liaracter of the string. For number output, the terminating character is always
@ space with the higher-order bit 1 set, which is pushed onto the stack.
Mumeric data is always converted by pushing successive ASCII numbers
+haracters to the stack, During number output, the string values are displayed
4 tharacter at a time as popped off the stack until the character with the high-
nider bit set is output.

atrings of ASCII data may be embedded within a word being compiled as a
hteral. The system keyword that performs this action is the immediate
koyword “".

[This keyword adds the ASCII literal handler word address to the dic-
Hunary and encloses it in the definition being compiled. It changes the token
separator to “]” from the normal B and scans the next token from the input
bulter, Finally it encloses the scanned token in the word being defined.

This procedure encloses the ASCII literal handler, the length of the string, and
all characters (starting with the character following the B separator for “I”)
until the occurrence of “]” in the word being defined. This format is very
similar to the first format introduced. When the literal handler is executed, the
instruction register points to the length of the string. The literal handler will
ccho-display the string, leaving the instruction register pointing to the next in-
ntruction in the threaded code.

Obviously the “[" keyword is very convenient for defining labels and
operator messages. Other string variables and operators are not part of the
core language. You can add strings and string operators if you need them for
your application,

4.2.4 Constants

Constants are named passive keywords that push the integer value of the
constant to the stack when evoked. Constant values may be internally stored
as bytes or words. Constants are defined in the execute mode using defining
words as follows:

ad LIRLATHEY INETRPWT VIVE T ANGHAS A%

nECONSTANT @name
mBBCCONSTANT Bname

where:

—32768 < n < 32767
—128 < m =< 127 } = the value

and where name is any valid token, CONSTANTS require 10 bytes of storage
and CCONSTANTS require 9 bytes of storage including the header (see figure
2.6). The numbers n and m are converted using the BASE in effect when they
are defined.

Constants may be compiled into other keyword definitions using one of two
techniques. For example, the sequence:

DECIMAL H288 BCONSTANT H2GROSSHBOK
H T B2GROSSE...... R BEOK

or:

DECIMALE.H.... H2zsH.... . 1H;HBOK

are two techniques for compiling a keyword that contains an instruction to
push the integer 288 to the stack. In the first case a CONSTANT is defined
which requires 10 bytes for the dictionary entry and 2 bytes for each usage in
any subsequently defined keyword that includes the constant keyword. In the
second case the occurrence of a 288 in the input buffer causes the constant
literal handler {2 bytes) and the number (2 bytes) to be added to the threaded
code list of the word being defined rather than the word address of a constant
(2 bytes).

At first it would appear that a constant which is used less than five times
within a program need not be defined as a CONSTANT. For example, using
2GROSS four times in subsequent definitions costs 18 bytes total, but using
288 four times only requires 16 bytes total. There is, however, a subtle dif-
ference. The constant definition can be changed at one place (the word
following its word address) and it will change the value pushed to the stack in
all occurrences of its invocation. The literal handler method requires that each
occurrence of the constant be located within each threaded code definition and
changed. This latter procedure is much more difficult than the former, The
constant forms are ideal for usage where occasional value changes are desired
or where the same constant is used five or more times within a program. The
values 0, 1, and —1 are actually defined as CCONSTANT since they occur so
often.

THT TOWETE O NANCT REVITITITY 4R

125 Varlables e

Varlables are named passive keywords that push the address of the variable
in the stack when evoked. Variables may be internally stored as bytes or
widlys, Variables are defined in-line in the execute mode using defining words
a4 follows:

nBVARIABLEMname
mEBCVARIABLE Bname

whore:

— 32768 =n <= 32767 L
—128 =m = 127] = the initial value

aiel where name is any valid token. VARIABLEs require 10 bytes of storage
and CVARIABLEs require 9 bytes of storage including the header. The
variable dictionary entries are similar to the constant forms. The initial values
fi and m are converted using the BASE in effect when they are defined.

4.2.6 Arrays

Arrays are named passive keywords that allocate blocks of dictionary
memory for data types following a dictionary header. Arrays are actually
application-specific but are based on variables since variables return the ad-
dress of the first location in the array. For example, the sequence:

DECIMALEOBCVARIABLEMname MS9EDP M + (BB OK

will reserve 100 bytes of storage under the keyword name. In the example, the
sequence through “name” simply creates a CVARIABLE keyword and ini-
tializes the first byte to zero. The sequence 99MDP M+ advances the dic-
lionary pointer by 99 so that 100 bytes following the header are reserved, Qnly
the first byte is initialized. The other 99 bytes contain garbage.

If the problem under consideration requires arrays, then create the arrays.
Operators to manipulate the arrays can also be defined to produce a language
specifically tuned to the array problem. In general, specific entries in arrays
are accessed by addressing them relative to the first address in the array. This

tirst address is the address pushed to the stack when the array keyword is
evoked.

A¢ THREATTT T IR TTRIRE VIVE T ANUIALT

4.2.7 User Parameters

If a program is to be placed in read-only memory, a section of program-
mable memory must be available for user parameter storage. The variable
defining words cannot be used in the generation of parameters within the pro-
gram definition. The variable defining words compile the definition in-line,
This would intermix code and variables. After the program is placed in read-
only memory, the variable could not be changed. It would always return the
value contained in the read-only memory (ie: the “variable” would become a
virtual constant).

The above problem of in-line variables could be circumvented by always
referencing the programmable memory address of the parameter in the
keyword definitions of the program. This generally requires 4 bytes per
reference: 2 bytes for the number literal handler plus 2 bytes for the variable
address, unless the variable area is within the first 256 bytes of memory. An
alternate approach is to define an immediate keyword called USERS. This im-
mediate keyword expects a number in the range 0 =< n < 255 as the next token
in the input buffer following its invocation. USERS encloses the user literal
handler in the definition, extracts the next token, converts it to an unsigned
byte constant, and encloses the number in the definjtion.

When executed, the user literal handler forms the address of the variable by
adding the number to the base address of the users parameter area in program-
mable memory. This resulting address is pushed to the stack. This is usually
the method used to access system variables.

In effect, the keyword USERS allows relative addressing within a 256-byte,
users-memory parameter block. The block can be anywhere in the address
space and still be accessed by a 3-byte reference. This is obviously not as etfi-
cient as a 2-byte in-line variable {which won't work in read-only memory}, but
is better than a 4-byte absolute reference. If more than the 256 bytes are needed
for user variable storage, simply define TUSER, 2USER, etc, Each form has
its individual base address allowing multiples of 256-byte blocks.

4.2.8 System Parameters

There are a number of parameters that the system must have available to
operate. These contain the critical system data. Depending on the central pro-
cessing unit architecture, certain of these parameters may be stored in pro-
cessor registers. Those system parameters not stored in registers are stored in
programmable memory as variables. An area of programmable memory must
be allocated for these variables.

For the interactive terminal-directed TIL being considered, the following
system parameters are used:

PRI vt O AT BLA I 47

IR The Instruction Reglster contains the word address of the next keyword
rivtruction) in the current secondary keyword that the inner interpreter will
eupute, It s the effective program counter for the TIL machine.
WA The Word Address variable contains the word address of the current
kryword to be executed before the keyword code address is extracted by the
iuner interpreter. It contains the address of the keyword code body just after
Hua event, This variable is important only for a short time following code ad-
ilfems extraction. If the code called via the code address does not need the ad-
iltess of the code body, the WA variable can be overwritten. WA is most often
i1ntained in a processor register,
W' Data Stack Pointer,
it4" - Return Stack Pointer,
MODE — The system parameter MODE is a logical flag with False (0) equal to
tlie execute mode and True (1) equal to the compile mode, MODE is True set
hy(;}l‘l)cEkeyword “" and False set on start/restart or by the keyword “;” or
i ODE.
WIATE — The system parameter STATE is a logical flag used to control ex-
viation of immediate keywords. In the compile mode (MODE=True), the
1iunpiler vocabulary is searched and STATE is set True if the keyword is
found in this vocabulary. Keywords are executed by the outer interpreter
rouline TEXECUTE if, and only if, MODE equals STATE. TEXECUTE always
wils STATE false before it completes,
I’ - The Dictionary Pointer is a variable containing the address of the next
Isee location in the dictionary space.
C'ONTEXT — The variable CONTEXT contains the address of the vocabulary
which will be searched to locate keyword word addresses.
CURRENT — The variable CURRENT contains the address of the vocabulary
1o which new keyword definitions will be linked.
“TART — The variable START contains a flag which is True if the TIL is
bring entered for the first time and False otherwise, It is used to distinguish a
ytart from a restart.
LBP — The Line Buffer Pointer is a variable containing the address where
loken scans will begin. When the input submode completes, LBP will point to
{he first location of the line buffer. As each token is scanned, LBP is reset to
point to the location following the token separator of the token scanned.
BASE — The variable BASE contains the current number base for input from
the keyboard and output to the display.

There are several other system parameters that may be contained within the
nystem. These are associated with virtual memory mechanizations. The
parameters will be introduced in Chapter 7 where extensions to the basic
techanization will be considered.

The system MODE and STATE parameters have the following states:

4 LI ALTTY INTT RTRETIVE TAMNCTTAGT.

Mode State AcHon
0 0 Execute keyword
0 1 Not allowed
1 0 Compile keyword
1 1 Execute immediate keyword

The MODE parameter is also used by the outer loop number routine to decide
whether to compile a number or push it to the stack.
Accessing system parameters will be considered in later sections.

4.3 Operator Keywords

The operators are active keywords selected for inclusion in the threaded in-
terpretive language. The actual list depends on what you want to do with the
language. It is not smart to include operators to manipulate data types that are
not used. T will present a fairly hefty cross-section of operator types. No
presumptions will be made about their utility. After all, I am not the designer
of your language — you are.

4.3.1 Stack Operators

The stack operator keywords are among the more important in a stack-
oriented language such as our TIL, Their usage is so pervasive that these
operators are almost always coded as primitives.

The stack operators always manipulate stack words. The operators imple-
ment the following actions:

DROP — Pops the top stack entry and discards it.

DUP — Duplicates the top stack entry and pushes it to the stack.

2DUP — Duplicates the top stack entry and pushes it to the stack twice.
SWAP — Interchanges the order of the top two stack entries.

OVER — Duplicates the second stack entry and pushes it Lo the stack {copies it
over the top stack element).

RROT — Rotates the top three stack elements to the right. In infix notation
ABC-CAB.

LROT — Rotates the top three stack elements to the left. In infix notation
ABC-BCA.

20VER — Duplicates the third stack entry and pushes it to the stack.
2SWAP — Interchanges the order of the first and third stack entries.
CSPLIT — Pops the top stack word and creates two 16-bit numbers from the 2
bytes which compose the word. The high-order byte is expanded to 16 bits and
stored as the second stack entry. The low-order byte is the top stack entry.

FHE TOWEHIE O BABLL HEVE T2 a9

L[N Pops the top two stack entries and forms a 16-bit word, The high-
vseler byte of the new words is the low-arder byte of the second entry, and the
fiwy order byte is the low-order byte of the top entry, The resulting word is
yiinhed back on the stack.

Au may be imagined, stack operators are useful in a variety of applications.
I effects of some can be produced by a sequence of other operators, The

nrign you include in your language depend on the utility derived by their inclu-
ulviby,

4 1,2 Memory-Reference Operators

I'he¢ memory-reference operator keywords always presume that the address
i a parameter is the top stack entry. As a general rule, the parameters must be
it programmable memory since most of the operators specifically change the
immerical value of the parameter. As with stack operators these operators are
wiyally primitives,

I'he memory reference operators are as follows:

. ! Stores the second stack word at the address specified by the top stack en-

try. Removes both entries from the stack.

{'! ~ Stores the low-order byte of the second stack word at the address
apecified by the top stack entry. Removes both entries from the stack.

Fl . Adds the word stored at the second stack entry to the word whose ad-
ll_m!m is the top stack entry. Removes both entries from the stack.

U+ — Adds the low-order byte of the second stack entry to the byte whose
uildress is the top stack entry. Removes both entries from the stack.

OSET — Sets the word whose address is the top stack entry to zero (False).
Removes the top entry,

1SET — Sets the word whose address is the top stack entry to one (True),
Removes the top entry.
COSET — Sets the byte whose address is the top stack entry to zero (False),
Removes the top entry.
CISET — Sets the byte whose address is the top stack entry to one (True),
Removes the top entry.
SJ} — Replaces the address at the top stack entry by the word stored at that ad-
ress.

C@ — Replaces the address at the top stack entry by the byte stored at that
address but expanded to 16 bits.

All of the keywords except @ and C@ are applicable only to programmable
memory. These two keywords can be used to access any type of MEemory ex-

cept write-only memory — unoccupied address space. Even this works,
although the results are uninteresting.

B0 LTIREALL D N LEWUREEIVE | ANGLATES

4.3.3 Interstack Operators

The data stack is usually used to store parameters. The return stack is usual-
ly used to store return addresses. The return stack is also used by the system to
store loop parameters (which I will explore in Section 4.4.4) and may be used
by the programmer for temporary data storage (carefully). Any data stored on
the return stack must be removed in the same keyword definiticn. Primary
and secondary calls can occur between the storage and removal, but there
must be a net change of zero in the return stack pointer before the definition
ends. If there is a net change in the return stack pointer within a definition, the
inner interpreter SEMI routine (which terminates the definition} will not ex-
tract the valid return address. This can lead to the self-consuming program
phenomenon mentioned earlier in which the program counter gets loaded with
fluff,

With these cautions in mind, the following primitive interstack operators
are suggested for careful usage:

<R — Pops the top data stack word and pushes it to the return stack (a 16-bit
push).

R> — Pops the top return stack word and pushes it to the data stack.

C <R — Pops the top data stack weord and pushes the low-order byte to the
return stack (an 8-bit push).

CR> — Pops the top return stack byte, expands it to 16 bits and pushes the
word to the data stack,

The keywords >, CI>, >, CJ>, K>, and CK> duplicate loop indices
from the return stack and push the index numbers to the data stack. These
words will be considered in Section 4.4.

It should be pointed out that the interstack operators should not be used
within a loop construct that stores indices on the return stack. This can lead to
the infamous, inadvertent DO,., ,FOREVER loop.

4.3.4 Arithmetic Operators

The arithmetic operators include some fairly common types and some rather
unusual types. The core language does not contain a great number of
arithmetic operators, There is sufficient power in the core language set to work
the more commonly encountered problems, Your ingenuity is required to add
additional operators for your specific problem.

All the numbers on the stack are presumed to be 16 bits wide, two's comple-
ment numbers. All byte-length numbers are presumed to be expanded to this
form. Some functions use intermediate values or generate values that are 24
bits wide. The multiply and divide operators evoke signed operations.

THT TEWATIR L3 HANRCT REVIATTTTY 51

thvinore are restricted to the set [n] 5 127, The numbers themselves may thus
have 16, 8, or 7 signiflcant bits, All arithmetic operators are coded as
Jaanitlven,

lircause of the unusual operator designs, the explanations of the operator
bum liony will be fairly detailed, The arithmetic keywords are as follows:

AWY A unary operator which leaves the absolute value (a positive integer)
ul the lop stack value on the stack. That is, in infix, [N|. It is applicable to
miphed numbers.

MINUS — A unary operator which leaves the two's complement of the top
satk entry on the stack: in infix notation, —N. It is applicable to signed
nurbers,

I A binary operator which replaces the top two stack entries by their two's
1 smiplement sum. Neither overflow nor carry are tested. Here N2{16}+N1(16)
-~ NL{16).

A binary operator which replaces the top two stack entries by their two's
vimplement differences. Neither overflow nor carry are tested. Here N2(16) —
Ni{l6) = N1(16).
hW* A binary operator which multiplies the low-order bytes of the top two
slack entries and leaves a 16-bit product as the top stack entry, It is equivalent
1 N2(8)*N1(8) = N1(16). The high-order bytes of the original stack entries
#ie not tested to insure that valid 8-bit numbers are on the stack prior to execu-
lon,
* A binary operator which multiplies the second stack entry word by the
tow-order byte of the top stack entry-and returns a 16-bit product as the top
stack entry. [t is equivalent to N2(16)*N1(8) = N1(16}). No validity test is
imadle on the high-order byte of the original top stack entry and no test is made
wh the result to verify 16 bits or less in the product.

i}* - A binary operator that multiplies the second stack entry word by the
low order byte of the top stack entry and returns a 24-bit product, The least
significant 16 bits are returned as the second stack entry and the 8 most signifi-
Lant bits are expanded to a 16-bit word and returned as the top stack entry. D*
i cquivalent to N2(16)*N1(8) = N2,1(24). No validity test is made on the
high-order byte of the original top stack entry.

¢{MOD — A binary operator which divides the second stack entry word by the
low-order byte of the top entry, It returns the 8-bit quotient expanded to 16
Ditn as the second stack entry and the positive remainder expanded to 16 bits as
the top entry, The low-order byte of the original top stack entry must be in the
range —128=n=<127. /MOD is equivalent to N2(16)/N2{7) = N2{(8) and
N2(16)wop x17; = N1(8). No test is made to insure that an 8-bit quotient will
result from this operation.

MODU/ — Exactly the same operation as /MOD except the return order of
the top twa stack elements is reversed, The quotient is the top stack entry and
the remainder is the second entry.

MOD — Exactly the same operation as /MOD except only the remainder is
relurned as the top stack entry,

I}/ ~ Presumes a 24-bit number for the second and third stack entries with the

82 A HKEAD DY INTERPRITIVE L ANGUAGTS

most significant 8 bits as the second entry word, 1t divides this number by the
low-order byte of the top entry (—128=n=127). C/ returns a 16-bit quo-
tient as the second stack entry and an 8-bit positive remainder expanded to 16
bits as the top entry. It is equivalent to N3,2(24)/N1{(7)=N2(16} and
N3,2024) 0w =N1(8). No validity tests are made on the original stack en-
tries to insure a valid 16-bit quotient,

/ — Exactly the same routine as D/ except only a 16-bit number as the second
stack element and an 8-bit (—128<b=127) top entry are presumed. The 8
most significant bits of the dividend are zero set and only the 16-bit quotient is
returned. It is equivalent to N2(16)/N1{7) = N1(16). All other constraints are
the same as with D/.

*/MOD — Multiplies the third stack entry word by the low-order byte of the
second stack entry yielding a 24-bit intermediate product (exactly as with D*).
It divides the 24-bit intermediate product by the low-order byte (—128=n
<127} of the top stack entry (exactly as with D/}, */MOD returns the 8-bit
positive remainder expanded to 16 bits as the second stack entry and the 16-bit
quotient as the top entry. It is equivalent to (N3(16)*N2{8))/N1(7) = N2(16)
and (N3(16)*N2(8))yop w1 = N1(8). The constraints of I* and D/ apply.
*/ — The same operation as */MOD except only the 16-bit quotient is re-
turned.

MAX — A binary operator that leaves the larger of the two top stack entries
on the stack. It assumes signed integers on the stack.

MIN — A binary operator that leaves the smaller of the two top stack entries
on the stack. It assumes signed integers on the stack,

2* — A fast multiply by two unary operators. It is actually a 1-bit left shift of
the top stack value, Carry and overflow are not tested.

2/ — A fast divide by two unary operators. Effectively a 1-bit right arithmetic
shift of the top stack value,

1+ — Increments the top stack entry by one.

2+ — Increments the top stack entry by two.

1— — Decrements the top stack entry by one.

2— — Decrements the top stack entry by two,

The arithmetic operators are strange in a wonderful way. Operations such
as */ are extremely useful. With the 24-bit intermediate product, loss of preci-
sion from truncation errors can be prevented in many operations. For exam-
ple, T = 245/78 so that:

DECIMALW1c000E 245 B780*/ M. W314100 BOK
If a multiply by = is common, define a new keyword as:

DECIMALE:B*PIEz45H73 0/ H; R BOK

If the numerical accuracy is insufficient, a more complex algorithm can be
designed to achieve even more accurate results.
Those of you who are familiar with higher-order languages may sneer at the

PHE GOWERGE BABLT 1 VISLTEES 5y

uissiphistication of a language without a full-blown, Floating-point arithmetic
s# In response let me point out that data input to the system by most interface
stipment. is almost never in floating point. The time penalty in converting
wiputs Lo Hoating point format is sometimes as costly as doing the entire prob-
firny i sealed, fixed binary arithmetic, Finally, may [point out that for years
st of our sophisticated military systems (including the present ICBM fleet)
swit] aculed, binary fixed-integer arithmetic in their computer programs. High-
apredd, floating-point hardware exists only in modern medium-to-large size
raimputers. Low-speed, floating point hardware is equivalent to software
eaitilation in microcomputers. The only advantage to floating point is pro-
ghunming ease (and ridiculous superiority claims). After all, you are not
alild of fixed point — are you?

4 1.5 lLogical Operators

The logical operators are simple. All except NOT presume two 16-bit words
s the stack (the operands) and replace these words by a single word at the top
il the stack. The keywords are:

AND - Logically ANDs the operands on a bit-for-bit basis, ie:
0 and
0 and
1 and
1 and
)l — Logically ORs the operands o
Qor0
Dorl
lor@
lorl
XOR — Logically Exclusive ORs the operands on a bit-for-bit basis, ie:
Oxor 0 =0
Oxorl =1
Ixord =1
Ixorl =20
NOT — Inverts the logical state of the tlag at the top of the stack.

ROk o

B A

U I T
[=

0
0
0
1
bi

t-for-bit basis, ie:

I

The logical operator can be used to operate on flag data types as well as any
logical data types defined for a specific application.

4.3.6 Relational Operators

The relational operators are unary or binary operators which return a flag,

A4 THREADEDY INTERERELIVE FARGUAGY

where True is a 16-bit word with an integer value of 1 and False is a 16-bit
word with an integer value of 0, The operators follow:

= — Pops the top two stack entries and pushes a True if the entries are equal,
It otherwise pushes a False,

> — Pops the top two stack values and pushes a True if the second stack entry
is greater than the top entry, It otherwise pushes a False. It assumes signed
integers on the stack,

< — Pops the top two stack values and pushes a True if the second stack entry
is less than the top entry. It otherwise pushes a False, It assumes signed in-
tegers on the stack.

0= — Pops the top stack value and returns a True if the top stack entry is
zero. It otherwise pushes a False,

0< — Pops the top stack value and returns a True if the top stack entry is a
negative two’s complement number. It otherwise pushes a zero.

A comment is in order about the use of = as a relational operator only,
Some languages use = as both a relational operator and an equivalence (or
replacement) operator, The use of RPN (reverse Polish notation) eliminates the
use of = in arithmetic operations. The replacement operator becomes the “1”
(store) operator and its usage is only required to free stack space or simplify
stack management,

4.3.7 Input/Qutput Operators

The 1/O operators considered here will be the most basic [/O operations.
Fundamentally, the TIL can be interfaced to the keyboard and video display
via the system-monitor utility subroutines or separate drivers can be included
in the TIL. It is very dependent on the type of operating system your particular
machine has. Systems that have disks and stand-alone serial terminals are dif-
ferent from systems that use cassette mass storage and memory-mapped video
refresh,

[have probably vacillated more over 1/Q routines than any other aspect of
program design. This is one area | would most like to ignore. Unfortunately, it
is not an area that can be easily ignored in the hope that it will disappear.
Thus, the following operators are presented:

KEY — This keyword will push to the stack the next character entered from
the keyboard. In my current system this keyword routine contains the soft-
ware timing loop that controls the blinking underscore cursor. It also
recognizes a non-ASCI] keyboard-generated code that causes the system
monitor to be entered, thus exiting any program currently in control. In any
routine of this type, the keyboard should be reset on entry and before exit.

ECHO — This keyword pops the top stack entry and outputs the low-order

ITH EVIVYID ST AT AT Y1 FEE T

hyte 1o the display driver, This displays a printing character at the cursor point
sind moves the cursor right one character position,

tITAR Thils keyword outputs the control code to the video display that
will dlear the display screen and leave the cursor at the upper left (home the
+ THE).

t RET This keyword outputs the carriage return-line feed code sequence to
thw video display. This holdover from the teletypewriter convention simply
fraves the cursor at the start of the next display line {which is blank),
YPPACL = This keyword outputs an ASCII space code to the display screen.
I YI'E - This keyword expects an address at the top of the stack that points to
siemory location. This location will contain a byte count and is followed by
« It of ASCII code characters of this length in the following memory loca-
Hung, The keyword pops this address, extracts the count, and outputs that
niany characters to the display [rom the subsequent memory locations.
115PLAY — This keyword expects a sequence of ASCII code characters on the
slaek in the low-order byte positions. The last character in the sequence will
liwve the high-order bit in the code set to one. This keyword will pop suc-
i 14mive entries from the stack, output the low-order byte, and repeat until the
t liwracter with the high-order bit set has been output.

+ § This keyword prepares the stack for number conversion by pushing to
Hie stack an ASCII space code with the high-order bit set (A0 hex) in the low-
stdor byte of the word, It also copies the top stack entry to the return stack,
{Note that both < # and > must occur within a single definition.)

This keyword pops the top stack entry, divides the unsigned number by
the nystem variable BASE, converts the residual to an equivalent ASCII code
in Uhe set (0 thru 9, A thru Z), pushes the result to the stack, and then pushes
the quotient to the stack.

#% This keyword executes successive # roulines until a zero is at the top
wlack entry. It always executes at least one # routine.

IGN —— The keyword pushes an ASCII minus sign to the stack if the top
ielurn stack entry is negative,

» ~ This keyword pops the top return stack entry, discards it, and displays
ihe character string on the stack using the DISPLAY format. (Note that both
« # and #> must occur within a single definition.)

ASCII — The keyword expects a positive binary integer between zero and 36
wn the top stack entry, The number is converted to the equivalent ASCII
number code 0 thru 9, A thru Z, and left in the low-order byte position of the
lop stack entry.

. - This keyword pops the top stack entry, converts the signed value to a se-
tjuence of ASCII characters representing the number, and displays the result to
the operator followed by a space.

:R — This keyword expects a print field width as the top stack entry and a
mpned number as the second entry. It converts the number just as with the ".”
keyword, but if fewer characters than are in the top stack entry number result
(Including the terminating space), additional ASCII spaces are output before
the converted number is displayed.

1 — (C?) — This keyword pops the top stack entry, extracts the word (byte)

A VIRTFALTTYINTTRITRITIVE | ANGL ALY

Hoh
'

addressed by this entry, and displays the value to the operator using the
keyword sequence.

4.3.8 System Operators

There is a class of operators which have a more system-oriented flavor,
Some of the operators are used to implement the outer interpreter, the defining
words, and the compiling words. However, they are so useful and necessary
that they are directly available to the operator. Others are simply required for
system operation.

The system keywords include the following:

, — Pops the top stack entry word and stores it at the DP (dictionary pointer)
address. It then increments DP by two (ie: encloses the top stack entry word in
the dictionary).

C, — Pops the top stack entry word and stores the low-order byte at the DP
address. It then increments DP by 1 (ie: encloses the top stack entry byte in the
dictionary},

HERE — This keyword pushes the address stored at the system variable DP to
the stack. This is the address of the next available location in the free dic-
tionary space,

?SP — This keyword pushes to the stack the address which was the top stack
entry address prior to its execution. A test for stack underflow is made and the
stack is reinitialized before the address is pushed if an underflow condition ex-
ists. '

RS -~ This keyword pushes the address of the return stack to the stack. No
validity test is made on the return stack address since the system usually goes
bananas when the return stack is blown.

TOKEN — TOKEN pops the top stack entry byte as the separator and moves
the next token in the line buffer to the free dictionary space in extended header
format (length plus all characters}. It does not enclose the token in the dic-
tionary.

* — The tick keyword scans the next token in the input buffer following its oc-
curence and searches the CONTEXT and CURRENT vocabularies for the
keyword corresponding to the token, If the keyword is found, the word ad-
dress of the keyword is pushed to the stack, If it is not found, the token is
echoed to the operator followed by W1.

ABORT — This keyword causes an unconditional jump to the
START/RESTART routine, which reinitializes the system, displays the restart
message, and reverts to the operator in the input submode.

ASPACE — This keyword pushes an ASCII space code to the stack, It is usual-
Iy used to set the separator for a TOKEN call.

ENTRY — ENTRY pushes to the stack the address of the first byte in the
header of the latest keyword defined in the CURRENT vocabulary. This will

FHE Tonwt 1o i R vt 5

wnpilly become the link address of o keyword being defined.

t At This keyword pops an address from the stack and stores it at the word
athleens oF the latest keyword in the CURRENT vocabulary. It is used by de-
liing words to change the code address of a keyword to the address necessary
b Hplement the new defining action,

WNGLL - If the top stack entry number is a valid byte-length number, this
b yword will push a False flag to the stack. Otherwise, it will push a True flag
tn Lhe gtack.

41 ARCH — This keyword expects the address of a given vocabulary on the
stk (o pointer to the first keyword header location of the vocabulary). The
v abulary is searched in an attempt to match a keyword with the length and
+ lharacters of the token which is located in the free dictionary space. If found,
the word address of the keyword is returned as the second stack entry and a
1 atie Hag is returned as the top entry. Otherwise, a single True flag is returned
vh the stack,

4 3.9 Utility Operators

‘There exists a class of operators with great utility and no real home among
the previous groups. These orphans are collected together here as follows:

FILL — This keyword expects three keywords on the stack. The second stack
vptry is a starting address, the top stack entry is an ending address, and the
fow-order byte of the third entry is the entry number. The routine fills all
memory between the address boundaries with the entry number, It removes all
three entries from the stack,

ERASE — Similar to FILL except only the memory boundaries are on the
ntack. The entry number is an ASCII space (20 hexadecimal).

DUMP — This keyword expects two numbers on the stack. The second stack
entry is a starting address and the top entry is the ending address of a memory
area, The contents of this block of memory are displayed in hexadecimal. The
format is: an address as four hexadecimal characters; a sequence of a space plus
two hexadecimal characters for the proceeding eight memory locations, a
space, a sequence of a space plus two hexadecimal characters for the next eight
memory locations. Thus an address plus up to sixteen memory location con-
tents are displayed per line with an extra space between the first and last eight
memory location contents, DUMP removes the two numbers from the stack.
ADUMP — Similar to DUMP but the characters are displayed as the ASCII
equivalent character corresponding to the lower 7 bits of each location rather
than as two hexadecimal characters. To prevent collisions between the
memory contents and display control characters, there are several alter-
natives, Offhand, I can think of at least three.

WAIT — WAIT is an operative keyword that expects nothing on the stack,
On evocation, WAIT scans the keyboard to see if any key has been depressed.

B THRFADETY INTIRI'RTTIVE T ANGLUACT

If it has, the keyboard port is reset and the system enters a loop that scans the
keyboard for its next entry. If the next entry from the keyboard is an escape
code (either an existing non-ASCII key or a control-[, the ASCII escape code)
the system enters the START/RESTART sequence to return to operator con=
trol. If the next entry is not the escape code, or if a key was not depressed,
WAIT simply terminates. WAIT is used, for example, after every DUMP or
ADUMP line is output to allow the operator to stop and examine the display
by pressing any key blindly. I usually need the blindly part as what I am
Iooking for goes zipping past.

MOVE — This keyword presumes three addresses on the stack. The third and
second stack entries are the starting and ending addresses of a block of
memory. The top address is the starting address of a second block of memory,

The first memory block is moved to the second memory block. There are no
restrictions on block overlaps.

4.4 Loop and Branch Keywords

The loop and branch keywords are system directives that are appticable on-
ly in the compile mode. These keywords are all immediate keywords that exist
in the COMPILER vocabulary. Most of the keywords load the word addresses
of program control directives and relative branch constant to the threaded list
of instruction being compiled.

The loop and branch keywords are designed to yield a fully-structured
language. There are no constructs such as the BASIC command GOTO XX
where XX is some program line number. The threaded interpretive language
does not support this type of construct. I have used a command of this type in
a TIL system monitor but it simply transfers control out of the TIL. That's
right folks, I actually run BASIC using a TIL-based system monitor with
subroutined utility programs.

All of the loop and branch program control directive are primitives to insure
fast execution. All of the loop and branch keywords are secondaries for com-
pactness. (The actual compilation process is so fast that the operator is rarely

conscious of the delay between entering ;" and the occurrence of the BOK
response,)

4.4.1 BEGIN . . . END

The simplest and most primitive loop construct is the BEGIN . . . END loop.
It is also usually the fastest loop. The syntax for the construct is:

THT TOWITEE BAIT REVIRTTTT 69

_ false True

v 1
;- @BEGIN BB lag MEND M — ;B BOK

I he keyword BEGIN marks the beginning of the loop and END marks the loop
#td The flag just before END is an indication that a test value (a flag) must be
utf the stack. All code between BEGIN and END will be repeated until the flag
prien True (#0) during execution, Endless loops are created by a QEEND
vdtiation.

[here are two levels to consider: the actions that occur when the loop is
sumptled and the actions that occur when the definition is evoked. First con-
utiler the actions during the compile mode.

W GIN — This immediate keyword pushes the address of the next free dic-
Hinary location to the stack. This is the address where the word address of the
next token that follows BEGIN in the definition will be stored in the dic-
Honary.

1:N1) -— This immediate keyword adds the word address of the program con-
1ol directive *END to the threaded list and encloses it in the dictionary. It then
jsups the top stack entry (the address stored by BEGIN), subtracts it from the
rarrent address of the next free dictionary location and encloses the low-order
Ite of the result in the dictionary as the relative jump constant.

Note that any immediate keywords between BEGIN and END must not leave
values on the stack or END will not compute a valid relative jump constant.
I'he relative jump constant is an unsigned byte constant with arange of 2 < n
= 256,

When the definition which contains the BEGIN . . . END loop is executed,
ihe threaded code will be executed until the *END word address is en-
tountered, When *END is executed, it pops the top stack value (the flag) and
lests it for zero. If the flag is zero, the routine extracts the byte at the address
vontained in the instruction register (the relative jump byte), subtracts it from
the instruction register and exits to the inner interpreter routine NEXT. The in-
ptruction register will then contain the address of the word address of the token
that followed BEGIN in the original definition, This is the next instruction that
will be executed. This sequence will be repeated until *YEND encounters a non-
zero flag. In this case, it increments the instruction register by one and exits to
NEXT. The instruction register then contains the hddress of the word address
of the token following END in the original definition. This terminates the loop.

BEGIN . . . END loeps can occur within BEGIN . . . END loops several
levels deep. The only restriction is the 256-byte relative jump limit in the outer-
tmost loop. Caution is advised in stack management using loops. If n items plus
the flag are placed on the stack within the loop and the loop is repeated m
limes, a stack depth of n*m items results. The stack space had best be capable
of handling the data.

The routine *END is an example of a dictionary entry with no header, The
routine END must know the word address of *END, but the operator cares

00 LHUIELADLLY INTERIRE LIV | ARG TAG Y

less, The loop is available to. the operator through the BEGIN and END
keywords (but only in the compile mode).

The keyword BEGIN requires no bytes within the definition, The keyword
END requires 3 bytes within the definition compiled, 2 for the word address of
*END and 1 for the relative jump constant.

4.421F...ELSE...THEN

TheIF ... ELSE . .. THEN constructs provide for conditional execution of
code, The syntax for the constructs are:

False
M -—-BflagMIFE--BTHENE---H; B BOK
Lt Lt
True Unconditional
True Uncenditional

5 T
;I ---WflagMIFM---BELSER-—BTHEN B---H: 9 BOK
D L1

False Unconditional

The flag just before IF indicates that a test value must be left on the stack (by
the code preceding IF) during execution, If the flag is True (=0), the code
following the IF will be executed. This code may end with either an ELSE or a
THEN. In either event an unconditional transfer to the code following the con-
struct occurs. If the flag is False (=0}, the code following the termination
keyword for the true code (an ELSE or THEN) will be executed.

During compilation, the following actions oceur:

IF — This immediate keyword adds the word address of the program contrel
directive *IF to the threaded code list being defined and encloses it in the dic-
tionary. It then pushes the address of the next free dictionary location to the
stack and advances the address by one to reserve 1 byte in the dictionary for a
relative jump constant, This constant will be filled in by either the ELSE or the
THEN keyword.

ELSE — This immediate keyword adds the word address of the program con-
trol directive *ELSE to the threaded code list being defined and encloses it in
the dictionary. Then, it pushes the address of the next free dictionary location
to the stack and advances the pointer by one to reserve 1 byte in the dic-
tionary for a relative jump constant, Finally, it pops the top two stack entries,
pushes the top entry back on the stack, subtracts the previous second entry
from the address of the next free dictionary location and stores the low-order
byte of the result at the address of the previous second entry. This rather com-

THE $OWT RO BABLT KT YIBTEETY 0l

plex procedure leaves the address of the reserved byte following “ELSE on the
atark and Fills the reserved byte following *IF with the relative jump value
ivieusary to reach the address following the *ELSE reserved byte, This is the
atldress of the word address of the token following ELSE in the definition. The
virlatlve jump may be up to 255 bytes.

[HIEN = This immediate keyword will load the relative jump byte reserved by
vithet an IF or an ELSE. It pops the address at the top of the stack, subtracts
1ius adddress from the address of the next free dictionary location and stores the
liw order byte of the result at the address of the previous top stack entry, This
ielative jump may be up to 256 bytes.

During execution of a definition containing the IF . . . ELSE . . . THEN con-
wiruet, consider that *IF is to be executed next. The *IF routine pops the flag
from the stack. If the flag is true, the routine increments the instruction
icgister, which initially points to the relative jump byte following *[F and
iolurns to the inner interpreter routine NEXT. The increment causes the in-
sfruction register to point to the address of the word address of the token
{ollowing IF in the original definition. If the flag is false, *IF jumps to the code
huody of *ELSE. The routine *ELSE is always entered with the instruction
feginter pointing to a relative branch constant. *ELSE extracts this constant,
adds its value to the instruction register and exits to NEXT, This causes a for-
ward jump to the code following THEN in the original definition,

Both IF and ELSE take 3 bytes in the definition being compiled. THEN re-
tuires no bytes in the definition,

4.4.3 WHILE

The basic loop and branch constructs may be combined using the operator
keyword WHILE, The syntax for these constructs are:

Unconditional

True

:l-—-—IBEGINl---lflagIIFI--IWHILE.j--I; BEOK
1

False

True Unconditional

I
:B---MBEGINE-—-HflagBIFH-—-BELSEN—-BRWHILER---l;] BOK
T

False

Unconditional

6 LML ADELY INTERFUL TIVE LAMNGLIAC

The only new keyword in these constructs is WHILE, All of the other
keywords are exactly as previously explained.
During compilation, the action of WHILE is:

WHILE — This immediate keyword expects two addresses on the stack. First
the word address of the program control directive *WHILE is added to the
threaded list being compiled and enclosed in the dictionary. The second stack
entry (the address stored by BEGIN) is removed from the stack, the value is
subtracted from the address of the next free dictionary location and the low-
order byte is enclosed in the dictionary. This is the relative jump byte required
to jump back to the word address of the token following BEGIN. It next
removes the top entry, subtracts the address of the next free dictionary loca-
tion from this value and stores the low-order byte at the address which
previously was the top entry. This is the relative jump byte required by either
?;I_IlF or an ELSE to jump forward to the word address of the token following
ILE.

During execution of a definition that contains this construct, the *WHILE
routine is entered with an instruction register content that points to the
relative branch constant. *WHILE extracts this constant, subtracts this value
from the instruction register and exits to the inner interpreter routine NEXT.
This causes a backward jump to the code following BEGIN in the original
definition.

WHILE takes 3 bytes in the definition being compiled.

4.44 DO ...LOCP

The DO . . . LOOP construct allows a code sequence to be executed a
specific number of times, This type of loop can be implemented using the basic
BEGIN . . . END loop but it is not as efficient as using the DO . . . LOOP form.
There are four basic DO . . . LOOP constructs as follows:

Count>0
:l--—-Mend Bstart @mDOM—ELOOPHE.--- M. HROK
Lt h
Count=0

Count>0

M- Mend Bstart ICDO.-—-ICLOOI&--I; EEOK

Count=0

THE TOYWIEH O DADIL RYYIMITTIT 83

Count>0
(- BendBlstart DO ME---Hinc M + LCOPE---B; BEBOK
Lt
Count=0

Count>0

1
: I--.endlstart.CDOl{m-inc-C +LOOPI:§--;. BOK
Count=0

i he only difference between DO and CDO forms is that the latter forms use
hiyte-length indices rather than word-length indices.

The end and start preceding the DO indicates that DO expects two values on
the stack at execution time: the ending argument and the starting index argu-
ment for the loop, Each execution of the loop causes the index argument to be
inc remented by one after the loop code is executed. The loop code will be ex-
viuted as long as the difference between the ending argument and the index
argument (the count) is greater than zero. The +LOOP forms are very similar
rx¢ ept they expect an increment on the stack to be used to increment the index.

The compilation events are as follows:

DO — (CDO) — This immediate keyword causes the word address of the pro-
gram control directive *DO (*CDO) to be added to the threaded list being
compiled and enclosed in the dictionary. The address of the next free dic-
(ionary location is then pushed to the stack.

LOOP — (CLOOP) — (+LOOP) — (C+LOOP) — This immediate keyword
causes the word address of the program control directive *LOOP (*CLOOP,
"+ LOOP,*C+LOOCP) to be added to the threaded list being defined and
enclosed in the dictionary. The top stack value is popped, subtracted from the
address of the next free dictionary location and the low-order byte of the result
enclosed in the dictionary. This is the relative jump constant back to the token
following DO (CDQO) in the original definition.

When executed, the *DO (*CDQ) routine expects two 16-bit words on the
stack. The top two stack entries are moved to the return stack as 16-(8) bit
numbers with the second entry as the second return stack entry. The top return
stack entry is the index value which initially is the start value. The *LOOP
("CLOOP) routine increments the loop index value by one. The *+LOOP
("C+LOOP) routine expects a value on the stack and pops this value to incre-
ment the index. The index (the top return stack value) is subtracted from the
end argument (the second return stack entry). If this count value is greater
than zero, the relative jump value pointed to by the instruction register is
added to the instruction register and the routine exits to the inner interpreter
routine NEXT. This causes the word address of the token following DO
{CDOY in the original definition to be executed next. If the count value is less

TEOALIMCALTEES NI CAT RN ITYE | AMNGLIALT

than or equal to zero, the instruction register Is Incremented by one, the top
two return stack entries are popped and an exit to NEXT occurs. This causes
the code following *LOOP (*CLOOP, * + LOOP,*C +LOOP) to be executed.

The rather strange ordering of the loop arguments is purposeful. In variable
length loops, it is more common to want to change the ending argument than
the starting value. This ordering allows for definition of keywords that contain
a starting argument plus the loop construct. The variable ending argument is
then pushed to the stack before this keyword is evoked.

The index is incremented in these constructs before being compared to the
ending argument, thus:

:HZFOURSE3M18DON4E HL.OOPE; RBOK

2FOURSE4M 1M BOK

Only two fours are printed, not three, Further, the loop test occurs after the
loop code so that the loop code must be executed at least once. The main pur-
pose for providing the byte forms of the loop constructs is execution speed, If
the loop arguments are in the range —128<n=<127, the byte forms can be
used to achieve a faster loop.

If the basic loop formats disturb you, redesign them. The order of the inputs
can be reversed, the test can be done before the code rather than after, or the
end value may be incremented once by the DO construct to yield a more
familiar loop. The choice is yours,

The DO . . . LOOP constructs may be nested many levels deep. The con-
straints are the 256-byte relative jump limitation in the outermost loop and
sufficient return stack depth to hold the loop arguments.

Several other words are available within the loop constructs, The keyword
I> { CI>)pushes the loop index of the innermost loop to the data stack. The
keyword J> (CJ>)} pushes the loop index of the second level loop and K>
(CK>) the third level. These constructs do not change the return stack but
they presume only loop arguments of the same type are on the stack,

Sometimes it would be nice to be able to leave a loop prematurely if some
specific event occurs. A keyword is provided to do this in a controlled manner.

LEAVE — (CLEAVE) — This immediate keyword causes the word address of
the program control directive *LEAVE (*CLEAVE) to be added to the threaded
list being compiled and encloses it in the dictionary.

When *LEAVE (*CLEAVE) is executed, it changes the innermost loop index
value to the end argument value. This will cause the loop to terminate on the
next argument test. The keyword LEAVE (CLEAVE) is generally used within
an IF construct to be conditionally executed if some specific event occurs
within the loop,

THIE TOWAT IR 8 TRAIMTE JE VIR TY 08

A 4.3 Case Constructy me—=—=——m==me

T'here is no directly available ON . . . GOSUB construct in the TIL language
a1 there exists in BASIC, The language will allow this type of alternate action
lo be defined for some specific application, It is best illustrated by example.

Suppose that a function index (an integer) between zero and three is on the
slack as the result of a computation, an operator input, or from some
peripheral device, Depending on the value of the integer, one of four di.st_inct
{unctions (subprograms} is to be executed. The four functions are first defined
an keywords: say, 0CASE, 1CASE, 2CASE and 3CASE. A table (array) named
NC'ASE of the word addresses of these functions is first generated as follows:

‘BOCASEMVARIABLEEINCASEN'W1CASER, W'E
2CASEN, l'E3CASER, BROK

linch ”* ” keyword returns the word address of token following its occurrence,
o that an array of the word addresses has been compiled as the variable array
keyword NCASE. A keyword CASE is then defined as:

:HCASER2"ENCASEN+ B @BEXECUTEN; B EOK

The keyword CASE expects an integer between zero and three on the stack
when it is evoked, It first doubles this value to achieve a word (2-byte) offset
pointer. This pointer is added to the base address retrieved by NCASE and the
contents of this address are fetched using @. This leaves the word address of
the function corresponding to the integer on the stack, EXECUTE simply ex-
ecutes this function, achieving the desired goal.

The vectored case construct is easy to define and very flexible. It also con-
tains the seeds of disaster. In our example, an integer not in the set {zero thru
three) can be executed by CASE, leading to unknown results. Protective code
is advised.

4.5 Compiling and Defining Keywords

Compiling new operators and defining new parameters is central to the
threaded language concept of extensibility. Even more important is the ability
to define new defining keywords. This is a feature that lends more wtility to a
TIL. A delailed look at the compiling and defining keywords should fill in the
details of the process.

66 THREADIT INTERTRITIVE 1 ANGUALGTR

4.5.1 CREATE S

This keyword is central to all defining words: words that create dictionary
headers for both active and passive keywords. All defining words use
CREATE either directly or indirectly to form the dictionary header. CREATE
forms the dictionary header and puts the address of the first byte of the code
body in the word address location, This forms the header and code address for
a primitive.

CREATE — This keyword scans the token following the CREATE location in
the input buffer and moves the next token length plus all of the token
characters to the free dictionary space. It extracts the address of the last dic-
tionary header in the CURRENT vocabulary and pushes it to the stack. It then
replaces this address with the address of the next free dictionary location
{which points to the length parameter of the header being formed), It advances
the dictionary pointer by four to enclose the length plus the next three
characters in the dictionary space in the dictionary, (If the header has less than
three characters, the unused places can contain anything.) The top stack entry
is popped and enclosed in the dictionary as the link address. Finally, the ad-
dress of the next free dictionary location is accessed, incremented by two and
enclosed in the dictionary at the next free dictionary location address. (This
places a primitive code address in the word address.)

4.5.2 Compiling Directives

The compiling directives are central to the extensibility theme, The direc-
tives are as follows:

t = This defining keyword first sets the CONTEXT vocabulary to the CUR-
RENT vocabulary. This allows new definitions added to the CURRENT
vocabulary to be found during keyword searches, The token following *:” in
the input buffer is scanned and a primitive dictionary header is formed using
CREATE. The code address of this keyword is then changed to form a second-
ary keyword by placing the address of the inner interpreter COLON routine
at the word address. Finally, the system MODE wvariable is set to True to
establish the compile mode.

; — This immediate keyword encloses the word address of the inner interpreter
routine SEMI in the dictionary. It then sets the system MODE variable to False
to establish the execution mode,

;CODE — This immediate keyword encloses the word address of the SCODE
routine in the dictionary. It then sets the system MODE variable to False to
establish the execution mode.

PHE TOWEWCH SIATTET REVIDTLLEY 67

the difference between “; and ;CODE is important. The ;CODE ending is
wiril in complling new defining words and is always followed by machine code
wilitth speeifles the generic action of the defining word.

4 1.} Parameter Defining Words

[he parameter defining words always create named parameters of a par-
ticular data type, Three distinct levels must be considered: one when the de-
{1ning word is compiled {defined), one when the defining word is evoked, and
ufie when the parameter name is evoked.

When a defining word is defined, the sequence is always of the form:

: Bdefining name Mdefining codel; CODEMgeneric code

Ile defining name is the name of the keyword that will evoke creation of a
parlicular data type. The defining code will always contain CREATE, either
ilirectly or indirectly, to create a dictionary header when the defining name is
vvoked, and to create optional code to initialize the code body of this passive
keyword. The keyword ;CODE is executed, which stores SCODE in the defini-
tion and establishes the execute mode. The generic code is then entered into the
iictionary directly in machine code (using a sequence of numbers and “,” or
¢",) or in assembly language (by evoking an assembler). The generic code is not
executed; it is added to the dictionary. The generic code always ends with a
¢all to the inner interpreter routine NEXT.
When used to define 2 parameter of type defining name, the sequence is:

data B defining name M parameter name

Ihis sequence is always evoked in the execute mode, The data is optional but
16 always stored on the stack. The defining name evokes the defining code,
which creates the dictionary header for parameter name and initializes the
code body with the data as appropriate. All data is removed from the stack.
The secondary keyword SCODE is then evoked. This keyword pops the return
stack and replaces the code address of the passive keyword being defined with
this address. Since the return address of a secondary always points to the in-
struction following its call in the threaded list of code, this address is the ad-
dress of the generic code following SCODE in the definition of the parameter
type. When SCODE completes, its original return address is no longer there.
What is there is the return address stored when the secondury defining name
was executed by the outer interpreter. Thus, when SCODE completes, return
to the outer interpreter occurs. The generic code is not executed.

When parameter name is evoked, its word address contains the code address
stored by SCODE. This causes the generic code to be executed to manipulate
the data contained in the code body of the passive keyword as appropriate to
the data type.

o THIA ALELY INTERIG DIV TANGLUAGE S

The defining word CONSTANT is thus defined as:
:IMCONSTANTECREATEN, B; CODEBcoenstant generic code
When evoked to define the constant name the sequence is:
nBCONSTANTEname

This creates a constant called name with a value of n. When name is evoked,
the constant n will be pushed to the stack by the constant machine code. An
equivalent byte form exists as CCONSTANT.

Since a variable places an initial value in its code body, the defining word
VARIABLE is defined as:

:BVARIABLEMCONSTANT B;CODEMvariable generic code

This sequence actually results in the creation of the dictionary header first as a
primitive, then as a replacement of its code address by that of a constant, and
then as a second replacement of its code address by that of a variable, the ad-
dress of the variable code.

When evoked to define the variable name the sequence is:

nEBVARIABLEMname
This creates a variable called name with an initial value of n. When name is

evoked, the address of the variable is pushed to the stack. An equivalent byte
form is available as CVARIABLE.

4.5.4 Detining USER Blocks

The USER block defining word is more literaldike than defining-like, Fun-
damentally, the procedure leads to almost an indexed variable form except
that blocks are available in 256-byte blocks and any byte within the block is
available. The basic concept is relatively simple.

USER — An immediate keyword that first adds the word address of the
primitive *USER literal handler to the threaded list being compiled and
encloses it in the dictionary. The next token following USER is scanned from
the input buffer and converted to a number using the system base valid af the
time it is executed. If valid, the low-order byte of the number is enclosed in the
dictionary as the offset. If invalid, the definition being compiled is terminated.

When "1JSER is evoked, the contents addressed by the instruction register are
accessed (the offset) and added to a fixed number established when *USER was

THT TOWTR OF BATTT RTVILTIT o9

slelined, The result is pushed to the stack. The instruction register is then
ing remented by one. It exits to the inner interpreter NEXT routine.

I'he base of the USER block is established by the *IUSER definition. The off-
w¢l Iy Fixed at compile time and is cast in concrete, It does not matter what the
aystem number base is when *USER is executed, only what the number base is
when USER is executed.

By adroit use of the definition of USER and *USER, a more index-like
vatlable scheme is possible. For example, if data is known to exist as 4-byte
units, USER can be defined to include a multiply by four tollowing number ex-
traction and before offset enclosure. The allowable offset numbers in a defini-
lion are then O thru 63 and the system automatically computes the address
ul the first byte of each block of data. {Forcing the multiply at compile time is
tivore time efficient than doing it at execution time in *USER.)

Another method leads to an almost BASIC-like variable structure, In this
#cheme, *USER does not use a fixed number as the base, but uses a number
slored in some variable, say *U. Keywords can be defined to set the *U
variable when they are evoked. This is the old base address plus offset trick,

Remember there are no fixed rules about “rightness” in a TIL. The right
definition of the names of keywords and the right definition of their action is
utrictly applications and/or personal preference dependent. A TIL will support
your idiosyncrasies, whereas most other languages demand that you support
theirs.

4.5.5 High-Level Defining Words

The defining words considered to this point create single definitions of
keywords. Generic classes of defining words can also be built with a TIL. Since
the concept is more than passingly complex, a careful lock at the details will be
undertaken.

Suppose | have decided to add an assembler to the basic TIL. I know there is
a group of 1-byte machine code instructions that exists for my central process-
ing unit, all of which have no parameters. There are fourteen or so of these in-
structions for the Z80. I could straightforwardly define each of these instruc-
tions as:

HEXE: WnameEnumber lC,H; HBOK

Here name is the assembler mnemonic, number is the machine code instruction
in hexadecimal, and C, stores the number in the dictionary. This requires 6
bytes for the header, 2 for COLON, 3 or 4 for the literal handler and the
number, and 2 each for C, and SEMI, At best this requires 15 bytes per defini-
tion. A primitive definition requires even more memory per keyword.

Two keywords, <BUILDS and DOES>>, allow a more memory-conserva-
tive approach to the problem by allowing definition of a generic defining

70 TLHIRE ADTEY INTTRIRITIVE EANCGUAG S

keyword which can be used to define the L-byte assembler mnemonics, First a
keyword 1BYTE will be defined as:

IBYTEM <BUILDSEDCES > BC@EC, H; B@BOK
Each mnemonic is then defined using:

HEX B iBYTEMname Mnumber lC, HEQOK

Note that name was not compiled. The keyword 1IBYTE is a defining word
that creates a header named name. As with all defining words {except “:"}, the
execution mode is in effect. Obviously, the EMnumber @C, B sequence stored
the number in the code body of the keyword catled name,

In fact, the code body of the keyword contains the address of the C@
keyword in the 1BYTE definition followed by the single number stored when
name was defined. This definition form requires a 6-byte header for each
mnemonic, a 2-byte code address and a 3-byte code body, or a total of 11
bytes per mnemonic, The definition of 1BYTE requires 18 bytes. Since the
1BYTE form gains at the rate of 4 bytes per mnemonic, the break-even point in
terms of memory usage is 5 mnemonics.

All of this sounds neat, but you ask “"How does it work?” Carefully! When
the assembler mnemonic is evoked, the code address of the keyword points to
code which will first push the instruction register to the return stack. This is
gimilar to the start of the COLON nesting operation. The word address
register points to the code body of the keyword where the address of the C@
following DOES > is stored. This address is placed in the instruction register.
The word address register is then incremented twice so that it points to the
third byte in the code body of the mnemonic, and then it is pushed to the
stack, This is the address of the instruction hexadecimal code in our mnemonic
definition. The code ends with a jump to the inner interpreter NEXT routine.

Since the instruction register contains the address of the C@ following
DOES >, this is the next instruction that will be executed. The C@ instruction
replaces the address at the top of the stack with the contents of the address as
the lower 8 bits of the top stack entry. The C, pops the stack and encloses the
low-order byte in the dictionary. The SEMI routine stored by “;” then de-nests
one level to get the next instruction following the occurrence of the mnemonic.

If this still does not satisfy you, 1'll tell you how the mnemonic keyword was
built. The keyword < BUILDS, when evoked, scans the next token from the
input buffer, creates a dictionary header, reserves a code address and 2 bytes
in the code body of the keyword, and completes. Note that < BUILDS is
evoked when 1BYTE is executed so that it builds a keyword using the
mnemonic name, The secondary DOES > pops the return stack or the address
of the word following DOES > and stores it in the code body of the keyword
in the location reserved by <BUILDS. It then executes a SCODE, which
replaces the code address of the word being defined just as explained previous-
ly. Since the SCODE has popped the return stack, the return address points to
the outer interpreter return. The C@ and C, following DOES > is not executed
when 1BYTE is evoked,

FHIE JOa el BADEL BRI

bormal definitions of < BUILDS and DOES» are:

!l <BUILDSBOBCONSTANTE; BOK
'HlDOES> MR> MENTRYRsH -+ MR B
Here the “---" is machine code entered in the dictionary when DOES> is de-
tined, 1t is this code that is executed to do the nesting operation when the
nincionic is evoked. For the Z80 the code for a return from a subroutine is
henadecimal C9. Thus:

HEXM1BYTENRET RCORC, MBOK

A memory map of the results of this definition is given in figure 4.1,

18y7E RET DOES >

5 2 5
1 R b
g E o
¥ T E
LA LA LA

COLON S S— COLON
<BUILDS CODE A

DOES> te ENTRY
c@ 8
€, +
SEMI 1

SCODE
—
Mgure 4.1: High-level definition example. The machine 3
vude pushes the instruction register to the veturn stack, H
pwrforms an indirect fetch from the word address regis- N
tev. places the address in the instruction register and E
pishes the doubly incremented word address register to c
the stack. o
o
3

1

The general form of these high-level defining words is:

:Bdefining namel < BUILDS Bdefining time codel
DOES > Brun time secondary codell; HEOK

Here defining time code is executed at definition time of the defining name.
The run-time code is executed when a keyword defined using the defining
word is evoked. When this code is executed, the stack contains the address of
the third byte of the code body of the keyword on the first byte available for
data storage.

23 THIL AL INTURURE LIVE EANGH ALY

To illustrate the defining time code utility, an alternate definition of 1BY'TE
is:

:IlIBYTEE < BUILDSHC, BDOES>BC@EC 1, BROK
With this definition, RET is then defined as:

HEXECE1BYTEEMRET HBOK

After <BUILDS constructs the constant header RET, the C, between
< BUILDS and DOES> adds the C9 hex number to the dictionary following
the 2 bytes reserved by the constant header form: that is, the third byte in the
code of RET. DOES > then does its thing.

4.5.6 Vocabulary Defining Word

The vocabulary defining word is an examgle of a defining word that uses a
high-level definition. The definition of VOCABULARY is:

:BVOCABULARY M < BUILDSBENTRYM,BDOES > B
CONTEXTH!E;BROK

A new vocabulary called name is created by:
VOCABULARY Ename ll BOK

This evokes < BUILDS to create the dictionary entry for name and link it to
the current vocabulary. The ENTRYM, actually retrieves the address of the
first header byte of name and enters this address as the third and fourth byte of
the code body of name. DOES> then does its thing,

When name is evoked the address of the third and fourth byte is stored in
CONTEXT as the pointer to the last header in vocabulary name. Note that the
keyword name exists in the vocabulary that was current when name is defined
and the vocabulary name is linked where it is defined. Any extensions added
to this vocabulary after name is defined are not linked to {(included in) name,

4.6 Vocabulary Keywords

The vocabulary keywords are the system directives that allow management
{or mismanagement) of the vocabularies defined in your TIL. Most of the
keywords have been mentioned at one point or another, Just for drill, they will
be repeated here.

TP TOWNTT LW TRATIT RIVIRITION 7

VOCABULARY A defining keyword usced to deflne new vocabularles, Sce
‘wition 4.5.6,

IMMEDIATE — This keyword delinks the latest keyword entered in the CUR-
UENT vocabulary from the CURRENT vocabulary and links it to the COM-
PLER vocabulary. What was previously the second entry in the CURRENT
vucabulary becomes the latest entry.

DETINITIONS — This keyword sets the system variable CURRENT to the
value at the system variable CONTEXT so that new definitions will enter the
1 uireet vocabulary.

TORGET — This keyword sets CONTEXT to CURRENT and searches the
t ONTEXT vocabulary for the token following FORGET in the input buffer. If
the keyword is located, the keyword is delinked from the CURRENT
vocabulary and the DP is reset to the first header byte of the located keyword,
i1 not found, the keyword is echoed to the operator followed by “7”.

{ {JRE — The core language vocabulary.

¢ OMPILER — The compiler vocabulary.

4.7 Babblings

Not all of the language elements have been presented here. I promise to pull
stune off-the-wall keywords out of my magic hat at some unexpected moments
thuring the course of the remaining text. There are two reasons for this: forget-
tulness and a desire to see if anyone is paying attention, What good is a magic
hat if it can't be used occasionally?

Ta TINU ANV INTFRITRITIVE T ANGHAGED

5 | Routines, Routines,
Routines

There are not a large number of routines needed to imple-
ment a TIL. However, the number of routines that can be
created with a machine as simple as a computer is absolutely
amazing. There are routine routines, obscure routines,
clever routines, etc, etc, etc. I personally prefer lucid TiL
routines, but these are very rare creatures indeed.

5.1 Core TIL Design Notes

The core of any threaded interpretive language is that set of code and
routines necessary to achieve a self-generating language. Fundamental to
designing the core is assessing the resources available to generate and support
the proposed language. The available memory, peripherals and operating
system have a tremendous impact on the design process, Similarly, the
available support software can materially affect the generation process.

To bring the problem down to earth, a certain level of software must exist in
order to generate the TIL. A system monitor/software support system is
presumed and must support program generation, display, debug, execution
and storage on some mass media. It is impossible to bootstrap a language
without some resources, The more sophisticated the support system, the easier
the task.

The very first step in the design process is to segment the available memeory.
Memeory area is required for stacks, the input buffer, system variables and the
language itself. Remember that the system variables must be initialized, either
by loading them in conjunction with the TIL language load from the mass
media or by an initialization routine. The 1 K-byte stack and input buffer
area presented in figure 3.2 is more than generous. Actually, a 64-byte line
buffer, a variable area, and the stacks could all be contained in a 256-byte area
with few potential problems. But if you can afford the memory, use a
1 K-byte configuration.

The next step is to assess the I/O subroutines available in the system
monitor/software support system. Usually these routines can be “borrowed,”

KUNTEIRE S BOORTEINL 0 Rtn N 99

uither by accessing them ag subroutines or simply by relocating the routines to
the TIL area, Special care must be exercised to clearly identify the protocol
wedl to pass data to and receive data from the I/O.

he actual allocation of processor registers and the design of the inner inter-
iieler s the next step, This design must consider the interfacing of the
primitives and secondaries to the inner interpreter. I urge you to spend suffi-
v ient time on this design process to convince yourself that a more time efficient
ilraign is not possible. Chapter 3 is the design guide for this activity.

I'he next step in the design process is consideration of a machine code
sitbroutine calling convention, Almost always there will be “funétions” that
are called by several primitives and may be exactly the same function per-
turmed by a keyword, All subroutines must preserve all registers except those
wsed to return parameters and must always preserve the instruction register, A
mubroutine may use the stack as a means of saving registers for restoration
when it completes. It may even return a value on the stack. The calling code
must always expect the parameter in a specific return location.

An example of a subroutine that may be called by a primitive and exists as a
keyword is the display carriage return-line feed sequence. Suppose a
subroutine called $CRLF that performs this function is written. This
subroutine may be directly called by primitive machine code. The keyword
¢ RET is then defined as a primitive which simply calls $CRLF and then returns
tv the inner interpreter NEXT routine,

All subroutines are generally preceded by the symbal $ in this text. This is
shinply a personal holdover from some forgotten project. Choose a convention
1o suit yourself and then stick with it.

(iiven the inner interpreter design, the subroutine calling convention and the
register allocations, the input/output routines must be re-examined to verify
that conflicts do not exist vis-a-vis the instruction register, Conflicts are re-
sulved in favor of the inner interpreter. The minimum set of I/O routines that
must exist is:

$KEY — An input subroutine in machine code that first resets the keyboard
and then awaits the next keyboard input. The next input is returned in a
known register or address and the keyboard is reset again before exit, This
routine must preserve the instruction register. Additional possible functions
were discussed in Section 4.3.7.

$ECHO — An output subroutine in machine code that controls the display in-
terface. The routine must recognize ASCIl codes and implement display
routines for carriage return, line feed, and backspace, and a control code to
clear the screen and home the cursor, {Control of the cursor by this routine is
assumed.} Printing ASCII codes are displayed and the cursor is moved right
one character. This routine must preserve the instruction register.

[here are other functions that $ECHC could perform. One that 1 highly
recommend is a variable, time delay loop following a carriage return. This
allows routines such as DUMP and ADUMP to be slowed down sufficiently to
allow leisurely viewing. Full cursor contrel (up, down, right, left, and home) is

TECTTIRTATIHIT INTERITTE TIVE 1TANCUIACGD

also useful as is a reverse video function, Note that a fine {eed results in the
next display line being cleared, whereas a cursor down command merely
moves the cursor down one line with automatic last-to-first line wraparound.

Since the display usually recognizes a subset of the control codes, protection
from a function such as ADUMP {which could cutput characters that are
within the display conirol set) is an excellent idea, One possible way to achieve
this end is to set the high-order bit in general display output bytes passed to the
$ECHO routine. Then $ECHCO would automatically assume that any byte
with a high-order bit set is to be displayed and take appropriate action to
assure displayability. This latter function is display specific.

If the [/O routines exist as subroutines within the system software, the inter-
face task is generally easy. If not, these routines must be written before the ac-
tual TIL design can proceed. This is also true for any software needed to sup-
port the development of the TIL code.

One note must be directed toward the line buffer, token separators, and the
carriage return function of the input submode, There are several ways to han-
dle the problem of deciding when all the tokens in the line buffer have been ex-
tracted and the line buffer is empty. Obviousty one way to handle the problem
is to store a carriage return ASCII code in the line buffer at the point where it
occurs. There are several reasons why this is not a good idea.

Fundamentally, the token scan routine must be able to recognize any
character as a token separator, not just the ASCII space code. This allows
keywords such as the literal handler "[” to use characters other than the space
as a separator since the literal may contain embedded space codes. Secondly,
the token scan routine resets the line buffer pointer to point to the first
character past the separator after extracting the token. This allows changing
the separator for a single call but prevents the next call from returning the
previous calls separator as the next token. Finally, there must be a way to
recognize that the end of the line has been reached.

The easiest way to handle the problem is to place a termination sequence at
the end of the line buffer area, [usually use twe terminator characters with
their high-order bits 1 set. This implies that they are two's complement
negative (easy to test) and not in the ASCII code set (no conflicts). Two
characters insure that failure to properly enter an expected separator will not
allow skipping over a single terminator.

The input submode always fills the line buffer with ASCII space codes when
it is entered. The carriage return simply outputs an ASCII space code to the
display to move the cursor right one place hefore terminating the input sub-
mode.

The token scan routine TOKEN takes its separator from the stack. If it is the
ASCII space code, leading spaces are ignored in extracting a token. The last
character of any token is the character before either the separator or the ter-
minator. In either case, the line buffer pointer is reset to point to the first
character past the terminator character before the routine completes.

The terminator character is not in the dictionary and cannot be a number,
The invalid keyword handling routine can easily distinguish between an in-
valid keyword and the terminator, Remember, though, that the terminator

RONTTINGT REOWFTINGS BOTITING G o

Visracters must be set by the initializing sequence,
Alternates to this technlque are possible. | have used different ones. This
paricalar approach, however, leaves the full display line available for input.
Lace the preliminary designs and the design decisions have been made, the
twnk of actually designing the outer interpreter can proceed.

" & Quter Interpreter Design

A standard approach I use to design a TIL program is the old, inscrutable,
b down structured programming method. I don't know anything about it,
it | elo like the divide and conguer words. After pursuing this attack to a cer-
tain level, I then chuck the top-down and get on with the bottom-up coding.
When the top-down meets the bottom-up, I have a checked prograrm.

T'o design the outer interpreter, [always start with a flow diagram. Figure
% 1 18 the example we will pursue. Each subprogram block in the diagram ex-
¢opt for START/RESTART and $PATCH will be a dictionary entry. The only
ivagon for this segmentation is that it allows easier checkout of the loop. Each
decision block in the diagram implies that the preceding subprogram block has
loft a flag on the stack to allow the decision to be made.

The general specification of what each routine is to do is written down. This
mcludes a specification of its stack input and output along with its interaction
with and control over system variables. The type of routine will also be deter-
tuned — primitive or secondary.

A general specification for the START/RESTART routine is:

YIART/RESTART — A machine code routine that initializes the system. If
{he system START flag is True, the address of the start message is placed in the
word address register, the system number BASE is set to hexadecimal, and the
BTART flag is set False. If the START flag is initially False, the restart message
address is placed in the word address register. (An uncenditional jump from
the SPATCH routine or other error routines occurs to the code at this point
and the address of the error message is expected in the word address register.)
The data stack and return stack pointers are initialized and the word address
register is pushed to the data stack as the parameter for TYPE. The system
MODE and STATE flags are set False, The line buffer termination characters
are set as appropriate, Other system registers are initialized as appropriate
flesign dependent), and a jump to the inner interpreter routine occurs to begin
execution of the outer interpreter.

Examples of the start and restart messages are:

TOAREADIEY INTPRUHTTTVE | ANGUIALI™

WXHELLONI'MBANTIL

The ASCIH contrel code for the
clear screen-home the cursor
command.

The number of characters to be
output to the display (in hexa-
decimal),

YZTIL.MRESTART

lb The ASCII control code for the

carriage return-line feed com-
mand.

The number of characters to be
output to the display (in hexa-
decimal).

Personalizing these messages is half the fun of the design of your own
language.

There are several methods to jump to the inner interpreter such that the
outer interpreter begins execution. They all depend on initializing the instruc-
tion register to correctly point to the threaded code for the outer interpreter.
From the flow diagram the preliminary outer interpreter threaded code list is
designed. For the diagram of figure 5.1, the threaded code list for the cuter in-
terpreter is shown in figure 5.2. For this example, the address of TYPE in this
threaded list is put in the instruction register, and an unconditional jump to the
inner interpreter routine NEXT is executed.

The threaded code list of figure 5.2 was taken directly from the flow
diagram of figure 5.1. Each YES in figure 5.1 corresponds to a True (T) in the
control flow of figure 5.2; each NO to a False {F). The outer interpreter code
does not show the jumps out of inner interpreter control (the dashed lines of
tigure 5.1). The keyword names are really the word address of the keywords
when the actual threaded list of the outer interpreter is coded.

WO NG BETHINT S o T HINE Y
(T,)
CotanT :“i, _____
REATART — $PATCH

f

Pl

TYPE

INLINE

it

i
|
1
|
|
|
I
|
|
|

ASPACE

TOKEN

P 3EARCH

TN
|
|

ZNUMBER 1 |
|
\
|
i
NO |
|
|
YES |
| j
L QUESTION -

Hgure 5.1: Outer interpreter flowchart.

The outer interpreter threaded code list is somewhat deceptive. Buried in
Lhis list are several secondaries and large primitives needed to do the outer in-
terpreter tasks. Few outer interpreter designs require very many bytes of code.
f'undamentally this is because using complex secondaries in the outer inter-
preter seldom leads to cbservable time penalties. The outer interpreter is in-
leracting with the operator, who is orders of magnitude slower than the cuter
interpreter,

80 FHREALATYINTLRERELIVE TANGHAC

KEYWORD CONTROL TYPE BYTES STACK

TYPE« Primitive 2 —
INLINE Primitive 2 —
ASPACE d————— Primitive 2 [|
TOKEN Primitive 2 —
7SEARCH Fe Secondary 2 FADorT
*IF OB {T Primitive 3 ADorT
?NUMBER 4———F_‘|_ Secondary 2 FNorTorF
*END F3 {T Primitive 3 —orN
QUESTION «— Primitive 2 -
*WHILE EA U Primitive 3 AD
TEXECUTE +— Secondary 2 -
“WHILEE®S U—1 Primitive 3 -

28

Figure 5.2: Quter interpreter code design.

TYPE — A primitive with a header. This routine pops the address of a message
in TYPE format on the stack {ie: a pointer to the message length followed by
that many ASCII characters) and outputs the message to the display. These
messages may contain embedded ASCII control codes to control the format of
the display. The start message should contain a control code to clear the screen
and home the cursor before the message. The restart message should contain
control code to issue a “carriage-return line-feed”” sequence to the display line.
The entrance from $EXECUTE via $PATCH will leave a stack pointer error
message address on the address. This message will also contain the “carriage
return-line feed” sequence. The entrance from QUESTION via $PATCH will
only leave the address of the B? message on the stack. The “carriage return-
line feed” sequence and unrecognized token must be issued by QUESTION
before the restart is executed. The direct QUESTION entrance will leave the
address of the QK message on the stack. It does not contain any control
codes. TYPE does not alter any system variables or leave anything on the
stack.

INLINE — A primitive without a header that implements the input submode,
It expects no stack inputs and returns none. This routine first executes a “car-
riage return-line feed” sequence to leave the cursor at the first character posi-
tion of the next display line, and clears the line buffer. It recognizes a

B TEINE S RReIETTIM 0 RUsb] ikig A

Iackapace command from the keyboard that outputs a space to the current
vurior loeation and moves the cursor left one place, unless the cursor is at the
tnat buffer position location. It recognizes a line-delete command from the
bryboard that outputs a line-delete character to the current cursor location
atl then returns to the start of the INLINE routine, It recognizes a carriage
retnrn key and outputs a space to the current cursor location, moves the cursor
1pht one place, sets the system line buffer pointer to the first address of the line
Tnlfer and exits this routine via a jump to the inner interpreter. All other
keyboard input characters are echo displayed and moved to the line buffer
tinless the last buffer place has been filled) with lowercase alphabetic
¢ linracters changed to uppercase. When the last buffer focation has been filled,
he cursor is no longer advanced. Further entries simply replace the last
¢ lmracter on the display line and in the line buffer.

ASPACE — A CCONSTANT with value hexadecimal 20. This routine simply
pwhes an ASCII space to the low-order byte of the stack. This is the token
separator for TOKEN's use in scanning the input line. No system variables are
thanipulated,

1OKEN — A primitive with a header. This routine expects a token separator
un the stack in the low-order byte location. It pops this terminator and also
rotrieves the line buffer pointer from the system variable area, If the separator
i an ASCII space, all leading spaces are ignored {ie: the line buffer pointer is
advinced to point to the first non-space character). This pointer value is saved
ahd a byte count to the next occurrence of the separator or terminator is
penerated. This count is placed in the first location of the free dictionary space
fullowed by all the token characters. The system dictionary pointer variable
points to the start of the free dictionary area but is not advanced by TOKEN.
I he line buffer pointer is advanced to point to the character following the ter-
minating separator. The routine leaves no parameters on the stack.
1SEARCH — A secondary with no header. This routine will first search the
tontext vocabulary — trying to locate a keyword whose header matches the
token length and descriptor characters of the string moved to the dictionary
opace by TOKEN. The system variable CONTEXT contains the address of the
appropriate context vocabulary. If the search is successful, the keyword word
address is returned to the stack as the second stack entry, and a False flag is
returned as the top stack entry. If the context vocabulary search is unsuc-
cessful, the system MODE flag is tested. If the MODE flag is False (execute
mode), a single True flag is returned at the top of the stack. If the MODE flag is
True {compile mode}, the COMPILER vocabulary is searched. If the search is
successful, the word address of the located keyword is returned to the stack as
the second stack entry, a False flag is returned as the top stack entry and the
system flag STATE is set True. If the compiler vocabulary search is unsuc-
cessful, a single True flag is returned as the top stack entry. The threaded code
for 7SEARCH is shown in figure 5.3. A flag is always the top stack entry when
1SEARCH completes. If this flag is False, the word address of a located
keyword is the second stack entry as a parameter for TEXECUTE,

HE THRE AL INTLRPREEIVE TANGUAGLY

KEYWORD CONTROL BYTES STACK
COLON 2
CONTEXT 2 AD
@ 2 AD
@ 2 AD
SEARCH 2 FADorT
DUP : 2 FFADorT,T
*IF 20 {T 3 FADorT
MODE +¥—————1 2 AD,T
cC@ i 2 TIRT
*IF19 {T 30T
DROP +—— 2 -
COMPILER 2 AD
@ 2 AD
SEARCH 2 FADorT
DUP - 2 FFEADorT.T
*IF 06 {T 3 FADorT
0« — 2 o7
*ELSE 03 U— 3 OT
1e 2 1,FAD
STATE¢—— 2 AD,1,F,AD or AD,D,T
cl 2 FADorT
SEMI; 2 EADorT

48

Figure 5.3: Code design for ?SEARCH.

TEXECUTE — A secondary with no header, This routine tests the states of the
system MODE flag and the system STATE flag. If the flag states are equal, the
word address of the top stack entry is executed. If not, the word address at the
top stack entry is enclosed in the dictionary. The system STATE flag is always
set False before the possible execution of a keyword can occur, After each
keyword execution, a test for stack underflow is made. If underflow occurs,
the address of the stack underflow message must be loaded into the word ad-
dress register and an unconditional jump to the $PATCH routine occurs. The
threaded code for the ZEXECUTE routine is shown in figure 5.4.

ROMTTINTT JOATITNT REWITINTT AY

KEYWORD CONTROL BYTES STACK
COLON 2 AD
STATE 2 AD,AD
c@ 2 FG,AD
STATE 2 AD,FG,AD
COSET 2 FG,AD
MODE 2 AD,FG,AD
c@ 2 FG,FG,AD
- o 2 T/F,AD
*IF 08 i 3 AD
EXECUTE +——— 2 -
*STACK 2 -
*ELSE 03 U— 3 -
¢ - 2 -
SEM | e—————— 2 -

30

Fiyowe §.4: Code design for ZEXECUTE,

INUMBER — A secondary with no header. This routine attempts to convert
the token located at the free dictionary space to a binary number using the cur-
reni systemn number base. If the conversion is unsuccessful, a True flag is
pushed to the stack. This will occur if the token is the terminator or if the
token is unidentifiable. If a successful conversion occurs, the system MODE
i1ag is checked. If the MODE flag is True, a literal handler plus a number must
be added to the dictionary. If the number is within the byte number range, the
word address of the byte number literal handler *C# is added to the dictionary
followed by the byte number. If the number is not within a byte range, the
word address of the word number literal handler *# is added to the dictionary
toltowed by the number. After the literal handler and number entry to the dic-
tionary, a False flag is pushed to the stack. If the conversion is successful and if
{he system MODE flag is False, the number is pushed to the stack and a False
(lag is pushed to the stack. This can leave an excess number on the stack which
s exactly the right answer in the execute mode, The thread code design for
INUMBER is shown in figure 5.5

B TTIUT ATITTY INTIRITHET TIVE T AMELIARTN

KEYWORD CONTROL BYTES STACK

COLON 2 _

NUMEBER . 2 TNorF

*IF 25 {T 3 Nor—

MODE 2 AD N

c@ . 2 T/FN

*IF 19 {T 3 N

SINGLE.—-F—_I 2 T/FN

*|F OC I+ — 3 N

gy 4 AD,N

. 2 N

J 2 J—

*ELSE 09 U— 3 -

=@ RCH 4 AD,N

, 2 N

C, 2 -

0, 2 ForF,N

*ELSE 03 U— 3 F or F,N

1+ 2 T

SEM|[¢+ 2 T or For F,N
47

Figure 5.5: Code design for ’NUMBER.

(A fundamentally circular definition is encountered in the design of
INUMBER. [t fields literals but contains the word number literal handler as a
literal number, which is itself the word address of the literal handler followed
by its own word address. Thus, if the literal handler word address were XXYY
hex, the *#*# of figure 5.5 is YYXX YYXX given the reversed address order of a
microcomputer.)

QUESTION — A primitive with a header. This routine tests the high-order bit
of the second byte in the free dictionary space. If this bit is 1 set, all of the input
buffer tokens have been scanned and a terminator is in the free dictionary
space. The address of the MOK message is pushed to the stack and exit occurs
to the inner interpreter NEXT routine. If the bit is zero set, an unidentifiable
token has been scanned. In this event, a carriage return-line feed is issued to
the display, the token in the free dictionary space is displayed, the address of
the M7 message is placed in the word address register and an unconditicnal
jump to the SPATCH routine occurs.

SPATCH — A machine code routine that patches several system variables in
the event a system error occurs during the compile mode. $PATCH resets the
dictionary pointer and the current vocabulary link to the values that existed

RUITRING Y G TINT TTTI

prbr o the attempt 1o compile the aberted definition. This also allows a con-
enieiil way (o abort a semi-completed definition. Simply entering a token
wliinli you know the system won't recognize does the trick. I usually use a se-
suaten of Xo to accomplish an abort, A line delete will do the same unless the
debnition extends over one line or has been partially entered via carriage
srhtiet A definition may extend over as many input lines as your mind can
stsppingd, but remember that the TIL will do exactly what you ask. It doesn’t
foanget unless you type FORGET.

All of the outer interpreter secondaries have been detailed. They are com-
g of primitives only. The major reason for defining routines as headerless
seeniulartes 1s simply to make testing easier, The total code count for the outer
mferpreter and all of its subroutine secondaries is:

Quter Interpreter 28
SEARCH 48
IEXECUTE 30
INUMBER 47

153 bytes

An 18-byte penalty is paid for defining the three headerless secondaries.
I hin is a price well worth paying at checkout time.

A complete list of the keywords needed to directly implement the outer in-
terpreter is given in table 5.1. The rough size of each keyword (including
headers) is given in this list. A byte count to this point yields:

Inner Interpreter = 50
Start/Restart = 50
Secondaries = 150
Primitives = 825

1075

This list of code is still deceptively small. It does not consider the [/O
subroutines needed to support table 5.1 primitives, several system variables,
iand the defining and compiling keywords required both in support of the table
5 | keywords and in allowing a self-generating language. There are between
400 and 700 bytes involved in these routines.

86 CHIRLADMY INTIRIPKL EIVD T ANGLALLY

KEYWORD TYPE KEYWORD NAME ~BYTES
OPERATORS TYPE 26
INLINE 95
SEARCH 70
TOKEN 60
NUMBER 90
@ 15
c@ 20
. 20
c, 20
DUP 15
DROP 10
C1SET 15
COSET 15
= 25
SINGLE 20
*STACK 20
QUESTION 35
CONSTANTS ASPACE 10
0 10
1 10
VARIABLES CONTEXT 15
COMPILER 16
STATE 15
MODE 15
PROGRAM CONTROL DIRECTIVES *IF 10
*END 10
*WHILE 10
*ELSE 10
LITERAL HANDLERS * 15
“C# 15
SUBROUTINES $PATCH 35
$CRLF 15
SYSTEM MESSAGES 40

Table 5.1: Quter interpreter keyword sizes.

At this point I will abandon the pursuit of the exact keywords needed to
complete the TIL design. After all, this is only one example of an outer inter-
preter. There is no “right” design and no “right” choice of a keyword as a
primitive or a secondary.

The design procedure to this point is really nothing more than identifying
the functions to be performed and associating a keyword name with the func-
tion. I highly recommend “headerless” secandaries as a method of segmenting
larger code blocks as long as timing consideration allows. In the outer inter-
preter for a terminal-directed TIL, the slower secondary nesting is acceptable.

LA™ R HITINTTE R TLI LIRS BF

1o slower approach may not be feasible in o high-speed widget sorting pro-

Wil

% 4 Routine Routines

i here are obviously a number of routines, both primitive and subroutine,
reededl to mechanize the outer interpreter. These routines are really the heart
sl thie system design. To present the designs both flowcharts and Z80 specific
linlings will be used,

% %1 START/RESTART

[he start/restart routine really has two entrances: one that initializes the en-
It oystem and calls up either the start or restart message, and one that does a
purtial system initialization and presumes an error message has aiready been
sl up.

A listing of equivalent Z80 assembly code is given in listing 5.1. This par-
tH: ular mechanization presumes that the system variables MODE and STATE
wlure adjacent memory cells, and the system variable BASE is initially stored
ns gero during system loading, The variable BASE may thus be used to
slintinguish a start from a restart. The abort entrance, like a restart, does not
t hitnge the system base but performs all other initializations.

NIART: LD DERSTMSG ;RESTART MESSAGE ADDRESS TO WA
LD A,{BASE} ;GET SYSTEM.BASE

AND A ;TEST IT FOR ZERO
JR NZ,ABORT JAFAT’S ZERO, IT'S A START
LD A10 ;ELSE GET HEX BASE

LD {BASE},A ;AND STORE IT AT BASE
LD DE,SSRTMSG ;START MESSAGE ADDRESS TO WA
ABORT: LD SP,STACK ;SET SYSTEM DATA STACK

PUSH DE ;PUSH MESSAGE ADDRESS
LD HL,O

LD {MODE},HL. ;SET MODE=0, STATE=0
LD IY,NEXT ;SET 12 NEXT ADDRESS TO IY
LD IX,RETURN ;SET RETURN STACK

LD HL,8080 ;GET TWO TERMINATORS

LD {LBEND},HL ;STORE TO END OF LINE BUFFER
LD BC,OUTER ;START OF OUTER INTERPRETER
JFP NEXT ;JUMP TO 12 NEXT CODE

Linting 5.1: Assembly code for START/RESTART. Note that QUITER is the address of
1 YPE in the threaded list for the outer interoreter.

5.3.2 INLINE BN R

The input submode is mechanized by the INLINE routine. Although INLINE
could be implemented as either a primitive or a secondary, a primitive form
will be presumed.

A flowchart of the INLINE function is shown in figure 5.6. One point s
worth stressing in this design. The routine controls the cursor location by
issuing carriage return, line feed and backspace commands to the display
device. The buffer pointer BP points to the line buffer position where the nex

character will be stored. An equivalent Z80 assembly code listing is given in
listing 5,2,

.'ISSUE_-L-D TEE
[R,

HD

I550E BS

-) a .
thedA i BF =i Rne TER e
P it i
W[5 N
T
FEE:IH 12sr gy |
f sodt g A,
—

TS MLKE QRHP
| nPEEa-Lase

L —

Figure 5.6: INLINE fiowchart.

INLINL

HART
FLCAR:

ARG
INKEY

H1BS:

ISUE:

T5TCR:

LAVEIT:

NOTLC:

FND:

LAST1:

"42
PUSH
CALL
LD
LD
LD
LD
INC
DJNZ
LD
CALL
CP
JR
CALL
JR
ce
JR
DEC
JP
LD
CALL
JR
CP
JR
BIT
JR

LD
CP
JR
CcP
JR
RES
INC
JR
DEC
LD
LD
CALL
LD
JR
LD
CALL
POP
JP

BC
$CRLF
ML,LBADD
{LBP}.HL
B,LENGTH
{HL},20
HL
CLEAR
L0

SKEY
I‘I‘LDI’I’
NZ,TSTBS
$ECHO
START
JIBS"
NZ,TSTCR
L
M,ZERO
{HL},20
$ECHO
INKEY
f!Cle
Z,LAST1
7.L
NZ,END
{HL},A
61
C,NOTLC
78
NC,NOTLC
5,{HL}

L

ISSUE

L

C.A

A, ’BS"
$ECHO
A.C
SAVEIT
A,20
$ECHO
BC

{IY}

REATHINT S ETEINEY Wi N

:PRIMITIVE CODE ADDRESS
;SAVE THE IR

;ISBUE CR-LF

;GET START OF LINE BUFFER
;RESET LBP

;SET BUFFER LENGTH

;LOAD SPACE TO BUFFER
;BUMP BUFFER POINTER

;LOOP TO CLEAR BUFFER
;BACK TO FIRST BUFFER LOCATION
JINPUT A CHARACTER

JS 1T A LINE DELETE?

:IF NOT SKIP LD CODE

;ELSE ISSUE LINE DELETE

;AND START OVER

;15 IT A BACK SPACE?

;/IF NOT SKIP BS CODE
;DECREMENT BUFFER PQINTER
;RESET TO ZERO IF NEGATIVE
;LOAD SPACE TO THE BUFFER
:DISPLAY THE CHARACTER
;AND RETURN FOR NEXT

JS 1T A CARRIAGE RETURN ?
;IF 80, GO TO EXIT INLINE

;IF BIT SET, AT 129TH PLACE
;DO BUFFER END TASK AT 128
;5AVE CHARACTERS IN BUFFER
/IS 1T LESS THAN LC A?

:IF SO, SKIP LC CODE

81T MORE THAN LC 2 ?

:IF S0, SKIP LC CODE

;ELSE MAKE LC UC IN BUFFER
;BUMP POINTER

;GO ISSUE CHARACTER

;BACK UP TO 128BTH PLACE
;SAVE THE INPUT CHARACTER
;GET BACK SPACE CHARACTER
;MOVE CURSOR LEFT
;RESTORE QORIGINAL CHARACTER
;GO PUT IT AT 128TH PLACE
;REPLACE CR BY A SPACE
;AND ISSUE IT

;RESTORE IR

;RETURN TO 12 NEXT ROUTINE

listing 5.2: INLINE Z80 primitive, This routine presumes a 128 byte iine buffer which
atarts op o page boundary,

90 THREADIE INFRIEREFTVI: T ANGLACGED

5.3.3 Token Extracting

The token-extracting routine is mechanized as the keyword TOKEN in the
design presented. The TOKEN keyword can be either a primitive or a second
ary, although I usually design it as a primitive. This routine moves the next
token in the line buffer to the free dictionary space in extended header format,

A flowchart of the TOKEN routine is shown in figure 5.7. Note that LBP?

Figure 5,7: TOKEN flowchart. P1 points
to the line buffer: P2 points to the dic-
tionary space; SEP is the separator,

FUCHITINGG ROLITINT S Bl i o

and DI are system varlables whose contents point to the line buffer and dic-
horay free upace respectively, The LBP variable will point to the start of the
fispe [dfer the firgt time TOKEN is used to scan a token after a line entry.
{CIEEN will reset LBP to point to the first line buffer address following the
ok pnseparator each time it is called. This particular design presumes that two
lerotinalors are stored immediately following the line buffer. These ter-
nibimtors act as permanent separators. Two terminators are required to allow
Hie (1 Lo terminate the last token on the line and to insure that the next call to
TOREN will return a terminator, A listing of the Z80 assembly code to imple-
mirinl TOKEN is given in listing 5.3.

DATA #5,T,0K ;TOKEN'S IDENTIFIER
DATA "LINK" ;LINK ADDRESS
TOKEN: *+2 ;PRIMITIVE CODE ADDRESS
EXX ;SAVES IR
LD HL,{LBP} .GET POINTER TO TOKEN
LD DE,{DP} ;GET POINTER TO DICTIONARY

POP BC ;SEPARATOR IN C, B IS ZERO
LD A20 ;SPACE CODE TO A REG
CP C 1S SEPARATOR A SPACE ?

JR NZTOK :IF NOT, TOKEN START
IGNLB: CP {HL} ;1S IT A SPACE ?

JR NZTOK ;IF NOT, TOKEN START

INC L :BUMP THE POINTER

JR IGNLB :TRY NEXT CHARACTER
TOK: PUSH HL :SAVE TOKEN START ADDRESS
COUNT: INC B :INCREMENT COUNT

INC L ;BUMP THE POINTER

LD A, {HL} iGET THE NEXT CHARACTER
CP C AS IT A SEPARATOR ?

JR Z,ENDTOK :IF SO, TOKEN END

RLA BIT 7 TOCY

JR NC,COUNT ;IF CY =0, NOT AT END

DEC L ;BACK UP 1 IF A TERMINATOR

ENDTOK: INC L ;STEP PAST SEPARATOR
LD {LBP}LHL ;UPDATE LBP FOR NEXT CALL

LD AB ;MOVE COUNT TO A REG

LD {CE}A ;LENGTH TO RICTIONARY

INC DE ;BUMP DICTIONARY ADDRESS

POP HL ;GET TOKEN START ADDRESS

LD C,B ;GET COUNT TO BC

LD B,O ;

LDIR ;MOVE TOKEN TO DICTIONARY
EXX ;RESTORE IR

JP {1y} ;RETURN TOQ 12 NEXT ROUTINE

Listing 5.3: TOKEN: Z80 primitive.

9 THTREALE P BN T RURE IV T AN LA

5.3.4. SEARCH ————— = - v -

SEARCH is the routine within 7SEARCH which actually searches the
vocabularies for a given keyword. It has a header since it will be compiled into
other keywords after a self-generating language is achieved. [generally code
this routine as a primitive to insure that keywords can be located as rapidly as
possible.

SEARCH is called with the address of the first keyword header in the linked
list to be searched as the top stack entry (ie: the address of the three in the DU
header in the example of figure 2.1). The token being searched for is located in
the free dictionary space in extended header format. The search routine will
test the length and up to three characters of the keyword name. The first
detected mismatch causes the next header in the linked list to become the next
candidate for a match. This procedure will continue untii either a match occurs
or the bottom of the list is reached (a zero link address). If a match occurs, the
word address of the located keyword is pushed to the stack followed by a False
flag. If the bottom of the list is reached, a True flag is pushed to the stack.

A flow diagram of the SEARCH routine is given in figure 5.8 and a Z80
assembly code listing is given in listing 5.4,

DATA #6,5E,A SEARCH'S IDENTIFIER

DATA “LINK" ;LINK ADDRESS

SEARCH: *+2 ;PRIMITIVE CODE ADDRESS
EXX ;SAVES IR
POP HL ;GET 18T HEADER ADDRESS

TESTIT: PUSH HL ;SAVE START OF HEADER
LD DE, {DP} ;GET DICTIONARY POINTER

LD c,.0 ;USED WITH B AS A FALSE FLAG
LD A, {DE} JGET DICTIONARY TOKEN LENGTH
Ccp fHL} ;SAME AS KEYWORD LENGTH ?
JR NZ,NXTHDR;IF NOT, GO TO NEXT HEADER

ce 4 ;1S LENGTH OVER 3 7

JR C,BELO4 ;IF NOT, SKIP 3 SET CODE

LD A3 ;SET LENGTH TO 3

BELO4: LD B.A
NXTCH: INC HL

;SAVE LENGTH AS COUNT
;BUMP HEADER POINTER

INC DE ;BUMP DICTIONARY POINTER
LD A, {DE} ;GET NEXT DICTIONARY CHARACTER
CP {HL} :MATCH KEYWORD CHARACTER ?

JR NZ NXTHDR;IF NOT, GO TO NEXT HEADER
DJNZ NXTCH ;ELSE GO TEST NEXT CHARACTER

POP HL ;START OF FOUND HEADER
LD DE. 6 ;START OF HEADER PLUS 6
ADD HL,DE ;EQUALS WORD ADDRESS
PUSH HL :PUSH WA; BC=0 FOR FLAG

JR FLAG ;DONE AND KEYWORD FOUND

TONTEIND A ROUDING Y RUHITIND 5 v

NXTHDR: POP HL ;GET START OF CURRENT HEADER

LD DE,4 ;PLUS 4 EQUALS LINK ADDRESS
ADD HL,DE ;TO NEXT KEYWORD
LD E,{HL} :GET LINK ADDRESS OR THE
INC HL :START OF THE NEXT
LD D,{HL} :HEADER
EX DE HL ;
LD AH :TEST LINK ADDRESS FOR ZERO
OR L ;OR LAST KEYWORD
JR NZ,TESTIT ;IF NOT O, TEST NEXT HEADER
LD c.1 FLAG =1, IF NOT FOUND

FLAG: PUSH BC ;PUSH FLAG
EXX :RESTQORE IR
JP {1y} :RETURN TO 12 NEXT ROUTINE

Vit 5.9: SEARCH: Z80 primitive.

FUSH HOR
Ao or
CNT @ Pl

Vigure 5.8: SEARCH flowchart. |

Plzpi+g
HOR THBR +1
CNT - CNT-1

FOF HOR

PUSh
@IHOR+E}

| Crag s ems

R

FUSH FLAS
RESTORE IR

RETJIN

94 THIEADEIY INTLRIUE LY FANGUAGT

5.3.5. NUMBER R

The NUMBER routine is a headerless primitive called by INUMBER to con-
vert tokens to binary numbers, It is the single most complex routine in the
design. On entrance there is a token, in extended header form at the free dic
tionary space, a length character followed by that number of ASCII
characters. NUMBER will convert this token to a binary number if it is a valid
number and push the number and a True flag to the stack, I[f NUMBER deter-
mines that the token is not a valid number, it pushes only a False flag (zero) to
the stack.

The first character in a valid number token may be an ASCII minus sign
(hexadecimal 2D). With this exception, ail token characters are Hrst tested to
determine that they are in the set hexadecimal 30 thru 39 by subtracting hexa-
decimal 30 from the character {(remember that hexadecimal 30 is an ASCII 0
and hexadecimal 39 is an ASCII 9} and testing to see that the result is between 0
and 9. If the result is negative the character cannot be in the valid number set,
If the result is more than hexadecimal 9 but less than hexadecimal 11, it is not
in the valid character set since an ASCII A less hexadecimal 30 is 11 hexa-
decimal. If the result is more than hexadecimal 10, an additional hexadecimal 7
is subtracted which converts ASCII A B,. .F.G,... to 0A, 0B,...,0F, 10,...
hexadecimals. The procedure to this peint simply converts ASCII characters to
binary numbers. The number is then tested to verify that it is in the set {0 thru
(BASE—1)}. If all goes well the token is still in the acceptable number token
set,

The overall procedure is a sequential conversion process. The result is first
set to zero. The process then tests to see if a leading minus sign is present. A
flag is set to indicate this event. As each token character is scanned and con-
verted to a number, the results are updated as:

Result = Result * BASE 4+ Number

When all token characters have been input, the sign flag is tested. If the
original token had a leading minus sign, the two's complement of the number
is saved as the result.

The procedure is depicted in the flowchart of figure 5.9 and a Z80Q listing is
given in listing 5.5.

FU%H RESULT
FLAG =0

HimMAL]

RESULT =

CHTaCNT -1
P1=P1+1

MLIEINTT WL IrImer

NITING ¥

Figure 5.9: NUMBER flowchart.

FESULT #
BASE +HUM

REEULT =
-RESULT

RESTORE

FLaG]

96 TRIRTATIFL} INTERPRTUTIVE T ANCTIALED

NUMBER:

SKIPSAV:

NLOOP:

NUMB:

NOTNO:

ANUMB:

MLOOP:

SKPADD:

*+2
EXX
LD
LD
INC
LD
CP
LD
JR
DEC
DEC
INC
EX
LD
PUSH
FUSH
LD
sSUB
JR
CP
JR
ce
JR
suB
LD
LD
DEC
CP
JR
POP
EXX
JP
EX
EX
PUSH
PUSH
LD
INC
LD
LD
ADD
ADC
JR
ADD
DJNZ
POF
ADD

INUMBER‘S CODE ADDRESS

"~ SAVES IR _
HL,{DP} JGET POINTER TO DICTIONARY
B, {HL} ;GET LENGTH OF TOKEN {COUNT}
HL :BUMP POINTER
A {HL} ;GET FIRST CHARACTER
2D AS IT A MINUS SIGN ?
A0 ;SET SIGN FLAG TO FALSE
NZ,SKIPSAV;IF POSITIVE, SKIP TO FLAG SAVE
A ‘MAKE SIGN FLAG TRUE
B ;DECREASE COUNT BY 1
HL ;BUMP PAST MINUS SIGN
AFAF :SAVE SIGN FLAG IN AF’
DE,0 ;ZERO DE REG PAIR
DE ;SAVE AS FLAG
DE ;SAVE AS RESULT
A, {HL} ;GET NEXT CHARACTER
30 ;SUBTRACT NUMBERS BIAS
C,NOTNO ;IF-CY =1, NOT A NUMBER {<0}
0A ;LESS THAN 10 {A DIGIT} ?
C,NUMB IFCY=1,IT'S ADIGIT
11 :IF A UC LETTER, IT'S OVER 17
C,NOTNO ELSE IT'S NOT A NUMBER
7 :SUBTRACT ADDITIONAL LETTERS BIAS
E.A ‘SAVE BINARY NUMBER IN E REG
A,{BASE} ;GET SYSTEM NUMBER BASE
A 'VALID SET IS {0,BASE -1}
E :IS THE BINARY NUMBER VALID ?
NC,ANUMB ;CHEERS, IT'S A VALID NUMBER
HL :POP RESULT, LEAVING FALSE ON

;THE STACK; RESTORE IR

{1} :RETURN TO 12 NEXT ROUTINE
[SP},HL :GET RESULT & SAVE POINTER
DE,HL ;RESULT TO DE AS MULTIPLICAND
BC ‘SAVE COUNT
HL :SAVE NEW BINARY NUMBER
BC,0800 :GET MULTIPLY COUNT
A ;RESTORE BASE IN A REG {MULTIPLIER}
LC :ZERQ HL AS THE PRODUCT AREA
H,C
HL,HL ;SHIFT PRODUCT AND MULTIPLIER
A :LEFT 1 BIT
NC,SKPADD ;IF CY =0,5KIP ADD
HL,DE :ELSE ADD MULTIPLICAND
MLOOP :LOOP TO COMPLETE MULTIPLY
DE :GET BINARY NUMBER BACK
HL,DE ;RESULT =PRODUCT +NUMBER

TWTTTINT S BROTTTING e ROHITING Y oF

POP BC ;RESTORE COUNT

EX (SP}L,HL ;GET POINTER & SAVE RESULT

INC HL :BUMP THE POINTER

DJNZ NLOOP :LOOP FOR ALL CHARACTERS

POP DE :GET FINAL RESULT

POP HL :THE FALSE FLAG {A ZERO}

EX AFAF :GET SIGN FLAG FROM AF’

AND A J1S IT ZERO 7 {ALSO CY =0}

JR ZDONE ;SKIP COMPLEMENT IF POSITIVE

SBC HL,DE ;COMPLEMENT RESULT

EX DEHL ;FINAL FINAL RESULT TO DE
BONE: PUSH DE ;FINAL RESULT TO THE STACK

SCF :MAKE AF TRUE {#0)}

PUSH AF :PUSH TRUE FLAG

EXX :RESTORE IR

JP {1y} :RETURN TO |2 NEXT ROUTINE

Viatluy 5.5: NUMBER: 280 primitive,

w46 QUESTION

The QUESTION keyword is a non-structured primitive. It has a single en-
hance but may return to the inner interpreter or may exit to
41 ART/RESTART via $PATCH. The first character in the token at the free
iictionary space determines which action will occur. If the high-order bit of
thin character is set, the token is a terminator. This implies that all operator re-
\juested actions are complete and the line buffer is empty. In this event the ad-
ress of the MBOK message is pushed to the stack and the routine exits to
NUXT. The outer interpreter will then jump intc TYPE to display this message.

If the token is not a terminator, it must be an unknown token since it could
not be found in the dictionary or converted to a valid number, In this event, a
tarriage return-line feed is issued to the display and the anknown teken is echo
thaplayed to the operator. The address of the l? message is then loaded to the
WA register and the routine exits to $PATCH. The $PATCH routine will
jratch the system if the unknown token was discovered while the compile mode
was in effect.

A listing of the Z80 assembly code for this routine is given in listing 5.6. In
this listing, note that the primitive TYPE is called as an in-line subroutine by
thanging the IY register to force a return to QUESTION.

;QUESTION'S CODE ADDRESS
;GET POINTER TC DICTIONARY
JSTEP OVER TOKEN LENGTH

QUESTION: * +2
LD HL,{DP}
INC HL

0 THRFADIFI? INTURIRITTTVE E AN TIATS

BIT 7, {HL} JF BIT SET, A TERMINATOR

JR Z,ERROR ;IF NOT SET, AN ERROR

LD DE,OK ;PUT OK MESSAGE ADDRESS IN WA

FPUSH DE ;SAVE OK MESSAGE

JP {1y} {RETURN TO 12 NEXT ROUTINE
ERROR: CALL $CRLF

DEC HL ;BACK-UP TO TOKEN LENGTH
JP $TYPE ;GO ECHO UNKNOWN TOKEN
RETURN: LD DE,MSG? ;7 MESSAGE ADDRESS TO WA
JP $PATCH ;GO PATCH SYSTEM BEFORE RESTARY

Listing 5.6: QUESTION: Z80 primitive.

5.3.7 *STACK

The *STACK routine is a primitive without a header. Like QUESTION,
*STACK is a nonstructured routine in that it has a single entrance but a dual
exit. *STACK tests for stack underflow, If an underflow condition does not
exist, a normal exit to NEXT occurs, If underflow is detected, the stack pointer
is reset to point to the correct top of stack address, the stack error message ad-
dress is loaded to the WA register and a jump to $PATCH is executed, This
will patch the system and reinitialize the system before displaying the stack er-
ror message and reverting to the input submode, A Z80 assembly code listing
for this routine is given in listing 5.7,

*STACK: *+2 ;*STACK’S CODE ADDRESS
LD HL,STACK ;GET TOP OF STACK ADDRESS
AND A ;RESET THE CARRY FLAG

SBC HL,SP ;SUBTRACT CURRENT SP

JR NC,0K JIF CY =0, NO UNDERFLOW
ADD HL,SP ;ELSE RESTORE TOP ADDRESS
LD SP,HL ;AND RESET STACK POINTER

LD DE.STKMSG ;STACK ERROR MESSAGE ADDRESS TO W

JP $PATCH ;GO PATCH SYSTEM BEFORE RESTART
OK: JP {1y} ;RETURN TO I? IF NO UNDERFLOW

Listing 5.7: *STACK: Z80 primitive.

5.3.8 $PATCH

The routine $PATCH is a machine language routine that is used to patch
system variables in the event a system-detected error occurs during the com-

:ISSUE CR —LF BEFORE UNKNOWN TOK|
LD IY,RETURN ;SET IY TO RETURN TO THIS ROUTINE |

RETTING 0 IRORHETRE Y KB LANT Y vy

pihe e, Any system detected ervor thal could ogcur during the compile
aunle should enter START/RESTART via $PATCH. System-detected errors
Hil gan occur only in the cexecute mode may jump unconditionally to
"IARI/RESTART.

JHATCH resets the dictionary pointer DP and the CURRENT vocabulary
linl Lo the values that existed prior to the start of the aborted compile mode
dutipition, [F the MODE of the system is the compile mode on entry, $PATCH
1wbs DD Lo the address that is the header address of the latest keyword in the
t HIRRENT vocabulary. The link address in this header is then stored as the
piriilpr to the latest entry in the CURRENT vocabulary, This delinks the par-
ttly entered keyword from the system and re-establishes the dictionary free
sy do its previous value. A Z80 assembly code listing for this routine is
piven as listing 5.8.

$PATCH: LD A,{MODE} ;GET MODE VARIABLE

AND A ;1S 1T ZERO {EXECUTE} ?
JP Z,ABORT ;IF SO, GO TO RESTART
PUSH DE ;ELSE SAVE MESSAGE ADDRESS

LD HL,{CURRENT} GET VOCABULARY ADDRESS
LD E.{HL} ;IT POINTS TO THE LATEST
INC HL ;ENTRY WHICH WAS ABORTED

LD D, {HL} ;THIS IS WHERE DP SHOULD

EX DEHL ;POINT

LD {DPLHL :RESTORE DP

LD A5 ;BUMP POINTER TO THE

ADD AL :LINK ADDRESS OF THE ABORTED
b LA :KEYWORD BY ADDING 5

JR NC, SKIP H

INC H ;

SKIP: LD AL{HL} ;MOVE LINK ADDRESS TO THE
LD {DE}LA :CURRENT VOCABULARY AS
DEC HL ;THE POINTER TO ITS
DEC DE ;LATEST ENTRY
LD A, {HL} ;

LD {DE}LA ;
POP DE :RESTORE MESSAGE ADDRESS
JP ABORT ;AND EXIT TO RESTART

I Isling 5.8: $PATCH code.

5.4 Doing It

Given the design, the actual coding can begin. There are as many ways to
program a TIL as there are computer/software combinations. My favorite

100 THHEEALN 1IN FRPRE TV TANGTTALGED

way involves hand-assembling and machine-coding the language until the self-
generating phase is reached, but there are other methods. Almost ali coding
methods involve keeping track of the header addresses and word addresses of
the individual keywords as well as their vocabulary linkage. One assembly
listing of the entire TIL can be generated. This will keep track of all the ad
dresses using a symbol table.

One neat trick for testing a TIL involves a register trapping scheme. My
systems always support a trap routine that will display all registers and several
levels of the stack. Defining a primitive that calls this trap routine results in an
easy way to debug the TIL. I almost always start the TIL code by coding the
system variables and their access routines: the start/restart routine, the inner
interpreter, the system messages, and the TYPE keyword. The outer inter-
preter is initially defined as just the TYPE word address followed by the trap
primitive word address. Within half an hour of starting the actual code genera-
tion, the system is happily saying:

HELLO, I'M A TIL

followed by the trap register and stack display. The registers, the stack, and
the initialization of the systems variables can then be verified.

As each new keyword in the outer interpreter is coded, its word address is
added to the outer interpreter threaded list and the trap routine is moved to the
next following location {or the next relative jump location). When the first
secondary is called, it is first defined as just the trap primitive. The build and
test then follows down this secondary. As each new keyword is added, the
build and test extends, until a return to the outer interpreter occurs.

A gentle build process allows a fairly thorough testing of the routines as they
are added. A top-down testing approach has as many advantages as the top-
down design approach.

5.5 Arithmetic Subroutines

Most microcomputers are noted for their lack of arithmetic machine-code
instructions. Almost all have 8-bit addition and subtraction instructions; some
even have 16-bit addition and subtraction instructions, but few have multiply
and divide instructions. The multiply and divide keywords of Section 4.3.4
must be implemented using algorithms, based on the addition and subtraction
instructions. The keywords selected for inclusion in the TIL are based partially
on constraints arising from the need to emulate multiplication and division.

Multiplication of unsigned integers is fairly easy to emulate on most
microcomputers, Division is usually more difficult and slower. The multiply-
and divide-based keywords depend somewhat on how easy it is to define
reasonably efficient algorithms. Execution speed is the primary design goal,

BUHTEIE S WM BN Y 1ol

Ll riemory utilization cannot be neglected, Depending on the instruction set
avmlable to the designer, a subroutine approach Is usually most efficient.

Lo emulate signed multiply and divide keywords, there are four steps (or
sutnoutines) that can be isolated. The input numbers from the stack are first
»onveried to positive integers after having computed and saved the sign of the
sranlt The multiply or divide of the positive integers is then done resulting in a
pemlive integer. The sign of the result is changed if the sign of the result com-
puicil during the input step calls for a negative result. Finally, the results are
timalled and returned to the stack. The subroutines associated with these
Hrue ateps need to be identified and designed.,

lable 5.2 lists the keywords of interest and associates each keyword with
1w appropriate root unsigned multiply and/or divide algorithm(s). The root
wiurithms are subroutined as follows:

%114 An 8 by 8 bit multiply with a 16-bit product.

si)* A 16 by 8 bit multiply with a 24-bit product,

§11h¢ - A 16 by 8 bit divide with a 8-bit quotient and 8-bit remainder.
SLH)/ — A 24 by 8 bit divide with a 16-bit quotient and 8-bit remainder,

Hede subroutines expect positive input integers in pre-defined registers (or
iemory locations) and return result in pre-defined locations.

INPUT KEYWORD OUTPUT SUBROUTINE
N1{B}*NO(8) s* NO{16) sug*
N1116)*NO(8) * NO{16) s$uD*
N1116)*NO(8) D* NO{8),,N1{16},$UD*
N1(16)/NC(8) MOD NO(8),,N1(B), $US/
N1{18}/NO(8) / NO(8}, $US/
N1{16)/NQ(8) MODU/ NO(8}, . N1(8), $US/
N1{16}NO(8} MOD NG(8), §US/
N2¢18},N1{8)./NO(8} D/MOD NO(8), N1{18) $UD*
N2(16)*N1{8}/NOI(8} */ NO{16), $UD*, $UD/

N2(16)*N$(8}/NO(8} */MOD NO{8),,N1{18},$UD*,$UD/

table 5.2: Multiply and divide operations.

All of the keywords, except D/MOD, “*/" and */MOD, expect two stack
fumbers on entry. Even in the case of an expected 8-bit number, the inputs are
wn the stack as 16-bit signed numbers. Except for the three keywords noted, a
«ommon routine can be defined to compute and save the sign of the result and
convert any negative input integer to positive. The products or quotients
relurned are always pushed to the stack as signed 16-bit numbers except for the
results of D*. Note that remainders are always positive. A common routine
can be used to correct the results if they are negative for all of the keywords ex-
cept D*. Two subroutines can then be defined as:

102 [/ AR INTIRPAT TIVE TANCT AL

SISIGN — The signs of the input numbers are exclusive OR'ed and the result i
saved as the result sign bit. Both input members are converted to positlve in
tegers as required.

$OSIGN — Retrieves the result sign bit and two’s complements the result il
the bit is 1 set.

1t should be realized that $ISIGN also expects the input numbers in a known
location and not on the stack, otherwise the input numbers are below the
subroutine return which is pushed to the stack when $ISIGN is called.

These six subroutines are then used to implement the ten keywords
associated with the multiply and divide keywords. The decision to us¢
subroutines results in slower keywords than if in-line code routines had been
defined, However, subroutines are very memory-efficient and the speed
penalty is slight. The definition of the root algorithms as subroutines also
allows them to be used to define other keywords. For example, a 16 by 16-blt
multiply that returns a 32-bit product can be easily designed based on two calls
to $UD*. In point of fact this results in the fastest 16 by 16-bit multiply for the
Z80.

Exactly how you define your number crunching routines depends on your
application. The extremes run the gamut from a secondary definition to
multiply by successive addition (using add and loop primitives) to a straight
non-looping algorithm in machine code with in-line sign fielding. Number
crunching may not even be required for some applications and may be omitted
entirely. The subroutined approach given here along with fast looping root
algorithms is a compromise that achieves fair execution efficiency along with
reasonable memory needs.

WOIE WORES ANE MOKL WORLF O 19)

6 | Words, Words, and
More Words

If you think that I'm merely going to bandy words with
witit el re right. Ignore walruses and other figments of
inttinatical minds; the time is here and now, After all,

AUBAGES and KINGS are both viable TIL keyword
ey

h | The Word

liollowing a few, brief introductory remarks, here are page upon page of
koyword descriptions, With any sort of luck at all, they will be arranged in
ASCI alphabetic order. The composite collection is not quite a language
upecification nor is it really intended to be. The code descriptions are Z80
specific in many cases, which limits their universal applicability. Most of the
tleseriptions are simple enough to allow recoding for an alternate central pro-
veising unit.

The general format of the descriptions is as follows:

Name — My arbitrary name for the keyword which may be changed to your
lavorite flavor.

('lass — A vague attempt to classify the keywords into groups of like usage.
l'unction — A description of what the keyword is to accomplish,

Usage — Given you have got it, why you want it.

/780 Code — A semi Z80 assembly language description of the code body of
primitives, including explanatory comments. These listings do not include the
lieader or the code address, but include the return address if and only if a label
precedes the return.

Code — A list of the primitive and secondary keywords that constitute the
vode body of a secondary, They include relative jump bytes in hexadecimal.
Sans headers, COLON addresses and SEMI addresses,

Bytes — The total byte count for the keyword including the header, the code
address and the return address where applicable. Specific to the Z80 for Z80

1A THIRCATNT INTTRIPETIVE | ANELAGT T

code listings but generally indicative of keyword slzes.
Notes — A list of the funnies and restrictions associated with some keywords,
Formal Definition — The formal definition of the secondary keyworda glven

that the entire language existed, These keywords cannot usually be defined by

the formal definition. For example, the formal definition of “:” presumes Lhe

existence of *;”,

On with the show.

!

Clasgs: Memory Reference
Function: Stores second stack entry at the address at the top stack en-
try, removing both entries.

Input/Output: Two stack entries/None
Usage: Storage of word length data in programmable memory.
Z80 Code: POP HL ;GET ADDRESS
POP DE :GET DATA
LD {HL},E ;STORE BYTE
INC HL ;BUMP ADDRESS
LD {HL},D;STORE BYTE
BYTES: 15
#
Class; 1/0
Function: Pops the top stack entry, computes the quotient and re-
mainder relative to the system number base, converts the
remainder to an ASCII character (0 thru 9, A thru Z),
pushes the character, then pushes the quotient.
Input/Qutput: One stack entry/Two stack entries.

Usage: Does one conversion in the process of generating format-
ted display outputs,
Code: 0 ;24 BIT NUMBER EXTENSION
BASE :NUMBER BASE ADDRESS
C@ ;NUMBER BASE
D/MOD ;REMAINDER THEN QUOTIENT
ASCII /REMAINDER TO ASCII CHARACTER
SWAP ;REMAINDER TO NUMBER STRING
BYTES: 22

Formal Definition:
:l#MOABASENC@ ED/ MODBASCI BSWAPHE,

¥ Inws;
i Hon:

Tigrat/ Qutput:

Huage:
S Code:

HYTES:
Noles:

Class:
Function:

Iaput/Output:

Usage:
Code:

Bytes:
Notes:

Formal Definition:

WORTES WORDM ANDY MURE WORES (0%

§=

o

Pops the the sign byte left on the return stack by <4,
discards it and then displays the string on the stack using
the DISPLAY format convention.

One return stack entry and a variable length stack

string/None,
Display formatted strings built onto the stack,
INC IX ;DROP RETURN

JP SDISPLAY ;GO ECHO STRING
13
This routine jumps to the code body of DISPLAY and thus
has no return address,

#5

1/0

Converts the top stack entry to a sequence of ASCII
characters equivalent to the entry given the current system
number base. Sequentially pushes the number characters
with the most significant character to the top stack entry.
One stack entry/One to sixteen stack entries,

Converting numbers to a display string.

;CONVERT 1 CHARACTER
DUP ;DUP QUOTIENT
0= ;IS IT ZERO?

*END F8 ;IF NOT LOOP

DROP ;DROP 0 QUOTIENT

21

Always does at least one conversion producing an ASCII 0
if the top entry was 0.

:H#SEBEGINM#EDUPE0=NEND BDROPE;

Class:

Function:

$CRLF

Subroutine

Issue a carriage return-line feed sequence to the display to
scroll the display if required, clear the next display line and
leave the cursor at the left end of the blank line.

I THRFAITY INTTRTRITIVG T ARNGTIALES

Input/Output;

Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Cutput:

Usage:
Code:
Notes:

Class;

Function:

Input/Output:

Usage:
Z80 Code:

None/None,
Formatting the display.
LD A, 0D ;GET A CR
CALL $ECHO ISSUEIT
LD AL0A ;GET A LF
CALL S$ECHO ISSUEIT
RET :RETURN
11
SECHO
Subroutine
Interfaces the system to the display
None/None,

Available only to the system.

Not applicable.

Usually called via a transfer vector. SECHO must interface
to existing system software or may be specifically written
to field the display function for the TIL.

$ISIGN

Subroutine
Computes and saves the sign of an arithmetic result and
converts negative integers to positive integers.
None/None.
Available only to the system. See Section 5.5.
$ISIGN: LD AD ;SIGN OF 18T
XOR B :XOR SIGN OF 2ND
EX AF,AF ;RESULT SIGN TO AF
LD AD ;SIGN OF 15T
AND A ;TEST SIGN, CY =0
JP P, TST2 IF +,IT'S OK
LD HL,0 ;ELSE GET ZERO
SBC HLDE ;MAKE 15T POSITIVE
EX DEHL ;RESTORE 15T
TST2: LD H,B :MOVE 2ND HIGH BYTE

LD LC ;MQOVE 2ND LOW BYTE
LD AB :SIGN OF 2ND

AND A ;TEST SIGN, CY=0
RET P JdF +, RETURN

LD HL.0 ;ELSE GET ZERO

SBC HL,BC ;MAKE 2ND POSITIVE
RET ;RETURN

Hyten,
Meides;

t lays:
lunctlon:

Inpul/Qutput:

Vinage:
1 ide:
Nutes:

{ lnss:
function:

taput/Output:

Linage:
280 Code:

Bytes:
Notes:

C'lass:
unction:

Input/Qutput:

Usage:

WUILF D WD AN MR WORT M

23
Numbers in DE and BC on entrance and DE and HL on ex-
it. Result sign in AF on exit.

SKEY
Subroutine
Interfaces the keyboard to the system.
None/None,

Available only to the system.

Not applicable.

Usually called via a transfer vector. $KEY must interface to
existing system software or may be specifically written to
field keyboard data for the TIL,

$OSIGN

Subroutine

Negates a positive integer arithmetic result if the result sign
bit is 1 set.

None/None.

Available only to the system. See Section 5.5,

$OSIGN: EX AF,AF ,;RETRIEVE SIGN FLAGS

RET P ;IF +, SIGN 1S OK

EX DEHL ;ELSE, RESULT TO DE
LD HL,0 ;ZERO HL

SBC HLDE ;MINUS RESULT TO HL
RET ;RETURN

9
Result in HL on entrance and exit. Result sign bit in AF on
entrance,

$UD*

Subroutine

Multiplies a 16-bit unsigned integer by an 8-bit unsigned
integer and returns a 24-bit product.

None/None.

Available only to the system. See Section 5.5.

108 THIKIADFL INTLRPIE EIY] T ANGLAGT Y

780 Code:

Bytes:
Notes:

Class:
Function:

Input/Qutput:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function;

sUD*: LD Al sMULTIPLICAND TO A

LD BC, 0800 ;COUNT =8, DUMMY =0
LD H.C :ZERO HIGH RESULT
LD L,C ;ZERO LOW RESULT
D*LOOP: ADD HLHL ;SHIFT RESULT AND
ADC A ;MULTIPLICAND LEFT |
R NC,SKADD ;IF CY=0, SKIP ADD
ADD HL,DE :ADD MULTIPLIER
ADC C ;PROPOGATE CARRY
SKADD: DJNZ D'LOOP ;LOOP 8 TIMES
LD CA ;+ HIGH 8 BITSIN C
RET ;LOW 16 IN HL

16

On entrance, L contains an 8-bit multiplicand and DE con-
tains a 16-bit multiplier. On exit BC contains the most
significant 8 bits and HL the 16 least significant bits. No
test is made to verify a valid 8-bit number in L on entrance,

sus*

Subroutine
Multiplies an 8-bit unsigned integer by an 8-bit unsigned
integer and returns a 16-bit product.

None/None,

Available only to the system. See Section 5.5.

$US: LD H,L ;MULTIPLICAND TO H
LD L0 ;ZERO RESULT LOW
LD DL :MULTIPLIER HIGH =0
LD B.8

S$*LOOP: ADD HLHL ;SHIFT RESULT AND XC
IR NC,SKPAD ;IF CY=0, SKIP ADD

ADD HL,DE ;ADD MULTIPLIER
SKPAD: DJNZ S*LOOP ;LOCP 8 TIMES
RET ;RESULT IN HL

13

On entrance, L and E contain 8-bit unsigned integers and H
and [} are presumed 0 (assumes valid 8-bit numbers). On
exit, HL contains the 16-bit product.

$UD/

Subroutine
Divides a positive 24-bit integer by a positive §-bit integer
and returns a positive 8-bit remainder and 16-bit quotient.

:SET MULTIPLY COUNT

buputé Quiput:

Hange
/80 € ode:

liyLes:
Nutes:

{ basn:
Function:

Input/Qutput:

Llsage:
280 Code:

Bytes:
Notes:

WO WO AT BMORE WOy e

None/None.
Available oniy to the system. Sce Sectlon 5.5.
SUD/: 1. B,10 :DIVIDE COUNT =16

D/LOOP: ADD HL,HL ;SHIFT LOW 16
LD AD ;GET HIGH 8
ADC AD ;5HIFT HIGH 8
LD DA :RESTORE HIGH
SUB E ;SUBTRACT DIVISOR
P M,SKIF ;TOO MUCH, 1T'S OK
INC L ;SET RESULT LOW BIT=1
LD D.A ;DECREASE DIVIDEND
SKIP: DINZ D/LOOP :LOOP 16 TIMES
LD C.D ;REMAINDER TO C
RET ;QUOTIENT IN HL

16

On entrance, D, HL contains a 24-bit positive dividend and
E contains an 8-bit positive divisor. On exit, C contains an
8-bit remainder and HL contains a 16-bit quotient. No test
is made to verify a correct 16-bit quotient.

$uUs/

Subroutine

Divides a positive 16-bit dividend by a positive 8-bit
divisor and returns a positive 8-bit remainder and 8-bit
quotient.

None/None.

Available only to the system. See Section 5.5.

SUS/: LD B,8 DIVIDE COUNT =8
S/LOOP: ADD HL,HL ;SHIFT DIVIDEND

LD AH ;GET HIGH BYTE

SUB E ;SUBTRACT DIVISOR

JP M,SKP ;TOO MUCH, IT'S OK

INC L ;SET RESULT LOW BIT=1

LD H.A ;DECREASE DIVIDEND
SKP: DINZ S/LOOP ;LOOP 8 TIMES

LD CH ;REMAINDER IN C

LD HB ;RESULT HIGH=0

RET ;RESULT IN HL

15

On entrance, HL contains a positive 16-bit dividend and E
contains a positive 8-bit divisor. On exit, C contains an
8-bit remainder and L contains an 8-bit quotient. No test is
made to verify a correct 8-bit quotient.

119 THRCATTD INTURPRFTIVE 1 ANGUAE

Class;

Function:

Input/Output:
Usage:
Code:

Bytes:

Formal Definition:

! {tick)

System '

Scans the token following the ' {tick) in the input buf{er
and searches the CURRENT and CONTEXT vocabularies
for the keyword corresponding to the token. Returns the
word address of the keyword as the top stack entry if it is
located. If not found, the token is echoed Lo the operator
and followed by a “1".

None/One stack entry or none.

Operator location of keywords.

ASPACE ;GET THE SEPARATOR

TOKEN ;SCAN THE NEXT TOKEN
CONTEXT ;CONTEXT ADDRESS

@ :CONTAINS VOCABULARY ADDRESS
@ :CONTAINS THE LATEST ENTRY
SEARCH ;SEARCH THE VOCABULARY

*IF 0A ;IF FALSE, FOUND; OTHERWISE
ENTRY ;GET LATEST CURRENT
SEARCH ;SEARCH CURRENT

*IF 03 ;IF FALSE, FOUND; OTHERWISE
QUESTION ;ECHO TOKEN AND ?

SEMI ;WA ON THE STACK

34

:l'EASPACERTOKENECONTEXTEH @ @@ BSEARCHEIFEMENTRYE
SEARCHBIFMQUESTIONETHEN BTHENE;

Class:
Function:

Input/QOutput:
Usage:
ZB0 Code:

Bytes:
Notes:

*{asterisk)

Arithmetic

Does a signed multiply of the second stack word by the
low-order byte of the top stack entry and replaces both en-
tries by the 16-bit (word) product.

Two stack entries/One stack entry,

Signed integer arithmetic.

EXX ;SAVE IR

POP BC ;GET EIRST

POP DE ;GET SECOND
CALL $ISIGN ;FIELD INPUT SIGNS
CALL SUD* ;MULTILY 16X8
CALL $OSIGN ;JUSTIFY RESULT
PUSH HL ;RESULT TO STACK
EXX ;RESTORE IR

24
Does not test the top stack entry to insure it is a valid 8-bit
number. No test is made to insure a valid 16-bit product.

t lags:
Tuin tlon:

lnput/Qutput:

Hunget
740 Code:

Hytes:

{ lass:
Finctlon:

[nput/Queput:

Usage:
780 Code:

Hytes:
Notes:

C'lass:
l'unction:

Input/Qutput:
Usage:

WOl WIOKErs AN MOKE Wi e 1
i

Literal Handler (Headerless)

Pushes to the stack the word whose address is in the in-
struction register and increments the instruction register
twice {past the word literal).

None/One stack entry.

Available only to the system.

LD A{BC} ;GET BYTE AT IR

LD EA ;MOVE IT TO DE
INC BC ;BUMP IR

LD A, {BC} ;GET BYTE AT IR

LD DA ;MOVE IT TO DE
INC BC ;BUMP IR

PUSH DE ;PUSH WORD AT DE

11
*+LOOP

Program Control Directive {Headerless)

Gets the return stack pointer, pops the index byte from the
stack, and then transfers to the *LOOP code to mechanize
a non-unity indexed loop.

One stack entry/None,

Available only to the system.

PUSH IX ;GET RETURN STACK
POP HL ;TO THE REGISTERS
POP DE ;GET INC BYTE

LD AE ;TO THE A REGISTER
P SLOOP ;JUMP TO *LOOP CODE

10
*+LOOP has a code address but not a return address.
Increments must be in the set —128=1=127.

*

Arithmetic

Does a signed multiply of the third stack word by the low-
order byte of the second stack word and a signed divide of
the 24-bit product by the low-order byte of the top stack
entry. Replaces the three entries with the 16-bit quotient.
Three stack entries/One stack entry.

Signed integer arithmetic,

LL2 THIREATII D INSRRERL LIV §ANGLLAGE

Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Qutput:

Z80 Code:

Bytes:
Notes;

LD IY,RETTO ;CHANGE NEXT RETURN 3

P $*/MOD ;DO */MOD CODE
RETTO: POP HL :DROP REMAINDIIR
LD I, NEXT :SET NEXT RETURN

22

This illustrates a sneaky way to use a primitive os &
subroutine, The */MOD code is executed as normal bui
the JP {IY} return jumps back to the */ code rather than
NEXT. This code then restores the normal return to NEXT,

*/MOD

Arithmetic

Does a signed multiply of the third stack word by the low-
order byte of the second stack entry and a signed divide ol
the 24-bit product by the low-order byte of the top stack
entry. Replaces the three entries with the 16-bit quotient au
the second and the 8-bit residual as the top stack entry.
Three stack entries/Two stack entries,

$*/MOD: POP HL ;DIVISOR TO L

EXX ;SAVE IR AND DIVISOR

POP BC :MULTIPLICAND {8}

POP DE :MULTIPLIER {16}

CALL S$ISIGN ;FIELD * SIGN

CALL $UD* :DQ 16X8 MULTIPLY

EXX :GET DIVISOR AND IR

EX AFAF ;GET / SIGN FLAG

XOR L :XOR IN DIVISOR SIGN

EX AFAF :SAVE RESULT SIGN

LD AL :GET DIVISOR

EXX ;SAVE IR AGAIN

AND A ;TEST DIVISOR SIGN

JP. PSKIPN IF +, IT'S OK

NEG :MAKE DIVISOR + ;
SKIPN: LD D.C ;MOVE HIGH 8 BITS OF 34 §

ID EA ;MOVE DIVISOR

CALL $UD/ ;DO 24X8 DIVIDE

CALL $OSIGN ;JUSTIFY RESULT

PUSH HL ;QUOTIENT TO STACK

PUSH BC ;REMAINDER TO STACK

EXX :RESTORE IR

43
The $*/MOD entrance is used by */. No tests are per-
formed to insure valid number lengths.

(@Y
Functlon;

laput/Output:
Haagn
280 Code:

liytes:

Class:
L yinction:

Input/Output:

Uhage:
480 Code:

Bytes:
Notes:

Class:
lunction:

FYEICITS WO AN VIETT WWEIETIN 1Y

Literal Handler (Headerless)

Pushes to the stack the byte whose address is in the instruc-
tion register and increments the instruction register once
(past the literal).

None/One stack entry.

Available only to the system.

LD A{BC} :GET BYTE AT IR

LD EA :MOVE IT TO DE

INC BC :BUMP IR

RLA :SIGN TO CY

SBC AA :FF IF NEG ELSE 00

LD DA ;SET SIGN EXTENSION

PUSH DE ;PUSH 16-BIT WORD
10

*C+LOOP

Program Control Directive (Headerless)

Pops the top stack entry and increments the top return
stack byte by the low-order byte from the stack. Control is
then transferred to the *CLOOP code to mechanize a non-
unity byte indexed loop.

One stack entry and one return stack byte/One return
stack byte,

Available only to the system.

PUSH IX ;GET RETURN STACK
POP HL ;POINTER

POP DE ;GET INC BYTE

LD A{HL} ;GET LOOP COUNT

ADD E ;ADD INCREMENT

LD {HL}A :RESTORE LOOP COUNT
) $CLOCP ;JUMP TO *CLOOP CODE

12

*C+LOOP has a code address but not a return address.
Increments must be in the set —128<1=<127,

*CDO

Program Control Directive {Headerless)
Moves the low-order byte of the top stack entry (the loop
start index) and the low-order byte of the second stack en-

4 THRFATICT? INTVRIUTUFT IV T ANGIIATTY

Input/Qutput:

Usage:
Z80 Code:

Bytes;

Class:

Function:

Input/Output:

Usage:
280 Code:

Bytes:

Class:
Function:

Input/QOutput:

try (the loop termination argument) to the return stack
with the start index as the top return stack entry and the
terminator as the second entry. This initializes the byte in-
dexed loop.
Two stack entries/Two return stack byte entries.
Available only to the system,
POP HL ;GET START INDEX
LD {IX-2},L ;TO RETURN TOP
POP HL ;GET TERMINATOR
LD {IX—1},L ;TO RETURN SECONI)

DEC IX ;RESET RETURN
DEC IX ;STACK POINTER
16
*CLEAVE

Program Control Directive (Headerless)
Replaces the top return stack byte {the byte loop index)
with the second return stack byte (the terminating argu-
ment) to force loop exit on the next byte loop test,
Two return stack bytes/Two return stack bytes,
Availabe only to the system.
LD A{IX+1} ;GET TERMINATOR
LD {IX+0},A ;TO INDEX
10

*CLOOP

Program Control Directive {Headerless)

Increments the top return stack byte by 1 and compares it
to the second return stack byte entry, If the second byte is
larger than the first, a jump to the *WHILE code occurs to
implement a relative backwards jump. Otherwise the top
two return stack entries are dropped and the instruction
register is incremented by 1 to step past the relative jump
byte. Controls byte loop termination.

Two return stack bytes/Two return stack bytes except on
completion.

1lninpe:
IH) Code:

Wyles:
Nutes:

¢ lnss:
Lunctlon:

fnput/Output:

Llvnge:
£80 Code:

Dytes:

Class;
Function:

Input/Output:

Usage:

VYETRTIN VWUIRETY AMET AILISE VWEIE S 1

Avallable only to the system,

PUSH IX ;GET RETURN

POP HL ;STACK POINTER

INC {HL} ;INCREMENT INDEX
$CLOOP: LD A (HL} ;GET INDEX

INC HL ;POINT TO TERMINATOR

SUB {HL} ;INDEX — TERMINATOR

P C $WHILE ;IF CY=1, JUMP BACK

INC IX ;ELSE DROP INDEX

INC IX ;AND TERMINATOR

INC BC ;INCREMENT IR

19
*C 4+ LOOP uses the $CLOOP entrance,

*DO

Program Control Directive (Headerless)

Moves the top stack entry word (the loop start index) and
the second stack entry word (the loop terminating argu-
ment} to the return stack with the start index as the top
return stack entry and the terminator as the second entry.
This initializes a word indexed loop.

Two stack entries/Two return stack word entries.
Available only to the system.

POP HL ;GET START INDEX

LD {IX—4},L ;MOVE TO THE RETURN

LD {IX—3},H ;STACK AS TOP ENTRY
POP HL ;GET TERMINATOR

LD {IX-2}L ;MOVE TO THE RETURN

LD {IX—1},H STACK AS 2ND ENTRY

LD DE, —4 ;RESET RETURN
ADD IX, DE ;STACK POINTER
23
*ELSE

Program Control Directive (Headerless)

Increments the instruction register by the value whose ad-
dress is in the instruction register to effect a relative for-
ward jump,

None/None.

Available only to the system.

Lo TTIALATH T IMTFRITUTIVG T ANGUAGLTS

Z80 Code:

Bytes:
Nates:

Class:
Function:

Input/QOutput:

Usage:
Z30 Code:

Bytes:
Notes:

Class:
Function;

Input/QOutput:

Usage:
Z80 Code:

Bytes:
Notes:

$ELSE: LD A{BCY sGET JUMP BYTE

ADD C ADDIT TO IR
LD CA ;RESET IR
JR NC,OUT ;PAST PAGE?
INC B ;YES

OuUT: P {1y} ;RETURN

10
The $ELSE entrance is used by *IF.

*END

Program Control Directive {Headerless)

If the top stack entry is 0, the instruction register is in-
cremented by the value whose address is in the instruction
register to implement a relative backwards jump. Other-
wise the instruction register is incremented by 1 to step
past the relative jump byte,

Cne stack entry/None.

Available only to the system.

POP HL ;GET THE FLAG
LD AL ;ARE ALL BITS 0
OR H ;OR FALSE

P ZS5WHILE ;IF 0, JUMP

INC BC ;ELSE BUMP IR
11
The jump to $WHILE evokes the backwards jump.

*IF

Program Control Directive (Headerless)

If the top stack entry is ¢, the instruction register is in-
cremented by the value whose address is in the instruction
register to implement a relative forward jump. Otherwise
the instruction register is incremented by 1 to step past the
relative jump byte,

One stack entry/None.

Available only to the system.

POP HL ;GET THE FLAG
LD AL ;ARE ALL BITS 0
OR H ;OR FALSE

JP Z,3ELSE ;IF 0, JUMP

INC BC ;ELSE BUMP IR

11
The jump to $ELSE evokes the relative forward jump.

L ligs
Lo llon:

gl Qutput:

1wiger
280 Code:

Py Liws

¢ Ingw:
Fungtlon:

[nput/Qutput:

nnge:
280 Code:

Bytes:
Notes:

WIRTIS WOREY AND MORT WOREG 0F
*LEAVL

Program Control Directive (Headerless)
Replaces the top return stack word (the word loop index)
with the second return stack word (the terminating argu-
ment) to force loop exit on the next word loop test.
Two return stack words/Two return stack words.
Available only to the system.
LD A{IX+3} GET TERM LOW BYTE
LD {IX+1},A ;TO INDEX LOW BYTE
LD A{IX+2} GET TERM HIGH BYTE
LD {IX+0},A ;TO INDEX HIGH BYTE
16

*LOOP

Program Control Directive (Headerless)

Increments the top return stack word by 1 and compares it
to the second return stack word entry. If the second word
is [arger than the first, a jump to the S$WHILE code occurs
to implement a relative backwards jump. Otherwise the
top return stack entries are dropped and the instruction
register is incremented by 1 to step past the relative jump
byte. Controls word loop termination.

Two return stack words/Two return stack words except
on completion.

Available only to the system.

PUSH IX ;GET RETURN
POP HL ;STACK POINTER
LD ALl ;GET INCREMENT
$LOOP: ADD {HL} ;INC INDEX LOW
LD {HL}L,A ;RESTORE LOW INDEX
INC HL :BUMP TO INDEX HIGH
JR NCPAGE ;PAST PAGE?
INC {HL} ;BUMP PAGE
PAGE: LD DJ{HL} ;GET INDEX HIGH
INC HL :BUMP TO TERM LOW
SUB {HL} :INDEX-TERM {LOW}
1D AD JINDEX HIGH TO A
INC HL ;BUMP TO TERM HIGH
SBC {HL} .INDEX-TERM-CY {HIGH}

P C,$WHILE ;IF CY=1, JUMP BACK

LD DE, 4 ;ELSE DROP INDEX
ADD IX,DE ;AND TERMINATOR
INC BC ;INCREMENT IR

30
* 4 LOOP uses the SLOOP entrance.

110 VTIRUALSE 1IN URIRE LIV AN ALY

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:
Notes:

*SYS

System (Incomplete)
Used by the system to recover the addresses of system
variables.

See notes,

Available only to the system.
$SYS: LD A,{DE}

LD HL#SYS ;START OF SYS BLOCK
ADD AL ;ADD OFFSET

LD LA :VARIABLE ADDRESS 1.0
PUSH HL ;ADDRESS TO STACK
P {1Y} ;JUMP TO NEXT

9

This code is the generic code for a user block type defined
keyword without the header-creating code.

All system variables defined in the system block contain
$SYS as their code address followed by a 1-byte offset ag
their code body. The offset points to the system variable,
relative to the start of the block. A full 256-byte block is
not reserved for system variables (only 20 thru 30 bytes are
used), which is why there is no defining code. A possibility
exists for overwriting system code if this were allowed.
All system variables are predefined.

"WHILE

Program Control Directive (Headerless)

Increments the instruction register by the value whose ad-
dress is in the current instruction register to implement a
relative backwards jump.

None/None.

Available only to the system.

$WHILE: LD A {BC} ;GET JUMP BYTE

ADD A C ADDIT TQO IR
LD C.A ;RESET IR
JR C,OuT :PAST PAGE?
DEC B ;YES

QUT: P {IY} ;RETURN

10
The $WHILE entrance is used by *END, *LOQP, and
*CLOOP to execute the backward jump.

;DE=WA, @WA=0FISHT]

b lags;
Fantlon:

hiput/QOutput:

uage:
21 Code:

Hyles:

'lnss:
Function:

Input/Qutput;

1sage:
780 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:

YWIIRITT WWOIRIIT AN WILARE WL 1 TF
'l

Literal Hand!er (Feaderless)

Uses the Instruction Register (IR} as a pointer to a string
embedded in the threaded code. Extracts the string length
from the first byte pointed to by the IR and outputs that
many characters to the dispiay. Leaves the IR pointing to
the first byte past the embedded string,

None/None.

Available only to the system.
LD A{BC} ;:BC=IR, @IR=LENGTH
1D DA ;SAVE LENGTH

SLOOP: INC BC ;BUMP IR
LD A{BC} :GET AT [R
CALL S$ECHO ;ECHO CHARACTER
DEC D ;DECREMENT LENGTH
IR NZ,SLOOP ;LOOP UNTIL LENGTH=0
INC BC ;ADJUST IR

i5

+
Arithmetic

Adds the second stack entry and the top stack entry and
replaces both with the single two’s complement sum as the
top stack entry.

Two stack entries/One stack entry.

Signed arithmetic,

POP HL ;GET 1ST WORD
POP DE ;GET 2ND WORD
ADD HLDE ;ADD THEM
PUSH HL ;PUSH SUM

14
No check of carry or overflow is done,

+1

Memory Reference

Pops two stack entries and adds the word at the second en-
try to the word whose address is the top entry.

Two stack entries/None.

Incrementing and decrementing word length data stored in
programmable memory,

ZB80 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:
Usage:

Code:

Bytes:

Formal Definition;

POP ML JGET ADDRESS
CPOP DE JGET INC/DEC
LD AJ{HL} GET LOW BYTE
ADD AE ;INC/DEC LOW YT
LD {HL}L,A :STORE IT BACK
INC HL ;STEP TO HIGH BY'TH:
LD A{HL} ,GET HIGH BYTE
ADC AD ;INC/DEC HIGH BYTH
LD {HLLA ;STORE IT BACK

19
Overtlow and carry in high-byte add are ignored.

+LOOP

Compiler Directive {Immediate)

Adds the word address of the program control directive
*+LOQP to the dictionary, then computes the difference
between the current free dictionary address and the ad-
dress at the top of the stack and encloses the low-order
byte in the dictionary as the relative jump byte,

One stack entry/None.

Used to terminate a DO . . . +LOOP construct in the com-
pile made.

"# XX ;WORD ADDRESS OF * +LOOP {LITERAL}
END, ;ENCLOSE RELATIVE JUMP BYTE
16

!l +LOOP MXXMEND, H; MIMMEDIATE

Class:
Function;

Input/Qutput:

Usage:
280 Code:

Bytes:

+5P

System

Adds the current stack pointer to the number at the top of
the stack.

One stack entry/One stack entry,

Direct addressing of data on the stack.

POP HL ;GET NUMBER
ADD HL,SP ;ADD STACK POINTER
PUSH HL ;RESTORE POINTER

13

t lags
i glon:

gt FQutput:

Fiyage:
Ji) Code:

Hyles:

[B[TTH
b unctlon:

Input/QOutput:

780 Code:

liytes:
Notes:

Class:
l'unction:

Input/Qutput:

Lisage:
Z80 Code:

I}ytes:

WORTY WORTS ANT MO wori e iy

, ([comma)

System o

Pops the top stack entry word and encloses it in the free
dictionary space.

One stack entry/None.

Used to build dictionary keywords.

POP DE ;GET WORD
LD HL{DP} .GET @DP
LD {HL},E ;STORE LOW BYTE
INC HL ;BUMP @DP
LD {HL},D ;STORE HIGH BYTE
INC HL BUMP @D7P?
LD {DP},HL ;UPDATE @DP
21
— (minus)
Arithmetic

Pops the top two stack entries and two’s complement sub-
tracts the top entry from the second entry and pushes the
result,

Two stack entries/QOne stack entry.

POP DE ;GET B

POP HL ;GET A

AND A ;RESET CARRY
SBC HL,DE ;FORM A—-B
PUSH HL ;PUSH RESULT

1&6
No tests of overflow or carry are made.

—5p

System

Subtracts the current stack pointer from the number at the
top of the stack,

One stack entry/COne stack entry.

Direct addressing of stack data.

POP HL ;GET THE NUMBER

AND A ;RESET CARRY

SBC HL,SP ;SUBTRACT STACK POINTER
PUUSH HL ;PUSH POINTER

15

ST WEITY S AN MO WORTS 1)

s e e s mEATMATLS VETE=T

+ {period) £ {divide}

Class: 170

Function: Displays the top stack entry number to the operator {glven
the current number base) and foilows by a space. Destroys
the top stack entry in the process.

t lasw: Arithmetic

Lungtion: Does a signed divide of the second stack word by the low-
order byte of the top stack entry. Replaces both entries
with an B-bit quotient expanded to 16 bits.

Input/Output: One stack entry/None, It/ Qutput: Two stack entries/One stack entry.
Usage: Displaying signed numbers to the operator. Tieapge: Signed integer arithmetic.
Code: < # ;INITIALIZE CONVERSION 280 Code: EXX :SAVE IR
ABS ; TAKE THE ABSOLUTE VALUE POP DE ;GET DIVISOR {8 BITS}
#8 ;CONVERT ABSOLUTE VALUE POP BC ;GET DIVIDEND {16 BITS}
SIGN ;ADD — SIGN IF REQUIRED CALL $ISIGN ;FIELD INPUT SIGNS
#> ;DISPLAY RESULT CALL $US/ ;DIVIDE 16X8
Bytes: 20 CALL $OSIGN ;JUSTIFY RESULT
Formal Definition; PUSH HL ;QUOTIENT TO STACK
. M<#MABSHJSHSIGNE > B, EXX ;RESTORE IR
ibytes: 24
Noles: Does not test the top stack entry to insure it is a valid 8-bit

number. No test is made to insure a valid 8-bit quotient.

Class: I/0

Function: Displays the second stack number to the aperator (given
the current system number base) in a field width deter-

mined by the top stack entry. The number is right adjusted /MOD
in the field and followed by a space. The field width is the
minimum field width, C'lass: Arithmetic
Input/Output: Two stack entries/None. | unction: Does a signed divide of the second stack entry by the low-
Usage: Formatting display number output. order byte of the top stack entry. Replaces these eniries
Code: 2% ;DOUBLE CHARACTER COUNT with the 8-bit quotient expanded to 16 bits as the second
—SP ;SUBTRACT CURRENT STACK POINTER entry and the positive 8-bit remainder expanded to 16 bits
<R ;SAVE AS TEMPORARY as the top entry.
< # ;INITIALIZE CONVERSION {SAVE SIGN} Input/Qutput: Two stack entries/Two stack entries,
ABS ;CONVERT NUMBER TO POSITIVE VALUE Usage: Signed integer arithmetic.
#5 i{CONVERT TO A STRING Z80 Code: EXX ;SAVE IR
SIGN ;ADD SIGN IF NEGATIVE POP DE ;GET DIVISOR {8 BITS}
CR> ;GET SIGN FROM TEMPORARY PCP BC ;GET DIVIDEND {16 BITS}
DROP ,DROP IT CALL $ISIGN :FIELD INPUT SIGNS
R> ;GET TEMPORARY CALL $US/ ;DIVIDE 16X8
+SP ;ADD CURRENT STACK POINTER CALL $OSIGN ;JUSTIFY RESULT
PAD ;ADD SPACES IF REQUIRED PUSH HL ;QUOTIENT TO STACK
DISPLAY ;DISPLAY RESULT PUSH BC ;REMAINDER TO STACK
Bytes; 36 EXX ;RESTORE IR
Formal Definition: Bytes: 25
:H.RE2"R—-SPE<RE < #MABS H:SESIGNECR = EDRCPE Notes: Does not test the top stack entry te insure it is a valid 8-bit

R> @ +SPEPADEDISPLAYE:

number, No test is made to insure a valid 8-bit quotient.

E IR IR LTI R LIV D ARG I
0«
Class; Relational
Function: If the top stack entry is two’s complement negative, it iy

Input/Qutput:

Usage:
Z80 Code:

Bytes:

Class:
Function;

Input/Qutput:

Usage:
280 Code;

Bytes:

Class:
Function:

Input/Qulput:

Usage:

Eleplaced by a True flag. Otherwise it is replaced by a Falae
ag.
One stack entry/One stack entry,
Test conditioning prior to branching.
POP AF ;GET NUMBER
LD DE,0 ;SET FLAG FALSE
RLA ;SIGN TO CY
JR NC,FUSHIT ;IF CY=0, PUSH FALSE

INC E ;ELSE FLAG TRUE
PUSHIT: PUSH DE FLAG TO STACK
19
0=
Relational

It the top stack value is 0, it is replaced by a True flag.
Otherwise it is replaced by a False flag.

One stack entry/One stack entry.

Test conditioning prior to branching.

POP HL ;GET WORD

LD AL ;MOVE LOW BYTE

OR H ;OR IN HIGH BYTE

LD DE,0 :GET FALSE

R NZ,OUT ;NOT ZERO PUSHES FALSE

INC DE ;ELSE MAKE ELAG TRUE
OUT: PUSH DE ;PUSH FLAG
20

OSET

Memory Reference

Pops the top stack entry and sets the word whose address

was the top entry to Q.

One stack entry/None.

Initializing word length data in programmable memory to

10= cl»r setting word length flags in programmable memory to
alse.

FI € oddes

Hyles:

t lasu:

| unctlon;
[aput/Qutput:
| Tvapge:

400 Code:

Bytes:
Nuotes:

Class:
| unction:

Input/Qutput:

Usage:

280 Code:

iytes:
Notes:

Class:
Function:

Input/Qutput:

Usage:

Wolti e Wl ANTY MORT WelREE)8

ror 1, (GET ADDRESS
XOR A :ZEROS A REGISTER
1.1 {HL}LA +ZERO LOW BYTE
INC HL :BUMP ADDRESS POINTER
LD {HL}A ;ZERO HIGH BYTE
15
1+
Arithmetic

Increments the top stack entry by 1.

One stack entry/One stack entry.

Signed arithmetic, byte addressing and index incremen-
ting.

POP HL ;GET WORD
INC HL ;BUMP IT 1
PUSH HL ;RESTORE IT

13
No tests of overflow or carry are made.

1_

Arithmetic

Decrements the top stack entry by 1.

One stack entry/One stack entry.

Signed arithmetic, byte addressing and index decremen-
ting.

POP HL ;GET WORD
DEC HL ;DECREMENT IT
PUSH HL ;RESTORE IT

13
No tests of overflow or carry are made,

1SET

Memory Reference

Pops the top stack entry and sets the word whose address
was the top entry to one.

One stack entry/None.

Initializing word length data in programmable memory to
one or setting word-length flags in programmable memory
to True.

136 THIKLADTLE INT T IRPRE TIVE T ANGEH AL

Z80 Code:

Bytes:

Class:
Function:

Input/Cutput:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Qutput:

Usage:
280 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes;
Notes:

POP HL :GET ADDRESS
LD {HL}1 ;1 SET LOW BYTE
INC HL :BUMP ADDRESS POINTTR
LD {HL},0 :0 SET HIGH BYTE
16
2*
Arithmetic

Multiplies the top stack entry by 2.
Cne stack entry/One stack entry.
Signed integer arithmetic,

POP HL ;GET WORD
ADD HLHL ;DOUBLE IT
PUSH HL ;RESTORE IT

13
No tests of overflow or carry are made.

2+

Arithmetic.

Increments the word at the top of the stack by 2.
Cne stack entry/One stack entry.

Word addressing and incrementing,

POP HL ;GET WORD
INC HL ;WORD + 1
INC HL ;WORD + 2
PUSH HL ;PUSH WORD + 2

14
No test for overflow or carry is made.

2—

Arithmetic

Decrements the word at the top of the stack by 2.
One stack entry/One stack entry.

Word addressing and decrementing.

POP HL ;GET WORD

DEC HL WORD —1

DEC HL ;WORD —2
PUSH HL ;PUSH WORD —2

14
No tests of overflow or carry are made.

i Biwi
Functon;

hipul /Qutput:

Hnage
/80 Code:

Hytew:

Class:
Vunction:

Input/Output:

Usage:
780 Code:

lhytes:

Class:
Function:

Input/Qutput:

Usage:
7280 Code:

Bytes:

WIRTN WETREY. AMTI MO WORDT 137

2/

Arithmetlc

Divides (signed) the top stack word by 2.
One stack entry/One stack entry.

Signed integer arithmetic.

POP HL ;GET WORD
SRA H ;ARITHMETIC SHIFT
RR L. :PROPAGATE CY
PUSH HL :PUSH WORD/2
ié6
2DUP
Stack

Duplicates the top stack entry twice.
One stack entry/Three stack entries.
Duplication of data on the stack,

POP HL :GET WORD
PUSH HL ;RESTORE IT
PUSH HL ;DUP IT
PUSH HL :DUP IT AGAIN
14
20VER
Stack

Duplicates the third stack entry over the top two and
pushes the word to the stack.

Three stack entries/Four stack entries.

Stack data management.

EXX ;SAVE IR

POP HL ;GET TOP

POP DE ;GET 2ND

POP BC ;GET 3RD

PUSH BC ;PUSH 3RD

PUSH DE ;PUSH 2ND

PUSH HL ;PUSH TOP

PUSH BC ;PUSH 3RD TO TOP
EXX ;RESTORE IR

19

Class:
Function:
Input/Output:
Usage:

Z80 Code:

Bytes:

Class:

Function:

Input/QCutput:
Usage:
Code:

Bytes:

Formal Definition:

R R LRRE L L RTRE T B

25WAP

Stack

Interchanges the top and third stack words,
Three stack entries/Three stack entries.
Stack management.

FOP HL ;GET TOP
POFP DE ;GET 2ND
EX {SP},HL ;TOP TO STACK
PUSH DE ;RESTORE 2ND
PUSH HL ;3RD TO TOP

15

Defining Word

Sets the CONTEXT vocabulary equal to the CURRENT
vocabulary, creates a secondary header for the token
following “:” in the input buffer and links it to the CUR-
RENT vocabulary and sets the system mode to the compile
mode,

None/None.

Initiate compilation of secondary keywords.

CURRENT ;CURRENT ADDRESS

@ ;CONTAINS VOCABULARY ADDRESS
CONTEXT ;CONTEXT ADDRESS

! ;CURRENT INTO CONTEXT

CREATE

;CREATE PRIMITIVE HEADER
XX ;ADDRESS OF COLON ROUTINE
CAl ;REPLACE CODE ADDRESS
MODE ;MODE ADDRESS
CISET ;SET COMPILE MODE {MODE=1}
30

!l EMCURRENTE @ MCONTEXTH! EXXECAIMMODEMCISETE;

Class:
Function:

Input/Qutput:
Usage:

v
Fa

Compile Mode Termination Directive (Immediate)
Encloses the word address of the inner interpreter SEMI
routine in the dictionary and sets the system mode to the
execute mode,

None/None.

Terminates the definition of a secondary and re-establishes
the execute mode,

L aler

Hyles

Furmal Deflnition:

WORTEY W IRE™ AN MORD WK 1ae

XX ADDRESS OF SEMI ROUTINE

, ;ENCLOSE IT IN THE DICTIONARY
MODE ;MODE ADDRESS

COSET ;SET EXECUTE MODE {MODE=0}
20

H:EXXHE BMODERCOSET M ;: RIMMEDIATE

¢ lase:
 unetlon:

laput/Output:

Linage:

¢ ode:

Ihytes:

| ormal Definition:

;CODE

Compile Mode Termination Directive (Immediate)
Encloses the word address of the keyword SCODE in the
dictionary and sets the system mode to execute,
None/None.

Terminates a defining keyword definition, Always fol-
lowed by generic machine code that defines the execution
time action of the defined class.

"# XX ;WORD ADDRESS OF SCODE

, ;ENCLOSE IT IN THE DICTIONARY

MODE ;MODE ADDRESS

COSET ;SET EXECUTE MODE {MODE=0}

20

L, CODERXXE, EMODERCOSET B ; BIMMEDIATE

Class:
Function:

[nput/Qutprt;

Usage:
Z80 Code:

Bytes:

Relational

If the second stack entry is less than the top entry, both en-
tries are replaced by a True flag. Otherwise both are
replaced by a False flag.

Two stack entries/One stack entry.

Test conditioning prior to branching.

POP DE ;GET TOP

POP HL ;GET 2ND

AND A ;RESET CARRY
SBC HL,DE ;2ND-TOP

LD DE,0 ;SET FLAG FALSE

P P,PUSHIT ;IF POSITIVE, FALSE

INC E ;SET FLAG TRUE
PUSHIT; PUSH DE ;FLAG TO STACK
23

130 PEIAEADEL INTERPRETIVE T ANGUAGT

<#

Class: /0

Function: Pops the top stack entry, pushes an ASCII space code with
its high-order bit set to the stack, restores the top stack en-
try and copies the high-order byte to the reiurn stack,

Input/Qutput: One stack entry/Two stack entries and one return stack
byte entry,

Usage: Prepares for number conversion and display by saving the
number sign on the return stack, pushing the string ter.
mination character to the stack and leaving the original top
stack entry on the top.

Z80 Code: POP HL ;GET THE NUMBER

LD E,AQ ;SPACE WITH B7=1
PUSH DE ;PUSH STRING STOP
PUSH HL ;RESTORE NUMBER
DEC IX ;DEC RSP

LD {IX+0},H ;SIGN TO RETURN

Bytes: 20

Notes: Must be followed by a #> or CR> within a definition to
clean up the return stack and leave a valid return address
on the stack.

< BUILDS

Class: Defining Word

Function: Creates a CONSTANT keyword definition with an initial
value of 0, The keyword name is the next available token
in the input buffer when < BUILDS is executed.

Input/Qutput: None/None,

Usage: Used to initiate a high-level defining word which must later
be terminated with a DOES >,

Code: 0 ;INITIAL VALUE
CONSTANT ;CREATES A CONSTANT KEYWORD

Bytes: 14

Notes: See Section 4.5.5.

Farmal Definition:

:l < BUILDSHOBCONSTANTE;
<R
Class: Interstack
Function: Pops the top stack word and pushes it to the return stack.

Input/QOutput:

One stack entry/One return stack word entry.

T innaper

Fa0 Coda:

Hytes:
Noles:

t luss:
lunctlon:

Input/Qutput:

Usage:
480 Code:

‘ ytes:

Class:
Function:

Input/Qutput:

Usage:
Z80 Code:

Bytes:

WLHLLF Wl ANDY Mt WO b

Temporary storage of dato within a definition or direct
return stack control.

POP HL :GET WORD

DEC IX ;PUSH IT TO THE

LD {IX+0},H ;RETURN STACK

DEC IX ;

LD {IX+0},L
21
Termnporary data stored on the return stack must be re-
moved before exit to prevent incorrect return.

Relational

If the top two stack entries are equal, both are replaced by
a True flag. Otherwise both are replaced by a False flag,
Two stack entries/One stack entry,

Test conditioning prior to branching.

POP HL ;GET TOP

POP DE ;GET 2ND

AND A ;RESET CARRY
SBC HL,DE ;TOP-2ND

LD DE,0 ;SET FLAG FALSE

JR NZ,PUSHIT ;IF=, PUSH FALSE

INC E :SET FLAG TRUE
PUSHIT: PUSH DE ;FLAG TO STACK -
22
=
Relational

If the second stack entry is greater than the top entry, both
entries are replaced by a True flag. Otherwise both are
replaced by a False flag.

Two stack entries/One stack entry,

Test conditioning prior to branching.

POP HL :GET TOP

POP DE ;GET 2ND

AND A ;RESET CARRY
5BC HL,DE ;TOP-2ND

LD DE0 :5ET FLAG FALSE

JP P,PUSHIT ;IF POSITIVE, FALSE

INC E ;SET FLAG TRUE
PUSHIT: PUSH DE ;FLAG TO STACK
23

132 LI APV INETRPKETIVE L ANGLHAGT Y

Class:
Function:

Input/Qutput:

Usage:
Code:

Bytes:

Class:
Function:

Input/Qutput:

Usage:
Z80 Code:
Bytes:

Class;
Function:

Input/QOutput:

Usage:
Z80 Code:

Bytes:

/0

Displays to the operator (using the current system number
base) the word whose address is the top stack entry,
Number display is always followed by a space.

One stack entry/None.

Displaving signed numbers to the operator, generally the
contents of variabies,

@ ;GET THE NUMBER
;DISPLAY IT
14
RS
System

Pushes to the stack the current return stack pointer.
None/One stack entry.
Return stack display and control.

PUSH IX
12

5P

System

Pushes to the stack the address of the top stack entry prior
to the execution of 1SP, If underflow occurs, the stack is
reset prior to the push,

None/One stack entry.

Data stack display and control.

LD HL,0 ;GET STACK
ADD HL,SP ;POINTER
EX DEHL

LD HL,STACK ;GET END OF STACK
AND A ;RESET CARRY
SBC HLDE ;END-S5P
JR NC,SKIP ;NC IS OK STACK
LD SP.STACK ;ELSE INIT STACK
SKIP: PUSH DE ;PUSH PRIOR SP
27

;PUSH RETURN POINTER

t lann:
Tuneten:

Injruit/ Qutput:

Vange:
210 Code:

Hiylay:
Notes:

¢ lass:
J-inction:

Input/Qutput:
-LJsage;

280 Code:
Bytes:
Notes:

Class:
Function:

Input/Qutput:

Usage:

WOULE W KD AR MO Wl 4

@

Memory Reference

Replaces the address at the top of the stack with the word
at that address.

One stack entry/One stack entry.

Returns word length data stored in memory.

POP HL :GET THE ADDRESS

LD E{HL} ;LOW BYTE AT ADDRESS
INC HL :BUMP ADDRESS

LD DJ{HL} ;HIGH BYTE AT ADDRESS
PUSH DE :PUSH CONTENTS

15

Low-byte, high-byte order is central processing unit depen-
dent.

ABORT

System

Does an unconditional jump to the START/RESTART

routine to re-initialize the system and the stacks.

None/None.

Used when the operator is totally at sea. (The system

knows exactly what’s going on.)
P START ;TO START/RESTART

11

ABORT has no return address. See Section 5.3.1 and

listing 5.1,

ABS

Arithmetic

If the top stack entry is two's complement negative, its
two’s complement (a positive integer) is returned to the
stack. Otherwise the original positive integer is returned to
the stack,

One stack entry/One stack entry,

Signed integer arithmetic.

B OTETATMLMLS IR VP T AMLIT AT T

Z80 Code: POP DE ;GET NUMBER
BIT 7.0 JIF POSITIVE, Z=1
IR Z,0UT JIF Z==1, [T'S OK
LD HL,0 ;ELSE GET A ZERO
AND A ;RESET CARRY
SBC HL,DE :ZERO—NUMBER
EX DE,HL ;IS POSITIVE
QUT: PUSH DE ;POSITIVE NUMBER
Bytes: 23
ADUMP
Class: ;O
Function: Does a memory dump taking the second stack entry as the
starting address and the top entry as the ending address,
Displays a line consisting of the address, eight characters
of ASCII, a space, and eight more characters of ASCII,
Control ASCII codes are not displayed. Removes both en-
tries,
Input/Qutput: Two stack entries/None.
Usage: Examining memory to locate or display string data.
Code; OVER ;PREFPARE FOR LOOP START INDEX
DO JNITIALIZE DO LOOP
CRET ;ISSUE CR—LF
DUP ;DUPLICATE LINE ADDRESS
*CH 4 ;FOUR CHARACTER LINE ADDRESS
R ;PRINT LINE ADDRESS
APART ;ISSUE FIRST 8 CHARACTERS
APART ;ISSUE SECOND 8 CHARACTERS
WAIT ;TIME TO STOP AND WAIT?
*C# 10 ;NUMBER OF CHARACTERS AS INDEX
*+LOOP EC;LOOP UNTIL DONE
DROP ;DROP ADDRESS POINTER
Bytes: 37

fapul/Qutpat:

Hivagar
A0 Code:

Hyles:

€ lass:
l'unction:

Input/Qutput:

Uluage:
Code:

Bytes:

WOIRITT WEIRTTS AMIY MOIET WORTS 175

Two stack entries/One stack entry,
Loglcal operations,

POP HL ;GET TOP
POP DE :GET 2ND
LD AL ;AND LOW BYTES
AND E ;
LD LA :BACK TOL
LD AH ;AND HIGH BYTES
AND D :
LD HA ;BACK TOH
FUSH HL ;RESULT TO STACK
19
APART
1/O

Displays eight characters of ASCII using the top stack en-
try as a pointer. The pointer is incremented with each
character access. ASCII control code is converted to a
displayable form before being echoed.

Omne stack entry/One stack entry.

Displaying memory,

SPACE .FORMAT CONTROL
*C4 8 :LOOP ENDING INDEX

0 ;LOOP STARTING INDEX

*CDO :INITIATE DISPLAY LOOP

DUP ;DUPLICATE POINTER

ce :GET MEMORY BYTE

*C# 80 ;TO SET MSB TO 1

OR :MAKE CONTROL CODE DISPLAYABLE
ECHO :DISPLAY BYTE AS ASCII

SPACE ;SPACE BETWEEN CHARACTERS

1+ ;INCREMENT POINTER

*CLOOP EF ;LOOP UNTIL DONE

a7

Formal Definition:
:HADUMPEROVEREDOBCRETEDUPE4E REAPARTEAPARTH
WAITH10M +LOOPEDROPER;

Class:
Function:

AND

Logical
Pops the top two stack words, does a logical AND of all
bits on a bit-by-bit basis and pushes the result to the stack,

Formal Definition:
BAPARTHSPACENSEONCDORDUPEC@ MsoMORBECHONR
SPACEN1+ ECLOOPR;

ASCII
Class: [/O
Functien: Converts the low-order byte of the top stack entry from a
binary number to an ASCII code in the set 0 thru 9, A thru
Z.

AF0 IFITU FPALACER IR UCTRE [TYR L FUMMLET ITALR T

Input/Qutput:
Usage:

Z80 Code:

Bytes:

Class:
Function:

Input/Qutput:
Usage:

Code:
Bytes:

Formal Definition:
HEXH20BMCCONSTANTEASPACE

Class:
Function:

Input/Output;
Usage:

Code:

Bytes:
Notes:

Class:

One stack entry/One stack entry.
Converts binary numbers to their equivalent ASCH ¢ode
for conversion to displayable formats,

POP HL ;GET BINARY

LD AL30 ;ASCII 0 CODE

ADD AL ;:ADD BINARY

CP 3A ;LETTER?

IR C,OuUT JIF CY=1, A DIGIT

ADD A7 ;ADD LETTERS BIAS
QUT: LD LA :BACK TOL

PUSH HL ;CODE TQ STACK
22

ASPACE

System

Pushes an ASCII space code to the low-order byte of the
stack,

None/One stack entry.

The normal token separator and to insert blanks in format-
ted displays.

Not applicable.

0

BASE

Pushes to the stack the address of the number base
variable.

None/Omne stack entry,

Used to access the system variable which contains the radix
for system [/0,

Not applicable.

9

In the SYS user block. The code body contains an offset
number and there is no return address. See *SYS. BASE is
a CVARIABLE and must be referenced using byte-length
addressing keywords..

System Variable H

T —

BEGIN

Compiler Directive (Immediate)

Luncton

Input/Output:
Usages
Code:
liyles:
Notes:

| ormal Defnition:

WEII WL AN MO W lRE 197

{'unhen to the gtack the address of the next available free
dictionary location.

None/One stack entry.

Initiates a BEGIN . . . END loop in the compile mode.
HERE :GET AT DP

12

The immediate form of HERE.

:IIBEGINEMHERE W ; BIMMEDIATE

€ ling:
Function:

Input/Output:
Usage:
Z80 Code:

Bytes:

¢'lnos:
Function:

Input/Qutput:

Unage:
ZB0 Code:

Bytes:

Class:
Function:

Input/Output;
Usage:

BINARY

System
Sets the system number base to 2 decimal or the binary
radix.

None/None.
Sets 1/0 to the binary radix notation.
LD A2 ;GET 2 DECIMAL

LD {BASE},A :;SET BASE TO 2

15

Ci

Memory Reference

Stores the low-order byte of the second stack entry at the
address at the top stack entry, removing both entries.
Two stack entries/None.

Storage of byte length data in programmable memory.

POP HL :GET ADDRESS
POP DE :GET BYTE
LD {HLLE ;STORE BYTE
13
C+!

Memory Reference

Pops two stack entries and adds the byte in the low-order
byte of the second stack entry to the byte whose address is
the top stack entry.

Two stack entries/None,

Incrementing/decrementing byte-length data stored in pro-
grammable memory.

138 THRFADITY INTTRIRETIVE T ANGUADIT

280 Code:

Bytes:
Notes:

Class:

Function:

Input/Output:
Usage:

Code:

Bytes:

Formal Definition:

POP HL ;GET ADDRESS

POP DE ;GET BYTE

LD AJ{HL} ;GET AT ADDRESS
ADD E ;ADD BYTE

LD {HL}A ;STORE AT ADDRES$

15
No tests for overflow or carry are made,

C+LOOP

Compiler Directive (Immediate}

Adds the word address of the program control directive
*C 4+ LOOP to the dictionary, then computes the difference
between the current free dictionary address and the ad-
dress at the top of the stack and encloses the low-order
byte in the dictionary as the relative jump byte.

One stack entry/None.

Used to terminate a CDQ . . . C+LOCP construct in the
compile mode.

XX ;sWORD ADDRESS OR C+LOOP {LITERAL)

END, ;ENCLOSE RELATIVE JUMP BYTE
16

:MC+LOOPEXO(HEND, B; RIMMEDIATE

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:

C

System

Pops the top stack word and encloses the low-order byte in
the dictionary

One stack entry/None.

Used to build dictionary keywords.

POP DE ;GET BYTE
LD HL{DP} ;GET @DP

ID {HLLE :STORE BYTE

INC HL ;BUMP @DP

LD {DP}HL ,UPDATE @DP

19

¢ lwan:
lTuncHon:

laput/Output:

Hange:

480 Code:

Bytes:

{lass:
lunction:

Input/Qutput;

Usage:

£80 Cede:

Dytes:

Class:
Function:

Input/Qutput:

Usage:

280 Code:

Bytes:
Notes:

WOk WO AN MO WORDY v

COSET

Memory Reference

Pops the top stack entry and sets the byte whose address
was the top entry to 0.

One stack entry/None.

Initializing byte-length data in programmable memory to 0
orlsetting byte-length flags in programmable memory to
False.

POP HL ;GET ADDRESS
LD {HL},0 ;ZERO @ ADDRESS
13
CI1SET

Memory Reference

Pops the top stack word and sets the byte whose address

was the top entry to 1.

One stack entry/None,

Initializing byte-length data in programmable memory to 1

_(Er setting byte-length flags in programmable memory to
rue.

POP HL ;GET ADDRESS
LD {HL},1 :ONE SET @ ADDRESS
13
C<R
Interstack

Pops the top stack entry and pushes the low-order byte to
the return stack.
One stack entry/One return stack byte entry.
Temporary storage of byte data within a definition. or
direct return stack control.

POP HL ;GET TOP BYTE

DEC IX ;PUSH IT TO THE

LD {IX+0},L ;RETURN STACK
16
Temporary data stored on the return stack must be re-
moved before the end of a definition to prevent incorrect
return,

140 FLHAEADT DY IN T REPRETIVE T ARNGUAGLY

Class:

Functon:

Input/Qutput:

Usage:
Code:

Bytes:

Class:

Function:

Input/Qutput:

Usage:

Z80 Code:

Bytes:

Class:
Function:

Input/QOutput:

Usage:
Code:

Bytes:

C?

/0
Displays to the operator (using the current system number '/
base) the byte whose address is popped from the stack. The
number is always followed by a space.

One stack entry/None.

Displaying signed numbers to the operator; generafly the
contents of byte variables or constants.

C@ ;GET THE BYTE
. ;DISPLAY IT
14

ca

Mermory Reference

Replaces the address at the top of the stack with the byte a1
that address {in sign extended format).

Cne stack entry/One stack entry,

Returns byte-length data stored in memory in a formal
compatible with 16-bit signed arithmetic.

POP HL :GET ADDRESS
LD E({HL} :GET BYTE @ADDRESS
ID AE :GET THE BYTE

RLA ;SIGN TO CY

SBC AA ;FF IF NEG ELSE 00
LD DA ;SET SIGN EXTENSION
PUSH DE :PUSH 16-BIT WORD
17
CA!
System

Stores the address at the top of the stack in the word ad-
dress location of the latest entry in the CURRENT
vocabulary, ie: the top stack entry is the code address of
the keyword currently in the process of being defined.
One stack entry/None.

Used to define defining keywords,

ENTRY ;ADDRESS OF LATEST HEADER

*CH 6 ;LITERAL 6

+ -HEADER PLUS 6 EQUAL WORD ADDRESS
! ;STORE CODE ADDRESS

19

Formal Deefinition;

(BCAI/BENTRYHsH - BIN;

i lass
Function:

Input/Qutpuat:

EYLIILL v L e AR BT Wl
CCONSTANT

Defining Word

Creates a byte constant keyword dictionary entry whose
name is the token following CCONSTANT and whose
vaiue equals the low-order byte of the top stack entry.
One stack entry/None,

tlage: Defining byte-length named constants.
Z10 Code: CREATE ;CREATE PRIMITIVE
C, ;STORE BYTE TO BODY
SCODE ;:REPLACE CODE ADDRESS
LD A{DE} :GET BYTE IN CODE BODY
LD LA ;TO L REGISTER
RLA SIGN TO CY
SBC AA ;FF IF NEG ELSE 00
LD H A ;SET SIGN EXTENSION
PUSH HL ;PUSH 16-BIT WORD
IP {1y} JUMP TO NEXT
Bytes: 22

b ormal Definition:
MCCONSTANTECREATENC, B;CODER

Notes: The “. . . ."” is the assembly or machine code,
CDO

(ﬂ"lnna: Compiler Directive (Immediate)

Junction: Encloses the word address of the program control directive
*CDQO in the dictionary and then pushes the address of the
next free dictionary location to the stack.

Input/Qutput: Used to initiate a CDQ...CLOOP or CDO...C+LOOP

_ construct in the compile mode.

Code: "# XX ;WORD ADDRESS OF *CDO {LITERAL}
DO, ;STORE AND PUSH

Bytes: 16

Formal Definition:

:EBCDOMXXEDO, H: BIMMEDIATE

Class:
Function:

Cl>

Interstack

Pushes to the stack the loop index for the innermost byte-
length loop which is the top return stack byte.

142 JHIEEADI T INTURIRE LIVE FANGLIACDY

Input/Qutput:

Usage:
280 Code:

Bytes:
Notes:

Class:

Function:

Input/Qutput:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Quiput;

Usage:
Z380 Code:

Bytes:

One return stack byte/One slack entry and one return
stack byte entry,
Retrieval of the current byte loop index.

LD L,{IX+0} ;GET RETURN TOP

LD AL ;GET THE BYTE

RLA A ;SIGN TO CY

SBC AA ;FF IF NEG ELSE 00

LD HA ;SET SIGN EXTENSION
PUSH HL ;PUSH 16-BIT INDEX

18
Assumes the byte loop index is at the top of the return
stack,

Cl>

Interstack
Pushes to the stack the loop index for the second innermost
byte-length loop.
Three return stack byte entries/Three return stack entriey
and one stack entry.
Retrieval of the next level byte index.

LD L {IX+2} GET 2ND INDEX

LD AL :GET THE BYTE

RLA A ;SIGN TO CY

SBC AA ;FF IF NEG ELSE 00

LD H A ;SET SIGN EXTENSION
PUSH HL ;PUSH 16-BIT INDEX

18
Assumes only byte loop parameters are on the return
stack.

CJOIN

Stack

Pops the top two stack entries and combines them to a
single word by moving the low-order byte of the top entry
into the high-order byte of the second entry and pushes the
resulting 16-bit word to the stack.

Two stack entries/One stack entry,

Stack manjpulation for multi-byte signed integers.

POP HL ;GET LOW BYTE
POP DE ;GET HIGH BYTE
LD D,L ;COMBINE

PUSH DE ;PUSH RESULT

14

¢ lagse
lFunctlon:

taput/Qutput:

Usage:
/80 Code:

lhytes:
Notes:

€lngs:
I'unctlon:
Input/Outpat:
Lisage:

480 Code:

llytes:
Notes:

Class:
Function:

Input/Output:
Usage:

Code:

Bytes:

Formal Definition:

WO, WO AN MO Wl » 14)
CK>

Interstack
Pushes to the stack the loop index for the third innermost
byte-length loop.
Five return stack byte entries/Five return stack byte entries
and one stack entry.
Retrieval of the second next level byte loop index.

LD L{IX+4} ;GET 3RD INDEX

LD AL ;GET THE BYTE

RLA A ;SIGN TO CY

SBC AA ;FF IF NEG ELSE 00

LD HA ;SET SIGN EXTENSION
PUSH HL ;PUSH 16-BIT INDEX

18

Assumes only byte loop parameters are on the return
stack.

CLEAR

/O

Clears the CRT display and homes the cursor.

None/None.

Control of display formatting.
LD A,CLEAR
CALL $ECHO

;LOAD CLEAR CODE
;ISSUE TO DISPLAY
15

Presumes that the display driver recognizes a command to
clear the screen and homes the cursor.

CLEAVE

Compiler Directive {Immediate)

Encloses the word address of the program control directive

*CLEAVE in the dictionary

None/None.

Compiles a command to cause an immediate exit from a

byte loop construct at execution time, Used within a condi-

tional branch structure.

*# XX ;WORD ADDRESS OF *CLEAVE
{LITERAL}

. ;ENCLOSE IT IN THE DICTIONARY

16

ECLEAVERXXE, B; RIMMEDIATE

Class:

Function;

Input/Qutput;
Usage:

Code:

Bytes:

Formal Definition:

CLOOP

Compiler Directive (Immediate)

Adds the word address of the program control directive
"CLOOP to the dictionary, then computes the difference
between the current free dictionary address and the ad-
dress at the top of the stack and encloses the low-order
byte in the dictionary.

One stack entry/None.

Used to terminate a CDO . . . CLOOP construct in the
compile mode.

"# XX ;WORD ADDRESS OF *CLOOP
{LITERAL}

END, ;ENCLOSE RELATIVE JUMP BYTE

16

:EBCLOOPEXXEEND, B; BMIMMEDIATE

Class:
Function:

Input/Output:

Usage:

Code:
Bytes:
Notes:

Class:
Functicn;

Input/Output:
Usage:
Z80 Code:

COMPILER

System Variable

Pushes to the stack the address of the compiler variable
which points to the last entry in the COMPILER
vocabulary.

None/One stack entry.

Used to access the link to the last COMPILER vocabulary
entry.

Not applicable.

@

In the SYS users block. The code body is an offset number
and there is no return address. See *SYS.

CONSTANT

Defining Word

Creates 2 word-length constant keyword dictionary entry
whose name is the token following CONSTANT and
whose value equals the top stack entry.

One stack entry/None.

Defining word-length named constants.

CREATE ;CREATE PRIMITIVE HEADER

;STORE NUMBER IN CODE BODY

SCODE ;REPLACE CODE ADDRESS

tytew;

1 ievial Definition:

Nutes:

WORTY WOIRT™ AND MORE Wt e

X DEIL WORID ADDRESS TO Hi.
LI E4ML) GET LOW BYTE IN CODE BODY
INC HL ;BUMP POINTER
LD D.{HL} GET HIGH BYTE
PUSH DE :NUMBER TO STACK
IP {1v} JUMP TO NEXT

21

‘WMCONSTANTECREATEN, R:CODEN....
The “...." is the assembly or machine code.
CONTEXT

€ lass:
b unction:

input/Output:

Uisage:

Code:
Notes:

Class:
Function:

Input/Output;

Usage:
Caode:
Bytes:
Notes:

System Variable

Pushes to the stack the address of the system context
variable.

None/One stack entry,

Used to access the system variable which contains the ad-
dress of the vocabulary that will be searched to locate
keywords.

Not applicable.

In the 5YS user block. The code body contains an offset
number and there is no return address.

CORE

Vocabulary

Sets the CONTEXT system variable to the address of the
code body of CORE which contains the address of the
latest entry in the vocabulary,

None/None.

Evokes the CORE vocabulary,

Not applicable.

12

Predefined but exactly as if defined using the
VOCABULARY defining keyword.

146 PHIREADLLY INGRRIWE TIVE E ANGUALLY

Class:
Function:

Input/QOutput:

Usage:

Z80 Code:

Bytes:

Class;

Function:

Input/Qutput:

Usage:
Code:

Bytes:

Formal Definition:

CR>

Interstack
Pops the byte at the top of the return stack and pushes it o
the stack in sign-extended format.

One return stack byte entry/One stack entry.

Retrieval of temporary data stored on the return stack to
the stack in a format compatible with signed 16-bli
arithmetic.

INC IX :ADJUST RSP
LD H,0 ;ASSUME BYTE POSITIVE |
BIT 7,1 :TEST BYTE SIGN
IR Z,SKIP :IF ZERO, POSITIVE
DEC H ;MAKE NEGATIVE
SKIP: PUSH HL ;PUSH 16 BIT WORD
23
CREATE
Defining Word

Creates a dictionary header for a primitive keyword whose
name is the token following CREATE and links it to the

CURRENT vocabulary.

None/None.

Used to create all dictionary headers.

ENTRY ;POINTER TO LATEST HEADER

ASPACE ;SET THE SEPARATOR

TOKEN ;TOKEN TO DICTIONARY SPACE

HERE ;POINTS TO THE TOKEN

CURRENT ;ADDRESS OF CURRENT VOCABULARY

@ :VOCABULARY LINK

! ;UPDATE LINK TO NEW TOKEN

*C# 4 ;FOUR IDENTIFIER CHARACTERS

DP ;DICTIONARY POINTER

+1 ;ENCLOSE FOUR CHARACTERS

, :ADD LINK ADDRESS TO NEW
HEADER

HERE ;WORD ADDRESS OF NEW HEADER

2+ ;POINTS TO CODE BODY

p ;STORE AT WORD ADDRESS

39

:IMCREATEMENTRY BASPACEENTOKENSHEREMCURRENTEB@ B!
4@DPE + B BHEREN2+ B, N,

LD L{IX+0} ;GET TOP RETURN BYIR

t lueni
Fanctlon:

fnput/Qutput:

1 laage:
Z#) Code:
Hytes:

{ lasn:
I unctlon:

Liput/Output:

Finage:
780 Code;

Bytes:

Class:
Function:

Input/Cutput:

tJrage:

Code:
Bytes:
Notes:

WU WO ANIY MEIRT WOITS §47

CRET
¥{e]

Issues a carriage-return line-feed sequence to the display.

None/None.

Display formatting,
CALL $CRLF ;CALL CR-LF

13

CSPLIT

Stack

Pops the top stack entry and creates two 16-bit numbers.
The high-order byte is moved to the low-order byte of the
second eniry in sign-extended format. The low-order byte
is returned as the top stack entry as a positive 16-bit
number,

One stack entry/Two stack entries.

Stack manipulation of multi-byte integers.

POP HL ;GET 16 BIT NUMBER

LD E.H ;MOVE HIGH BYTE

LD H.0 ;MAKE LOW + 16 BIT

LD D H ;ASSUME POSITIVE

BIT 7.E ;TEST SIGN

JR Z,0UT1 :JIF +, IT'S OK

DEC D ;ELSE MAKE NEGATIVE
QUT1: PUSH DE ;PUSH SIGNED BYTE

PUSH HL ;PUSH REMAINDER
22

CURRENT

System Variable

Pushes to the stack the address of the current vocabulary
variable.

None/One stack entry.

Used to access the current vocabulary variable which con-
tains the address of the vocabulary where new keywords
will be added.

Not applicable.

9

In the SYS user block. The code body is an offset number
and there is no return address. See *SYS.

148 LWL AL EINFURPRTTINT TANGUAL

WL P WO AR RUHE WOk 4y

CVARIABLE Qute PUSH 111, ;16 LEAST TO STACK
PUSH BC ;8 MOST TO STACK
Class: Defining Word EXX ;:RESTORE IR
Function; Creates a byte variable keyword dictionary entry whose Hyten; 10
name is the token following CVARIABLE and whese Ini Nitles Does not test the top stack entry to insure it is a valid 8-bit
tial value is the low-order byte of the entry popped from number. The 16 least significant bits are an unsigned
the stack. number on the stack.
Input/Qutput: One stack entry/None.
Usage: Defining byte-length named variables and initializing
them.
Z80 Code: CCONSTANT ;CREATE HEADER AND INITIALIZE
SCODE :REPLACE CODE ADDRESS AND EXIT D/MOD
PUSH DE ;PUSH WORD ADDRESS lngn: Arithmetic
1
P Iy} JUMP TO NEXT 1 tisk tlon: Does a signed divide of the 24-bit number in the third {16
lf:::;:;l Definition: 15 least significant bits) and second (8 most significant bits)
N . stack entries by the low-order byte of the top stack entry.
N :_.CVARIABL.?: CCON?E;?;; rco?]r;r)\i;me code Replaces these entries with the 16-bit quotient as the sec-
otes: € e Y ' ond stack entry and the positive 8-bit remainder expanded
to 16 bits as the top entry.
hiput/Qutput: Three stack entries/Two stack entries,
1 Inmgu: Signed integer arithmetic.
D F80 Code: EXX ;SAVE IR
POP HL ;GET 8 BIT DIVISOR
Class: Arithmetic POP DE ;8 MOST SIGNIFICANT
Function: Does a signed multiply of the second stack word by the POP BC ;GET 16 LEAST
low-order byte of the top stack entry and replaces both en- 1D AH :DIVISOR SIGN
tries by the 24-bit product with the 8 most significant bits XOR D :RESULT SIGN
sign extended as the second stack entry and the 16 least EX AFE AF ;SAVE SIGN FLAG
significant bits as the top stack entry. LD AL :GET DIVIDEND SIGN
Input/Output: Two stack entries/Two stack entries. AND A ;TEST SIGN
Usage: Signed integer arithmetic, P P,MOV1 ;JIF +, IT'S OK
Z80 Code: EXX ;SAVE IR NEG ;MAKE POSITIVE
POP BC ;GET 8 BIT NUMBER MOVi: LD DA ;STORE DIVISOR

POP DE -GET 16 BIT NUMBER LD H,B ;GET 16 LEAST
CALL S$ISIGN -FIELD INPUT SIGNS D LC ;TO HL
CALL $UD* ;MULTIPLY 16X8 LD AE ;GET 8 MOST
EX AF, AF ;RETRIEVE SIGN FLAG LD ED ;MOVE DIVISOR TQ E
JP P,OUT” JAF +, IT'S OK AND A :TEST SIGN
LD AC ;:MOVE 8 MOST SIGNIFI- P P,MOV2 ;IF 4, IT'S OK
CANT CPL ;COMPLEMENT HIGH 8
CPL ;COMPLEMENT LD HL,0 ;ELSE GET ZERQO
LD CA :RESTORE SBC HL,BC ;NEGATE LOW 16
EX DE,HL ;MOVE 16 LEAST JPC NZMOV2 IF NON-ZERO, IT'S OK
LD HL,0 .GET ZERQO INC A ;ELSE BUMP HIGH
SBC HL,DE NEGATE 16 LEAST MOVZ: LD DA ;MOVE HIGH 3
R Nz, OUT JJF NOT ZERO, IT'S QK CALL $UD/ :DIVIDE 24X8
INC C :ELSE 2'S COMP MOST CALL $OSIGN ;JUSTIFY RESULT

150 THREAPETY INTERUHRFTTVE 1 ANCGUATI

Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:

Class:
Function;

Input/OCutput:

Usage:
Z80 Code:

Bytes:

Class:

Function:

Input/Qutput:

Usage:
Z80 Code:

PUSH HL ;QUOTIENT TO STACK
PUSH BC ;REMAINDER TO STALK
EXX ;RESTORE IR :

48
Does not test the top stack entry to insure it is a valid 8-bit
number. No test is made to insure a valid 16-bit quotient,

DECIMAL

System.
Sets the system variabie BASE to 10 decimal to evoke
decimal 1/0.

None/None.
Evokes radix 10 [/O.
LD A0A :GET 10 DECIMAL

LD {BASE},A ;STORE IT AT BASE

15

DEFINITIONS

System Directive

Sets the system variable CURRENT to the value in the
systern variable CONTEXT.

None/None.

Sets the vocabulary into which new definitions will be
linked.

LD HL{CONTEXT} ;CONTEXT VOCABU
LD {CURRENT} HL ;TO CURRENT
16
DISPLAY
e

Outputs to the display the low-order byte of successive top
stack entries until a non-ASCII code is output (a character
with the high-order bit 1 set).

One to N stack entries/None.

Qutput to display the stack string data.

$DISPLAY: EXX ;SAVE IR
DLOQP; FOP HL ;GET TOP STACK WORD
LD AL LOW BYTE

Hyten,
Niilew,

t lauy:
Lunclion:

luput/Qutput:
Visnge:
t e

Hytes:
) ormal Definition:

FYLFIPT YYLTRITT AT AR AT VYO IRTT 1

CALL $ECHO JIMSPLAY IT

AND A ;TEST CODE FOR BIT 7
[)g P.DLOOP ;IF POSITIVE, LOOP
EXX ;RESTORE IR

21

Entered from #> (to display number strings) at the
$DISPLAY entrance,

DO

Compiler Directive {Immediate)

Encloses the word address of the program control directive
*DQ in the dictionary and then pushes to the stack the ad-
dress of the next free dictionary location.

None/Cne stack entry,

Used to initiate a DO . . . LOOP or DO . . . +LOOP con-
struct in the compile mode.

¥ XX ;WORD ADDRESS OF *DO {LITERAL}
DO, ;STORE ADDRESS AND GET POINTER
16

. BDORXXEDO, B; MIMMEDIATE

Class:
Function:

Input/Qutput:
Usage:
Code:

lytes:
I'ormal Definition:

Do,

Systern

Stores the program control directive at the top of the stack
to the dictionary and returns the address of the next free
dictionary location on the stack.

Ore stack entry/One stack entry.

Used to define compiler directive immediate keywords.

. ;STORE DIRECTIVE

HERE ;PUSH FREE ADDRESS

14

:BDO, B, @HEREM;

Class:
Function:

DOES =

Program Control Directive
Replaces the first word in the code body of the latest entry

Input/Qutput:
Usage:

Z80 Code:

Bytes:

Formal Definition:

in the CURRENT vocabulary with the top return stack
word and then replaces its code address with the secomnd
return stack entry.

Two return stack word entries/None.

Used to terminate the compile time code of a highslovel
defining word definition. Always followed by keywords
that constitute the execution time generic code definition
R> ;GET TOP RETURN ADDRESS

ENTRY ;LATEST HEADER ADDRESS

*C# 8 :PLUS 8

+ ;POINTS TO CODE BODY

! ;STORE RETURN TQ CODE BODY

SCODE ;REPLACE CODE ADDRESS AND RETURN

DEC IX ;ADJUST RSP _
LD {IX+0},B ;IR LOW BYTE TO RETH|
DEC IX :ADJUST RSP

LD {IX+0},C IR HIGH BYTE TO RETURI

EX DE HL ;WA REGISTER TO I,
LD C.{HL} ;@WA LOW INTO IR
INC HL ;BUMP WA

LD B,{HL} ;@WA HIGH INTO IR
INC HL ;BUMP WA

PUSH HL ;PUSH POINTER

39

:HMDOES> EMR > MENTRYB:® - N'8.CODER. .

Notes:

Class:
Function:

Input/Qutput;
Usage:

Code:

Bytes:
Notes:

Class:

The “._.." is assembly or machine code.

Dp

System Variable

Pushes to the stack the address of the dictionary pointer
variable.

None/One stack entry.

Used to access the system variable which contains the ad-
dress of the fext free dictionary location,

Not applicable,

9

In the 8YS user block. The code body contains an offset
number and there is no return address. See *SYS.

DROP

Stack

Function:
lnput/Qutput;
| inage

280 Code:
liytes:

t lapy:
hungtlon:

Inpul/Qutput:
Usage:
Code:

Bytes:

kormal Definition:

WY WO AR MLOIEE WL HELH, 183

Pops the lop stack entry and digcards it
One stock entry/None,
Stack clean up,

POP HL ;DROP TOP

11

DUMP
/O

Does a memory dump using the second stack entry as the
starting address and the top stack entry as the ending ad-
dress. Displays a line consisting of the address, eight
numbers, a space, and eight more numbers. Removes both
entries,

Two stack entries/None.

Examining memory.

OVER ;GET LOOP STARTING ADDRESS
DO ;INITIALIZE DC LOOP

CRET ;ISSUE CR-LF

DUP ;DUPLICATE LINE ADDRESS

*C# 4 ;FOUR CHARACTER LINE ADDRESS MINIMUM
R ;PRINT LINE ADDRESS

PART ;ISSUE FIRST 8

PART ;ISSUE SECOND 8

WAIT ;TIME TO STOP AND WAIT?

*C# 10 ;16 NUMBERS PER LINE

*+LOOP EC;LOOP UNTIL DONE

DROP ;DROP ADDRESS

37

:@DUMPEOVEREDOBCRETEDUPE4 M. REPARTRPARTRWAITHE

0l +LOOPEDROPH;
DUP
Class: Stack
Function: Duplicates the top stack entry and pushes it to the stack.
Input/QOutput: Cne stack entry/Two stack entries,
Usage: Stack management,
Z80 Code: POF HL ;GET TOP WORD
PUSH HL ;RESTORE TOP
PUSH HL ;AND PUSH IT AGAIN

Bytes:

13

158 THIEADED N FLAVRLETIVE EANGLIACL G

Class:
Function:

Input/Cutput:

Usage:
780 Code:

Bytes:

Class:
Function:

Input/Cutput:
Usage:

Code:

Bytes:
Notes:

Formal Definition:

ECHO

1/0

Pops the top stack entry and outputs the low-order byte to
the display.

On= stack entry/None,

Direct control of the display for formatting.

POP HL ;GET TOP
LD AL ;GET LOW-ORDER BYTH
CALL $ECHO ;DISPLAY IT
15
ELSE

Compiler Directive (Immediate)

Encloses the word address of the program control directive
*ELSE in the dictionary, saves the address of the next free
dictionary location on the stack, reserves 1 byte in the dic-
tionary, swaps the top two stack entries, computes the dif-
ference between the top stack entry and the current free
dictionary location and encloses the low-order byte in the
dictionary as a relative jump byte.

One stack entry/One stack entry.

Used to terminate the True code portion in an IF...ELSE
...THEN construct in the compile mode.

*# XX ;WORD ADDRESS OF *ELSE {LITERAL}
DO, ;STORE ADDRESS AND GET POINTER
0 :GET ZERO

C, ;RESERVE BYTE

SWAP ;SWAP TOP TWO ADDRESSES

THEN ;EXECUTE THEN CODE

24

See definition of THEN.

:IELSERXXEDO, Mol C, BSWAPETHENE; RIMMEDIATE

Class:
Function:

Input/QOutput:

END

Compiler Directive {Immediate)

Encloses the word address of the program control directive
*END in the dictionary, pops the top stack address, com-
putes the difference between this address and address of
the current free dictionary location and encloses the low-
order byte in dictionary as a relative jump byte.

One stack entry/None,

Haaga:
L H

Hytent

{ wrmal Definiton:

WO WOHER AN WL Wl 198

Used to terminate a BEGIN | ., END loop structure in the
compile mode.

XX ;WORD ADDRESS OF *END {LITERAL}
END, ;STORE AND COMPUTE JUMP
16

(BENDEXXEEND, M; BIMMEDIATE

t lass:
I unctlon:

Input/Qutput:

Usage:
Code:

Wytes:

('lags:
Function:

Input/Output:

nge:

Code:

Hytes:

Class:

END,

System

Encloses the address of the program control directive at the

top of the stack in the dictionary, computes the relative

jump byte using the top stack entry and the current free

dictionary location and encloses the low-order byte in the

dictionary.

Two stack entries/None.

Used in defining compiler directive immediate keywords.
;STORE DIRECTIVE WORD ADDRESS

HERE ;CURRENT FREE ADDRESS
- ;COMPUTE RELATIVE OFFSET
C, ;ENCLOSE IT IN DICTIONARY
18

ENTRY
System

Pushes to the stack the address of the first header byte of
the latest entry in the CURRENT vocabulary.

None/One stack entry,

Used to locate the address of the latest vocabulary defini-
tion which will become the link address of the next
keyword,

CURRENT ;CURRENT ADDRESS

@ ;VOCABULARY ADDRESS
@ ;HEADER ADDRESS
16
ERASE
Utility

186 THREAIY [V INTFRIPRE VIVE L ANGUAGLY

Function:

Input/Output:
Usage:
Code:

Bytes:

Class:
Function:

Input/Cutput:

Usage:
Z80 Code:

Bytes:
Notes;

Class:
Function:

Input/Qutput:

Usage:
Code:

Fills a region of memory with ASCII spaces. The starting
memory address is the second stack entry and the ending
memory address is the top entry. Removes both entries,
Two stack entries/None.

Clearing string data.

1+ :BUMP LAST ADDRESS FOR LOOPING
SWAP ;GET LOOP ORDER CORRECT
*DO ;INITIALIZE LOOP
ASPACE :GET SPACE CODE
> ;INDEX EQUALS MEMORY ADDRESS
C! ;SPACE TO MEMORY
*LOOP F8 ;LOQP UNTIL DONE
25
EXECUTE
System

Pops the top stack entry to the word address register and
jumps to the inner interpreter RUN routine to cause the ex-
ecution of a keyword.

One stack entry/None.

Used by the system for keyword execution and by operator
for defining conditional execution keywords.

POP HL ;GET KEYWORD WORD ADDRESS
JP RUN ;EXECUTE 1T
12

EXECUTE does not have a return address.

FILL

Utility

Fill a region of memory with a specified byte. The byte is
the third stack entry low-order byte. The starting memory
address is the second stack entry and the ending memory
address is the top entry. Removes all three entries.

Three stack entries/None.

Loading memory to some initial value,

1+ ;BUMP LAST ADDRESS FOR LOOFING
SWAP ;GET RIGHT LOOP ORDER

DO ;INITIALIZE LOOP

pur ;DUPLICATE BYTE

1> ;GET MEMORY ADDRESS

Cl ;STORE BYTE

*LOOP F8 ;LOOP UNTIL DONE

Hyies:

Vurmal Deflnition:

WL WORTY AR Wiu gl WO ey

DRODP JREMOVE BYTE PROM STACK
27

AL+ BSWAPEDOEDUPEI > BCIELOOPERDROPE;

t buny:
Lunctlon:

Input/Qutput:

Usnge:
¢ ode:

Iytes:
Notes:

I'ormal Definition:

FORGET

Vocabulary

Searches the current vocabulary for the token following
FORGET. If located, the current link address is set to the
address of the link in the keyword located and the dic-
tionary pointer is reset to the start of the header of the
located keyword, [f not located, the token is echo
displayed and followed by a 7",

None/None.

Used to delete keyword definitions in a spatial sense.
CURRENT ;GET CURRENT ADDRESS

@ ;POINTS TO LATEST ENTRY IN CURRENT
CONTEXT ;GET CONTEXT ADDRESS

! ;SET 'TO SEARCH CURRENT

’ ;SEARCH FOR TOKEN {KEYWORD}

DUP ;NEED WORD ADDRESS TWICE

"CH2 WORD ADDRESS LESS 2 POINTS

- ;TO THE LINK ADDRESS

@ ;THE LINK ADDRESS

CURRENT ;GET CURRENT ADDRESS

@ ;POINTS TO THE LINK

! :RESET LINK TO TOKEN LINK

*C# 6 ;WORD ADDRESS LESS 6 POINTS TO THE
- ;FIRST HEADER BYTE OF THE TOKEN

DP ;GET FREE DICTIONARY ADDRESS

I ;RESET DICTIONARY FREE LOCATION
44

Caution is advised. It is possible to forget part or all of the
context vocabulary. The end result is an unusable language
since nothing can be located.

:BFORGETMCURRENTE@NCONTEXTE(W'WDUPH2E—H@ R
CURRENTH @ HcE —BDPE!IN;

Class:

HERE

System

150 UHREALEEY INTERPRE HVE TANGEIALLY

Function:

Input/Cutput:

Usage:
ZB0 Code;

Bytes:

Class:
Function:

Input/Qutput:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:
Notes:

Class:
Function:

Pushes the address of the next free dictionary locatlon to
the stack (the address stored at the system varlable DP},
None/One stack entry.

Used by the system in building dictionary entries and by
the operator to determine dictionary space usage.

LD HL {DP} ;GET @DP
PUSH HL ;FREE LOCATION TO STA__
14 2
HEX
System

Sets the system variable BASE to 16 decimal to evoke
hexadecimal 1/0.

None/None.
Evokes radix 16 1/0.
LD A 10 :GET 16 DECIMAL

LD {BASE},A ;STORE IT AT BASE
15
Base 16 1/0 is the base on start-up.

I>

Interstack
Pushes to the stack the loop index for the innermost word-
length loop which is the top return stack word.
One return stack word/One return stack word and one
stack word.
Retrieval of the current word loop index.
LD L {IX+0} ;GET LOW INDEX
LD H{IX+1} ;GET HIGH BYTE
PUSH HL ;INDEX TO STACK
17
Presumes nothing else on the return stack except loop in-
dex.

IF

Compiler Directive (Immediate}

Encloses the word address of the program control directive
*IF in the dictionary, pushes the address of the next free
dictionary location to the stack and reserves 1 byte in the

Tuput/ Quitputs
Huagei

{ ude:

Hytes:

b orinal Definition:

WUIRIF G WOIRLE D AN MORE WIS 189

dictlonary for a relative jump byte,

None/One stack entry,

Used to initiate a conditional branch construct in the com-
pile mode,

XX ;WORD ADDRESS OF *IF {LITERAL)
DO, ;STORE ADDRESS AND SAVE POINTER
0 ;GET A ZERO

C, ;RESERVE A BYTE

20

{BIFEXXBDC, #o0BC, M ; BIMMEDIATE

{ lags:
lunction:

[nput/Qutput:
{/sage:
¢ ode:

Bytes:

Formal Definition:

IMMEDIATE

Vocabulary

Delinks the latest entry from the current vocabulary and
links it to the compiler vocabulary. The previous second
entry in the current vocabulary becomes the latest entry.
None/Nane.

Adding keywords to the compiler vocabulary.

ENTRY ;POINTS TO LATEST CURRENT KEYWORD
DUP :SAVE IT FOR COMPILER LINK

*Cé 4 ;CURRENT HEADER + 4 POINTS TQ THE
+ ;LATEST KEYWORDS LINK

DUP :SAVE AS NEW LINK ADDRESS

@ ;GET THE LINK

CURRENT ;PQINTS TO CURRENT

@ ;POINTS TO VOCABULARY

! ;UPDATE CURRENT TO 2ND KEYWORD
COMFILER ;COMPILERS ADDRESS

@ ;POINTS TO LAST COMPILER ENTRY
SWAP ;ADDRESS THEN LINK

[;8TORE LINK IN PREVIOUS CURRENT
COMPILER ;COMPILER ADDRESS

! ;PREVIOUS CURRENT TOP OF COMPILER
39

' NIMMEDIATEMENTRY RDUPE4E + BDUPE@ MCURRENTEH@E!E
COMPILERE@8SWAPE!BRCOMPILERE!N;

Class:

10R

Logical

e L imTEeTITeEIT Ry

Function:

Input/Qutput;

Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Qutput:
Usage:
280 Code:

Bytes:
Notes:

Class:

Function:
Input/Qutput:
Usage:

Z80 Code:

Bytes:
Notes:

T TN LT

Replaces the top two stack entries by the logical inclugive
or of the entries on a bit-by-bit basis,

Two stack entries/One stack entry.

Logical operations.

POP HL ;GET TOP WORD
POP DE ;GET NEXT WORD :
LD AL ;MOVE TOP LOW BYTE: /
OR E ;OR IN 2ZND LOW BYTLE
LD LA ;SAVE LOW OR '
LD AH MOVE TOP HIGH BYTI:
OR D :OR IN 2ND HIGH BYTH
LD H. A ;SAVE HIGH OR
PUSH HL ;PUSH RESULT

19

I
Interstack

Pushes to the stack the loop index for the second innermost
word-length loop.
Three return stack word entries/Three return stack word
entries and one stack entry.
Retrieval of the second level word-length loop index.
LD L{IX+4} GET LOW INDEX
LD H{IX+5} :GET HIGH INDEX
PUSH HL ;INDEX TO STACK
17
Presumes only word-length loop parameters on the return
stack.

K>

Interstack

Pushes to the stack the loop index for the third innermost

waord-length loop.

Five return stack word entries/Five return stack word en-

tries and one stack entry.

Retrieval of the third level word-length loop index.
LD L{IX+8} ;GET LOW INDEX BYTE
LD H.{IX+9} ;GET HIGH INDEX BYTE
PUSH HL ;INDEX TO STACK

17

Presumes only word-length loop parameters on the stack.

Clags:
YFunction:

Input/Qutput:
Usage:
£80 Code:

Dytes:
Notes:

Class:

Function:
Input/Qutput:
Usage:

Code:
Bytes:
Notes:

Class:
Function:

Input/Qutput:
Usage:
Code:

Bytes:
Formal Definition:

WOREY WORDS AND MUlT WORIY pes
KEY

/O
Pushes to the stack in the low-order byte position the next
ASCII code entered via the keyboard.
None/One stack entry.
Interfaces the keyboard to the system.
CALL $KEY
LD LA
PUSH HL
15
Presumes transfer via the A register.

LBP

System Variable

Pushes to the stack the address of the line buffer pointer
variable.

None/One stack entry.

Used to access the line buffer pointer variable which con-
tains the address of the start of the next token in the input
line buffer,

Not applicable.

9

In the SYS users block. The code body is an offset number
and there is no return address. See *SYS.

LEAVE

Compiler Directive {Immediate)

Encloses the word address of the program contrel directive
*LEAVE in the dictionary,

None/None.

Compiles a command to cause an immediate exit from a
word-length loop construct at execution time, Used within
a conditional branch construct,

"# XX ;WORD ADDRESS OF *LEAVE {LITERAL}
. ;ENCLOSE IT
16

:WLEAVEERXXE, B; MIMMEDIATE

wod TEIRL ADED INTTRIPRITIVE 1 ANCUALTS

LOOP

Class: Compiler Directive (Immediate)

Function: Encloses the word address of the program control directive
*LOQOP in the dictionary, then pops the stacks and com-
putes the difference between this address and the next free
dictionary address and encloses the low-order byte in the
dictionary as the relative jump byte.

Input/Output: One stack entry/None. :

Usage: Used to terminate a DO ., . . LOOP construct in the com- -
pile mode.

Cade: XX :WORD ADDRESS OF *LOOP

{LITERAL}
END, ;STORE ADDRESS AND JUMP

Bytes: 16

Formal Definition:
:HLOOPEXXMEEND, B; RIMMEDIATE

LROT
Class: Stack
Function: Rotates the top three stack entries left in an infix cyclic
sense {input A B C into B C A with A the final top stack en-
try).
Input/Qutput: Three stack entries/Three stack entries.
Usage: Control of stack order.
Z80 Code: POP DE ;GET TOP
POP HL ;GET 2ND
EX {SP},HL ;EXCHANGE 3RD AND 2ND) 1
PUSH DE ;:PUSH OLD TOP
PUSH HL ;PUSH OLD 3RD
Bytes: 15
MAX
Class: Arithmetic
Function: Replaces the top two stack entries by the entry with the
higher value {signed).
Input/Qutput: Two stack entries/One stack entry.
Usage: Signed integer arithmetic tests.
Z80 Code: POP DE :GET TQP
POP HL ;GET 2ND
PUSH HL :ASSUME 2ND GREATER

Bytes:

C'lass:
Yunction:

Input/Qutput:

Usage:
Z80 Code:

Bytes:

Class:

Function:

Input/Qutput;

Usage:
280 Code;

Bytes:

Class:

WL WOREY ANEY ML Wil 1o
AND A ;RESET CARRY
SBC HL,DE :2ZND-TOP
P P,OouUT ;2ND GREATER, EXIT
POP HL ;DROP 2ND
PUSH DE ;PUSH TOP
QUT: P {IY} ;JUMP TO NEXT
21
MIN
Arithmetic

Replaces the top two stack entries with the entry with the
smaller value (signed).

Two stack entries/One stack entry.

Signed integer arithmetic tests.

POP DE ;:GET TOP
POP HL :GET 2ND
PUSH HL :ASSUME 2ND SMALLER
AND A sRESET CARRY
SBC HL,DE ;AND-TOP
JP N,OUT :2ND SMALLER, EXIT
POP HL ;DROP 2ND
PUSH DE ;PUSH TOP
OUT: JP {1Y} JUMP TO NEXT
21
MINUS
Arithmetic

Replaces the top stack entry with its two's complement.
One stack entry/One stack entry.
Signed integer arithmetic.

LD HL,0 ;GET ZERO
POP DE ;GET NUMBER
AND A ;RESET CARRY
SBC HL,DE ;0-NUMBER
PUSH HL ;PUSH 25 COMPLEMENT
18
MOD

Arithmetic

Lo THIADET INTIRPRT TIVE 1T ANEUALET

Function:

Input/Qutput;
Usage:
Z80 Code:

Bytes:
Notes:

Class:

Function:

Input/Qutput:
Usage:

Code:
Bytes:
Notes:

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Does a signed divide of the second stack word by the low
order byte of the top stack entry. Replaces both entries
with the 8-bit remainder expanded to 16 bits,
Two stack entries/One stack entry.
Signed integer arithmetic.

EXX ;SAVE IR

POP DE ;GET 8 BIT DIVISOR

POP BC ;GET 16 BIT DIVIDEND
CALL S$ISIGN ;FIELD INPUT SIGNS
CALL S$US/ ;DIVIDE 16X8

PUSH BC ;:PUSH REMAINDER
EXX :RESTORE IR

21
No test is made to insure a valid 8-bit divisor.

MODE

System Variable

Pushes to the stack the address of the system mode
variable.

None/One stack entry.

Used to access the system variable which contains the
system execution state,

Not applicable.

9

In the SYS user block. The code body contains an offset
number and there is no return address. See *SYS. It MODE
contains O, the execute mode is in effect and if 1, the com-
pile mode is in effect. MODE is a CVARIABLE and must
be referenced using keywords for byte-length addressing.

MODU/

Arithmetic
Does a signed divide of the second stack entry by the low-
order byte of the top stack entry. Replaces both entries
with the positive 8-bit remainder expanded to 16 bits as the
second stack entry and the 8-bit quotient expanded to 16
bits as the top stack entry.
Two stack entries/Two stack entries.
Signed integer arithmetic,

EXX ;SAVE IR

POP DE ;GET 8 BIT DIVISOR

Dyies:
Notes:

C'lass:
Function:

Input/Output:

Usage:
£80 Code:

WO WOt ANLY Mutidl Wuosi ey (o8

ror Be sGET 16 BIT DIVIDEND
CALL SISIGN ;FIELD INPUT SIGNS
CALL $Us/ ;DIVIDE 16X8

CALL $OSIGN ;FIELD OUTPUT SIGN
PUSH BC ;REMAINDER TO STACK
PUSH HL ;QUOTIENT TO STACK
EXX ;RESTORE IR

25
Does not test the divisor to insure it is a valid 8-bit
number. No test is made to insure a valid 8-bit quotient.

MOVE

Utility
Maove the region of memory specified by the starting ad-
dress of the third stack entry and the ending address of the
second stack entry to the memory region specified by the
starting address of the top stack entry. Removes all three
entries,
Three stack entries/None.
Used to move memory data.
EXX ;SAVE IR ’
POP DE ;NEW STARTING ADDRESS

POP HL ;OLD ENDING ADDRESS
POP BC ;OLD STARTING ADDRESS
AND A ;RESET CARRY

SBC HL,BC ;COUNT -1

PUSH BC ;OLD STARTING

EX {SP},HL ;SAVE COUNT—1

POP BC ;BC=COUNT -1

EX DE HL ;HL=NEW STARTING
PUSH HL ;SAVEIT

AND A ;RESET CARRY

SBC HL,DE ;MOVE FROM TOP?
POP HL ;GET IT BACK

IR NCBOTTOM NO, BOTTOM

EX DE HL ;HL=0LD START

INC BC ;BC=COUNT

LDIR ;MOVE THE BLOCK
QUTM: EXX ;RESTORE IR

JP {1y} ;RETURN TO NEXT
BOTTOM: ADD HL,BC ;NEW ENDING ADDRESS

EX DE HL ;OLD STARTING ADDRESS
ADD» HL,BC ;OLD ENDING ADDRESS
INC BC ;BC+COUNT

[RN TR ER L NI IR N R L Th L LD S RE

Bytes:
Notes:

Class:
Function:

Input/Qutput;
Usage:
Z80 Code:

Bytes:

Formal Definition:

LIZDR SMOVE THE BLOCK
JR OuUTM JJUMDP TO RETURN
40
The memory blocks may be overlapping, but this routine
will correctly move them,

NEXT

Program Control Directive

Encloses a jump to the inner interpreter NEXT routine in
the dictionary

None/None.

Used to terminate keywords defined using machine code.
*# E9FD ;FDE9 INSTRUCTION {LITERAL}

. ;ENCLOSE THE JP {IY}

16

HEXE:ENEXTHEJFDE, W;

Class:
Function:

Input/Output:

Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/QOutput:

Usage:

NOT

Logical

Inverts the logic state of the flag at the top of the stack.
One stack entry/One stack entry.

Inverting the results of relational test or other flags.

POP HL ;GET THE FLAG
LD AL ;MOVE LOW BYTE
OR H ;OR IN HIGH BYTE
LD DE,0 ;ASSUME FALSE RESULT
JR NZ,0OUT :JIF NONZERQO, FALSE
INC E ;MAKE TRUE
QUT: PUSH DE :FLAG TO STACK
20
OCTAL
System

Sets the system variable BASE to 8 decimal to evoke octal
1/Q.

None/None.

Evokes radix 8 1/0.

280 Code:

Hytes:

¢ laus:
Tuncton:

lnput/OQutput:

Usage:
/B0 Cade;

Bytes:

Clans:
l unction:

Input/Cutpat:

Usage:
Code:

Bytes:

Formal Definition:

WO WETATS AR el v el 0 g07

LI_) A8 JGET 8 DECIMAL
1.0 {BASE},A ;STORE IT AT BASE
15
OVER
Stack

Duplicates the second stack entry and pushes it to the top
of the stack.

Two stack entries/Three stack entries,

Control of stack order,

POP HL :GET TOP
POP DE ;GET 2ND
PUSH DE ;RESTORE 2ND AS 3RD
PUSH HL ;RESTORE TOP AS 2ND
PUSH DE ;RESTORE 2ND AS TOP
15
PART
170

Pops an address from the stack and displays eight numbers
to the operator from the 8 bytes following the initial ad-
dress. The address pointer is left on the stack.

One stack entry/One stack entry,

Used by DUMP to display memory.

SPACE ;ISSUE SPACE TO DISPLAY

*C# 8 ;LOOP ENDING INDEX

0 ;LOOP STARTING INDEX

*CDO :INITIALIZE LOOP

DUP ;DUPLICATE POINTER

C@ ;GET MEMORY BYTE

*Cg3 ;SET TO DISPLAY 3 CHARACTERS
R ;DISPLAY AT LEAST 3

1+ ;INCREMENT MEMORY POINTER
*CLOOP F3 ;LOOP UNTIL DONE

33

:MPARTESPACENSECECDONDUPECZ N3E.RE1+ BCLOCOPE;

Class:

R>

Interstack

TP TFINEATACIS NI Br T IVe L AMNILIALIT T
Function; Pops the word at the top of the return stack and pushes it
to the stack,
Input/Qutput: One return stack word entry/One stack entry,
Usage: Retrieval of temporary data stored on the return stack or
direct control of return stack addresses. '
Z80 Code: LD L{IX+0} GET RETURN LOW BYTl
INC KX ;ADJUST RSP _
LD H,{IX+0} ;GET RETURN HIGH BYTR
INC IX ;ADJUST RSP
PUSH HL ;PUSH TO STACK
Bytes: 21
RROT
Class: Stack
Function: Rotates the top three stack entries right in an infix cyclic
sense (input A B C into C A B with B the top stack entry).
Input/Qutput: Three stack entries/Three stack entries.
Usage: Control of stack order.
Z80 Code: POP HL ;GET TOP
POP DE ;GET 2ND
EX {5P},HL ;TOP TO 3RD
PUSH HL :3RD TO 2ND
PUSH DE ;2ND TO TOP
Bytes: 15
S*
Class: Arithmetic
Function: Does a signed multiply of the low-order byte of the second
stack entry by the low-order byte of the top stack entry
and replaces both entries by the 16-bit product.
Input/Qutput; Two stack entries/One stack entry.
Usage: Signed integer arithmetic.
Z80 Code: EXX ;SAVE [R
POP BC ;GET FIRST 8 BITS
POP DE ;GET 2ND 8 BITS
CALL $ISIGN ;FIELD INPUT SIGNS
CALL suUs* ;MULTIPLY 8X8
CALL SOSIGN JUSTIFY RESULT
PUSH HL ;QUOTIENT TO STACK
EXX ;RESTORE IR

Bytes:

24

Notes:

Clags:
l'unction:

Input/Qutput:
Usage:

C'ode:

Bytes:

| ormal Definition:

WOIMS WO AN MO Wl tes

No test i9 made to (nsure that either stack entry 1s a valid
8=bit number,

SCODE

Program Control Directive (Headerless)

Resets the code address of the latest keyword in the CUR-
RENT vocabulary to the address at the top of the return
stack,

One return stack word entry/None,

Used by the system to load the generic code address for
defining words at execution time and then return to the
outer interpreter,

R> ;GET RETURN ADDRESS
CAl ;STORE IT AS CODE ADDRESS
8

WSCODENR> BCAIN;

Clags:
Tunction;

Input/QOutput:

Usage:

£80 Code:

Bytes:

Class:

Function:

SIGN

17O

Pushes the ASCII code for a minus sign to the stack (in the
low-order byte position) if the top byte on the return stack
is two's complement negative.

One return stack byte entry/One return stack byte entry
and zero or one stack entries,

Adds a leading negative sign to the stack string number if
the original binary number was negative. Used in de-
signing formatted displays.

BIT 7{IX+0} ;GET RETURN SIGN BIT

IR Z,0oUT ;IF ZERQ +, EXIT
LD L,2D ;— ASCII CODE
PUSH HL ;MINUS SIGN TO STACK
OUuUT:)% {Iy} JUMP TO NEXT
19
SINGLE
System

It the top stack eniry is a valid 8-bit number {the high-

170 1HEEALDY INTTRERT TIVT T ANDCTIACED

Input/Output:
Usage:

780 Code:

Bytes:
Notes:

Class:
Function:

Input/OQutput:

Usage:
Z80 Code:

Bytes:

Class:
Function:

Input/Output;

Usage:

Code:
Bytes:
Notes:

order byte is all zeros or all ones), a False flag is pushed to
the stack. Otherwise a True flag is pushed to the stack.
One stack entry/Twe stack entries.

Used to determine storage or display requirements for
stack numbers.

POP HL :GET WORD

PUSH HL ;RESTORE WORD

LD LH :IF SINGLE, 0 OR FFFF

LD AH ;GET HIGH BYTE

AND A ;TESTIT

R Z,0uT ;IF ZERO, PUSH FALSE

INC HL :SEE NOTE BELOW
OUT: PUSH HL ;PUSH FLAG

19

If the top byte is single, the INC HL instruction will yield a
False flag since FFFF+1=0 if and only if the original value
of H was FF.

SPACE
/0
Echo displays a space to the display.
None/None.
Display formatting.
LD A,20 :GET ASCII SPACE CODE
CALL $ECHO ;ECHO DISPLAY IT
15
STATE

System Variable

Pushes to the stack the address of the system state variable.
None/One stack entry.

Used to access the system variable which contains the com-
piler immediate state.

Not applicable,

9

In the SYS user block. The code body contains an offset
number and there is no return address, See *SYS. STATE
is 1 set if a compiler immediate keyword is located in the
compile mode and is 0 set when the keyword is executed.
STATE is a CVARIABLE and must be referenced using
keywords for byte-length addressing.

€ lass
{unctlon:
Input/Qutput:
lnage:

£80 Code:

Pytes:

C'lass:
l'unction:

Input/Qutput:
Code:

Dytes:
Notes:

Formal Definition:

WL O ANL BMORE WORES 171
SWAP

Stack

Interchanges the order of the top two stack entries.
Two stack entries/Two stack entries,

Stack data management.

POP HL ;GET TOP
EX {SP},HL ;TOP TO 2ND
PUSH HL ;2ND TO TOP
13
THEN

Compiler Directive {Immediate)

Pops the address from the stack, computes the difference
between this address and the current free dictionary loca-
tion as the relative jump byte, and stores the byte at the ad-
dress popped from the stack initiafly.

Used to terminate a branch construct in the compile mode.

HERE ;GET FREE ADDRESS

OVER ;COPY JUMP ADDRESS OVER HERE
- ;COMPUTE JUMP BYTE

SWAP ;REVERSE ORDER

! :STORE JUMP BYTE

20

Loads a previously reserved byte in the dictionary. Define
THEN as a normal keyword, then define ELSE and WHILE
as IMMEDIATES, and finally make THEN an M-
MEDIATE.

iETHENEHEREBOVERE — MSWAPECIN,;

Class:
Function:

Input/Qutput:
Usage:
Z80 Code:

TYPE

1/0
Pops the top stack entry which points to a string consisting
of a length argument followed by that many ASCII
characters, Qutputs the string characters io the display.
One stack entry/None.
Display of system messages to the operator,

POP HL ;GET STRING ADDRESS
$TYPE: 1D E.{HL} ;GET LENGTH
LOOP: INC HL ;BUMP POINTER

172 LHREADLLY INTTUPRE R IVE T ANGAGTE

LD A{HL} ;GET CHARACTER
CALL $ECHO ;ECHO DISPLAY IT
DEC E s DECREMENT LENGTH
JR NZ,LOOP IF LENGTH 0, LOOP
Bytes: 20
VARIABLE
Class: Defining Word
Function: Creates a word-length variable dictionary keyword entry
whose name is the token following VARIABLE and whose
initial value is the value popped from the stack.
Input/Output: One stack entry/None, ’
Usage: Defining and initializing word-length named variables,
Z80 Code: CONSTANT :CREATE HEADER AND INITIALIZE
SCODE :REPLACE CODE ADDRESS AND EXIT
PUSH DE :PUSH WORD ADDRESY
TP {1y} ;JUMP TO NEXT '
Bytes: 15
Formal Definition:
:IBVARIABLEMCONSTANTR; CODEMN....
Notes: The “...." is the assembly or machine code,
VOCABULARY
Class: Defining Word
Function: Creates a vocabulary keyword dictionary entry whose
name is the token following VOCABULARY, with an ini-
tial link to the latest entry in the CURRENT vocabulary.
and which, when the vocabulary name is executed, sets the
system variable CONTEXT to the link address.
Input/Cutput: None/None.
Usage: Defining vocabularies,
Code: <BUILDS ;CREATE THE HEADER AND BODY
ENTRY ;GET CONTEXT LINK
. ;STORE IN BODY
DOES > ;RESET CODE ADDRESS, BODY AND EXIT
CONTEXT ;GET CONTEXT ADDRESS
! ;STORE LINK TO CONTEXT
Bytes: 22

Formal Definition:

:EBVOCABULARY M < BUILDSHENTRY M, @DOES > BMCONTEXTE!R;

[TTTY
lunction:

input/Qutput;

Usage:
€ ode:
lhytes:
Notes:

C'luss:
F'unction:

Input/Qutput:

Usage:
Code:

Bytes:

Formal Definition:

WIS WORE ANEY MO Wi il 173
WAIT

Utllity

If a keyboard entry {any) has been received, a loop is
entered waiting for the next keyboard entry.
None/None.

Used to hold the display screen fixed to allow inspection.
See notes.

See notes,

A system specific keyword which first reads the keyboard
port without an initial rest. If an entry has been received,
the keyboard is sampled until the next eniry is received.
No keyboard return is expected. The routine should not
manipulate the cursor but should simply await the next en-
try. Very system specific,

WHILE

Compiler Directive (Immediate)

Encloses the word address of the program control directive
*WHILE in the dictionary. The top two stack entries are
swapped, the top stack entry is popped. The offset from
this address to the current free dictionary location is
enclosed in the dictionary as a relative jump byte. The
function also pops the top stack entry, computes the dif-
ference between this address and the current free dic-
tionary location and stores the low-order byte to the ad-

dress popped from the stack as a relative jump byte.
Two stack entries/None,

Used to terminate a loop construct containing a *WHILE.

SWAP ;CHANGE STACK ORDER

XX ;WORD ADDRESS OF *WHILE

END, ;STORE ADDRESS AND OFFSET FOR BEGIN
THEN ;5TORE OFFSET FOR IF OR ELSE

20

{EWHILEMSWAP 83X X BEND, BTHENE; BIMMEDIATE

Notes:

Class;
Function:

See definition for THEN.

XOR

Logical
Replaces the top two stack entries by the logical exclusive

18 THRUATN INTLRPKE DIV L ARGLAGEY

Input/Qutput:

Usage:
780 Caode:

Bytes:

Class:

Function:

Input/Output:

Usage:

Code:

Bytes:

Formal Definition;
:H[EXXH, EsDETOKENEHERERC @ 1+ BDPHE + |l BIMMEDIATE

6.2 A Classy Cross-Reference

What would you expect to find in a classy cross-reference? A cross-reference
by class, of course, Following are all the keywords arranged alphabetically by

class.

or of the entries on a bit-by-bit basis,
Two stack entries/One stack entry.
Logical operations.

POP HL ;GET TOP WORD

PQP DE ;GET 2ND WORD

LD AL :MOVE TOP LOW BYTE
XOR E ;XOR IN 2ND LOW BYTL
LD LA ;MOVE TO RESULT

LD AH :GET TOP HIGH BYTE
XOR D ;XOR IN 2ND HIGH BYTH
LD HA ;MOVE TO RESULT
PUSH HL :RESULT TO STACK

19

Compiler Directive (Immediate)

Encloses the literal handler *[in the dictionary, changes
the token separator to] and scans the next token from the
input buffer and then encloses the token in extended
header format in the dictionary.

None/None.

Compiling literal strings into secondary keywords or
display formatting.

4 .WORD ADDRESS OF *{ {LITERAL}

, ;ENCLOSE IT IN THE DICTIONARY
*C# 5D ;GET THE SEPARATOR |

TOKEN ;MOVE TOKEN TO THE DICTIONARY
HERE ;GET START OF TOKEN

ce :TOKEN LENGTH

1+ ;ADDRESS OF LENGTH OF TOKEN
DP :DICTIONARY ADDRESS

+1 ;ENCLOSE TOKEN IN DICTIONARY
31

Anthmetic Keywords

*/
*/MOD

/MOD
I+
1__

2*

2+

Compiler Directives

+LOOP
BEGIN
C+10O0P
CDoO
CLEAVE
CLOOP
DO
ELSE

('ompile Mode Terminators

JCODE

Defining Words

<BUILDS
CCONSTANT
CONSTANT

WP WOIKEP ANTE MUIRE W HL 179

z2—

27

ABS

D*
D/MOD

MIN
MINUS
MOD
MODuU/

END

IF
LEAVE
LOOP
THEN
WHILE

CREATE
CVARIABLE
VARIABLE
VOCABULARY

170

Interstack

>
#

<#

ADUMP
APART
ASCII
C?

<R
C<R
Cl>
CI>
CK>

Literal Handlers

Logical

#
*C#
*l

AND
IOR

Memory Reference

CLEAR |
CRET +!
DISPLAY 0SET
DUMP 1SET
ECHO @
KEY
PART
SIGN
SPACE
TYPE I"ogram Control Directives
*+LOOP
*C+LOOP
*CDO
*CLEAVE
*CLOQOP
*DO
*ELSE
CR> *END
I>
I>
K>
R=
Relational
0<
0 =
<
-
Stack
2DUP
20VER
2SWAP
CJOIN
?gT CSPLIT
R DROP

YIRS

Cl
C+!
COSET
CISET
ce

*IF
*LEAVE
*LOOP
*WHILE
DOES >
NEXT
SCODE

DUP

LROT
OVER
RROT
SWAP

YL

AT MURH W™ |77

178 THREADETY INTFRPIEEIVI TANGLUAGT

Subroutine

$CRLF
$ECHO
$ISIGN
$KEY
$OSIGN

System

"{tick)
*3YS
+4SP
,{comma)
—SP

RS

1SP
ABORT
ASPACE
BINARY
C,

System Directives

DEFINITIONS

System Variables

BASE
COMPILER
CONTEXT
CURRENT

sUD*
sUS*
sUD/
suS/

CA!
DECIMAL
DO,

END,
ENTRY
EXECUTE
HERE
HEX
OCTAL
SINGLE

DP
LBP
MOCDE
STATE

re——E R R R e L

WIS WORIT ANDY MO WO 179
Hinlity
ERASE
FILL

MOVE
WAIT

Vocabulary

CORE
FORGET
IMMEDIATE

0.3 Sum Total

There are roughly 150 user-available keywords in the design presented. The
memory requirement to implement the keywords in the Section 6.1 description
i about 3200 bytes. The total design, including the inner interpreter, the outer

interpreter, and the routine of Section 5.3, can be easily coded in less than 4 K
hytes, Well, maybe not easily, but it will fit.

180 THREADFIMINTIRPRETIVE T ANGUALL A

7 | Extension Please

There are any number of extensions that may be added to
the TIL language. All depend only on defining the problem,
defining the keywords and extending the language. The utili-
ty of the extension is the sole criteria. For example, an im-
portant keyword in my system is an ASCIT file called

SANDI, It contains our anniversary, her birthday, my
mother-in-law’s phone number, and other critical data-hase

parameters. One can never be too safe.

Some of the more useful extensions to the basic (not BASIC) TIL will be con-
sidered in this section, Incorporation of all of these extensions will extend the
TIL from a language to a programming system, The extensions are not totally
unrelated among themselves, although it is possible to incorporate some
features and not others. The level of presentation of the material in this section
is higher than in previous sections. The reader is assumed to have a working
knowledge of more advanced software concepts and a broader knowledge of
hardware interfacing.

7.1 Introductions

The majority of the extensions to the TIL are predicated on a system con-
figuration of 16 K bytes of programmable memory and a floppy disk/con-
troller combination, It is presumed that a more sophisticated operating system
is available to support the system input/output to the disk system. The system
designer (you) is faced with many more decisions on how to configure the
overall software system. Depending on the idiosyncrasies of the disk system
designer, a total rewrite of the disk controller software may be in order. This
generally arises because the equipment manufacturer presumes that the disk

{THREN TTTALT 11

perating system ghould reside at some sirange location in memory, and the
hootstzap read-only memory he supplies does not contain all of the fundamen-
Ll disk input, output and contro! functions.

ihe three main extensions to be considered are an assembler, a virtual
imory system, and an editor. These three functions are complimentary but
i autlon is advised; the functions are only similar in nature to what their names
wnply. This will become clearer when the functions are discussed.

A TIL assembler is different from the normal concept of an assembler. 1t still
translates from “assembly language” to “machine language” but it has restric-
Hons on how programs can be structured. Rather than using a symbol table to
resolve forward and backward references, it passes addresses on the stack. It
vontains structured constructs to accomplish this semi-automatically. This is
penerally adequate for resolving references in the short programs encountered
in TIL keyword definitions but not for general assembly language program-
ming. The target memory for the assembled code is the TIL dictionary since
the assembler is specifically designed for defining new keywords, The assembler
oxtension does not depend on the disk system and is very useful even in small
ayitems. The assembler is always evoked with the system in the execution
ingde rather than the compile mode, This is true even when the assembly
goutce code is disk resident and is loaded to the system to extend the language.

The TIL virtual memaory extension is a method for integrating a floppy disk
into the basic system. The disk is used to store both TIL source text and pro-
gram data. Disk accesses are accomplished in a manner that is totally
Iransparent to the operator. Source text on the disk may include both
primitive and secondary keywords that are assembled/compiled to the free
dictionary space when the source text is evoked. The primitive keywords in
the source text must contain totally relocatable code if defined using a *,” or C,
keyword, or they must be defined in assembly language (which allows reloca-
tlon by its very nature), A virtual memory system without an associated TIL
assembler is restrictive, Program data accesses are provided by the virtual
imemory system, but the data formatting is strictly application-dependent.

The TIL editor is designed to ailow generation and medification of TIL
source text files, Source text files allow individual keywords, classes of
keywords, or entire vocabularies to be stored in source form on the disk rather
than demanding resident TIL memory space. When the keywords are needed,
they can be loaded to the system and are compiled/assembled to the resident
dictionary. The editor is specifically designed to simplify source text manipula-
tion. Although it has limited general text editor features, it is not designed to
be the last word in an editor, If it is desired or required, it is certainly possible
to add general text editing features,

In discussing the extensions, [will usually give an overview of how to
proceed with the design, rather than a detailed discussion of a precise design.
[his is mostly a fallout of the hardware- specific nature of the designs. A Z80
assembler description is of limited use if you have some other microcomputer,
but the design approach is still similar. Note that, in order to proceed, the
slesigner of the assembler must be familiar with both the microcomputer and
the assembly language process. This is typical of all of the extensions; a degree
f sophistication is required to proceed with a design.

102 TEIREALELY INGLREWY T VE TANLLIAGL

7.2 Assemblers -

An extension of great utility is the TIL assembler. The assembler consiats of
a group of keywords which are usually spatially intermixed with the core
language but contained in a separate vocabulary. A TIL assembler materially
eases the generation of the full core language by allowing more easily
remembered keyword mnemonics to be used (instead of direct machine code}
in defining primitives. A TIL assembler is evoked in the execute mode and the
system never enters the compile mode while the assembler is in effect.

A TIL assembler is very different from the usual concept of an assembler,
The TIL assembler is specifically designed to allow the addition of keywords to
the TIL rather than to produce stand-alone programs or subroutines, The
target memory for the assembler is the free dictionary space since this is where
keyword extensions are always added. The TIL assembler does not use a sym-
bol table but rather uses the stack to store addresses needed to resolve both
forward and backward references. This is generally adequate given the brevity
of most keyword definitions.

7.2.1 Assembler Overview

The problem with describing the assembler is the machine-specific nature of
the beast. Although the general design procedure for producing an assembler is
universal, the product is not. The design techniques will be illustrated relative
to the Z80.

The assembler for the threaded interpretive language is a translator. It
translates more easily remembered instruction mnemonics into machine code.
Like all TIL code entry, the assembler is a reverse Polish notation entry design.
A non-TIL assembler entry usually consists of a line number, an optional
label, an instruction mnemonic and one or more operands. The operands are
usually register designators, numbers, or labels. The TIL assembler does not
support line numbers and demands that the operands precede the instruction
mnemonic. Only limited label operands are supported.

The mnemonics for the TIL assembler will not necessarily be those suggested
by the manufacturer of the microprocessor. The manufacturer’s mnemonics
generally presume a symbol table which can be used to resolve ambiguities
within a single mnemonic instruction regarding the addressing mode. It is far
easier in a TIL to assign individual mnemonic names to the various addressing
modes. As an example, the Zilog mnemonic ADD will generate 1-, 2-, or
3-byte instructions for implied register addressing, immediate addressing,
register pair addressing and indexed addressing. In the TIL, separate
mnemonics are used to evoke the different addressing modes.

Strictly from personal preference, the mnemonics (keywords) that I use for
the Z80 are all three letters followed by a comma. The instruction names are a

FRTENWEN TTT AN (8

t1oms-breed of Z80 and 8080 mnemonics and a personal quirk that names
should be related to the action and the addressing modes. For example, the
miemonics STA (store accumulator) and LDA (load accumulator) a la the
HO.‘_}O are very descriptive and are retained. The mnemonic EX DE,HL (Z80) or
.-.K_’.('I IG; (8080) that interchange the DE and HL register pair is simplified to
XDH,. The Z80 mnemonic suggests that other register pairs could be inter-
thanged by using different operands {not true) while the 8080 mnemonic does
not Indicate which items are to be exchanged (and there are several with the
/80), 1 will leave the design of your mnemonics to you but will perforce use
my own in the design presentation.

7.2.2 Architecture and the Assembler

Any assembler must make use of the central processing unit architecture to
define a reasonable set of mnemonics. The machine-code instructions of a
#iven processor generally have a regularity that results from the logic design of
the unit. Individual bits within the machine instruction determine the opera-
tlon type, the register(s) involved, the conditional options depending on the in-
ternal status, and the addressing mode. Some central processing units are very
regular in their architecture (the 6809) and some are very irregular {the Z80).
The goal is to find the regular instructions that will allow the definition of in-
nlruction classes. A careful inspection of the manufacturer's documentation
will most often reveal this regularity. Almost all of the regular instructions in a
piven processor can be built from bit mask patterns, The bit patterns represent
registers, conditions, operation types, or other parameters used by the central
processing unit to direct its internal operations.

To illustrate this pattern regularity, the Z80 internal architecture will be
briefly described first. Figure 7.1 shows the main register of the Z80. The

. H L H’ L
Figure 7.1: Z80 processor registers. D E | E
B C B’ C
A F A F’
IX
Y
PC
sP
I R

reg?sters A, B C D, E H, and L may be individually addressed as 8-bit
registers with the A register as the accumulator. The register pairs AF, BC, DE,
HL, IX, IY, 8P, and PC are 16-bit registers with the HL, IX, and IY registers

TR AL AINCTRLTT OO LT TR YL L PRI A AT T

serving as accumulators with limited scope. The F register is a program status
word that contains flag bits which are set by the central processing unit, The
state of the bits depends on the results from executing given instructions.

Ignore for the moment the addressing modes of the £80; the mask patterns
that address registers, register pairs, and condition codes in the Z80 are
depicted below in table 7.1:

Pattern Register Register Pair Condition
00 B BC NZ (non-zero}
001 C DE Z {zero)
10 D HL,IX, 1Y NC (nen-carry)
011 E AF,SP CY [(carry}
100 H PO (parity odd)
101 L PE (parity even)
110 M@X.@Y

or default P positive)
111 A N (negative)

Table 7.1: Mask patterns that address registers, register pairs, and condition codes,

Note that the register pairs are 2-bit masks rather than 3-bit masks. So what
are M, @X, and @Y you ask, and why are there several register pairs evoked
by the same mask pattern? The addressing modes just landed.

The designation M (8080 derived), or in Z80 parlance {HL}, refers to the
fact that the HL register pair can be used as a pointer to a memory lecation
which can be accessed like a register (implied register pair indirect addressing).
The Z80 allows the IX and IY registers to be used to determine an effective ad-
dress using the value in the register plus a signed displacement embedded in the
instruction. This is a form of indexed indirect addressing that is evoked by @X
or @Y, as opposed to the Z80 {IX+d} or {IY+d}. The form of these instruc-
tions consists of 1 byte (DD for an @X or FD for an @Y}, the first byte of the
equivalent M instruction, the signed displacement byte (—126 to +129), and
the second byte of the equivalent M instruction, if applicable, When used in
this fashion the M, @X and @Y, along with displacement in the later two
cases, specify a memory location which is accessed as if it were an 8-bit
“register”,

When the HL, IX or IY keywords are used as register pair designators, the
instruction formats for all three are the same except that the IX instruction is
preceded by a DD byte and the IY by an FD byte. The mask patterns for all
three register designators are the same, however.

One further factor is important relative to the mask patterns. The register
pair mask patterns always fall in bit position bSb4 in the instruction {with b0
the least significant bit). The condition code patterns always fall in positions
b5bab3 and the register patterns may be in positions bSb4b3 or b2b1b0. These
facts are important when the assembler is designed.

IxURIL N T AN 165

The regularity of the mask patternn for register designations and condition
flaga is typical for most processors, This regularity often extends into instruc-
tion groups as well. For example the entire Z80 ALG (arithmetic and logic
group) of instructions are of the form:

b7 b6 b5 ba b3 b2 bl bo

Register 1 0 - f - - r =
Immediate 1 1 - £ - 1 I 0 —~ n -

Ilere r is one of the 3-bit register masks, f is a 3-bit function code and n is an
8 bit byte following the instruction, The arithmetic and logic register instruc-
lions perform some operation between the register designated by r and the A
register (accumulator) and leave the result in the A register and/or the condi-
lion flags of F set appropriately. The immediate arithmetic and logic instruc-
tions perform similar operations using the immediate byte instead of a register,
The f-bit mask pattern evokes the following functions:

f Function
000 Add
001 Add with carry
010 Subtract
011 Subtract with carry
100 AND
101 Exclusive OR
1190 Inclusive OR
111 Compare

Other microcomputers have similar instruction designator bits.
The object of the assembly keyword designs is to produce coding sequence
from input of the form:

keyword

operand.1l keyword

operand.1 operand.2 keyword

operand.1 operand.2 operand.3 keyword

The operands are either register designations, condition codes, or numbers, all
of which leave numbers (or masks) on the stack. The keywords are the instruc-
tion mnemonic and they expect any required input data on the stack. The
keywords combine the operand masks with the basic instruction ma?k§ as ap-
propriate and enclose the resulting machine code instruction in the dlcho'nary.
The mnemonics produce 1-, 2-, 3-, or 4-byte machine-code instructions in the
Z80 case.

Since the assembler always operates in the execute mode, numbers entered
as operands are always pushed to the stack. By defining the register and condi-

1o LHIEATTEY INTERIRE TIVT TANGUAGTT

tion codes as CCONSTANTS, the mask patterns can also be pushed to the
stack. The mnemonic keywords then evoke instruction skeletons, add in mank
patterns as appropriate, and enclose the resuits in the dictionary. If the instrue
tions are regular, it is usually possible to define the keywords using a high-
level defining word. In this case the specitic mask is stored with the mnemoni¢
keyword and the generic instruction build code follows the defining word (see
1BYTE of Section 4.5.5 as an example).

7.2.3 The Z80 Assembler

The code for producing a subset of the Z80 assembler will be given in the
following pages. It is not a “complete” assembler since some possible Z80 in-
structions are not produced. Generally this is because more than one form of
the instruction exists.

One of the more difficult aspects of the design of the Z80 TIL assembler is
designing a method for handling the indexed addressing mode. The inclusion
of these instructions considerably complicates the design of keywords. This
will become obvious when the design is presented. It is possible to produce a
less complex assembler by totally ignoring the indexed instructions. They are
still available via the *,” and C, keywords if needed.

There are several ways to present the design: by addressing mode, by func-
tional group, or by the number of bytes in the instruction. Because of the ir-
regularity of the Z80 instruction set, a mixture of the different design ap-
proaches will be used. The result will be total coverage but in a nonstandard
way.

7.2.3.1 The Operands

The object of the game at this point is to define the operand keywords. The
design is not complex, Consider the following:

N ESl g P P P

OMCCONSTANTEB
1ECCONSTANTEC
2BCCONSTANTED
3MCCONSTANTEE
4WCCONSTANTEH
SECCONSTANTHEL

IXEENAl T A TP

oMCCONSTANTEM
7RCCONSTANTHEHA

QOMCCONSTANTEBC
TOMCCONSTANTEDE
20BMCCONSTANTEHL
J0MCCONSTANTMAF
JOMCCONSTANTMSP

COMCCONSTANTEINZ
08ECCONSTANTEZ
10MCCONSTANTENC
18EMCCONSTANTICY
20BCCONSTANT HPO
28MCCONSTANTEIPE
JOMCCONSTANTHEP
JBMCCONSTANTEBN

Yieveral points should be noted, The carry and minus keywords are defined as
CY and N to prevent contention with register designators. The 8* keyword
will be used to shift the register masks to position b5b4b3 from the b2b1b0
position of the definitions. The use of A, B, C, D, and E as keyword names in
the ASSEMBLER vocabulary will force the use of leading zeros during
rquivalent hexadecimal number entry. There are alternate naming conven-
tons that could be used to prevent these problems. The choice is yours, but I
personally prefer C as the register designator rather than C. or Cf or some
other convention,

The register pair keywords @X and @Y will load the initial byte which in-
dicates the index mode and will leave a negative-valued mask on the stack,
The mask is designed such that the low-order byte position contains a positive
07 (the mask pattern for M) but the high-order bit is set to 1. The negative

value is easy to test to determine if the index mode special store of the displace-
ment value is required, Thus:

:B@XEDDRC, Ms007H;
:H@YRFDMC, M8007H;

The register pair keywords are simply:

:EIX@DDEC, BHLE;
:BIYNFDEC, EHLE;

Having the operand enclosing the indexed byte simplifies the design
somewhat. Trouble arises in only one case with this design.

188 [HREARLESANTLRPRETIVE T ANGLUACT

7.2.3.2 The Constants

There are several Z80 instructions that have no required operands or are ir-
regular enough to preclude the use of operands, These instructions are either 1
or 2 bytes long but the first byte of the 2 byte instructions is always hexa-
decimal ED. The 1-byte instructions are defined using the 1BYTE defining
word of Section 4.5.5. The definition is:

:M1BYTEB < BUILDSEC, MDOES> BC@WC, K;

The mnemonic keywords are then defined as:

3FR1BYTEMCCE, Complement carry flag
AFEIBYTEEMCLA, Clear accumulator { XOR A}
2FE1BYTEMCPL, Complement accumulator (1's complement)
27W1BYTERDAA, Decimal adjust accumulator

F3 M1BYTEMDSI, Disable interrupts
FBE1BYTEMENI, Enable interrupts

76 1BYTEMHLT, Halt

cOM1BYTEERNOP, No operation
A7H1BYTEMRCEF, Resel carry flag { AND A}
37H1BYTEMSCEF, Set carry flag
CoHl1BYTEMRET, Return from subroutine
OSEIBYTEMXAA, Exchange AF and AF
DomiBYTEEXAL, Exchange all three register pairs
EBEIBYTEMXDH, Exchange DE and HL

Two-byte instructions are defined using the high-level defining keyword:

:H2ZBYTES B < BUILDSEC, MDOES> BEDEC BC@EC N,

With this defining keyword, the mnemonic keywords are:

46 2BYTEEIMO, Set interrupt mode 0
56M2BYTEMIM1, Set interrupt mode 1
SEM2BYTEMIM2, Set interrupt mode 2
44M2BYTEWINEG, Complement A (2's)
4DM2BYTESRTI, Return from interrupt
45E2BYTEMRTN, Return from non-maskable interrupt
6FE2BYTERRLD, Rotate left digit

67 H2BYTEERRD, Rotate right digit
57M2BYTEMLAL A=1
SFE2BYTEMLAR, A=R
AFEZ2BYTEMLRA, R=A
47H2BYTEBLIA, I=A

I NTTHRON TTYAR (RO

Yioveral of these nstructions are 8o useless (R=A) that they are included for
Jiill rather than wtility,

7.4.3.3 8-Bit Move Group

The 8-bit move group simply moves data around the machine in byte-sized
hunks, There are several addressing modes allowed,
lhe register to register move basic instruction is of the form:

b7 b6 b5 b4 b3 b2 bl b0

’

0 I — r — o r —

Ilere r and r” are register masks, and the " register is moved to the r register.
One of the “registers” may be M, @X, or @Y. There are ninety-one forms of
thin type — forty-nine involving only the 8-bit registers, fourteen involving the
indirect HL register (M) and twenty-eight involving the indirect indexed
registers (@X and @Y). The indirect indexed forms are 3-byte instructions and
all others are 1-byte instructions.

The sequence to assemble an instruction to move the M register to the C
rogister is:

CEMEMOV,H

The C register is input first to retain the infix notation form C = M, which
would equate C to the value of M, The sequence to assemble an instruction to
tnove the A register to the memory location whose address is four more than
the value in the IX register is:

4H@XEABMOV. B
The keyword MOV, is defined as:

:EMOV, BOVERMS* MOVERM + M40M + EC, W + B0 < MIFNC,
BTHENN;

[he OVERMS8* extracts the r register mask and shifts it over to b5bdb3. The
OVERM + then adds the r and r masks. The 40M + adds in the register-to-
register move mask and the C, encloses the result in the dictionary. At this
point the stack still contains at least the r and r' masks. Remember if @X or
@Y precede the MOV, the first DD or FD byte will have already been en-
closed prior to the execution of MOV,. The + M0 < adds the r and r’ mask and
leaves a true value on the stack if the result is negative. Only the @X or @Y

198 LEIRE AR Y INTIRPRETIVT TANGLUAG L

register masks are negative so that the IFC, MITHEN will drop the flag and
store the displacement only for the indexed indirect cases. One note should be
mentioned. There is no test to prevent using two M, @X, or @Y operands.
Using two M operands will assemble a 76 (HALT) instruction. Any other com-
bination leads to nonsense and should be avoided.

The instruction group to move a given 8-bit number to some register is of
the form:

b7 b6 b5 ba b3 b2z bl bo

o 0 —_ r — 1 1 0 - n -

Here n is the 8-bit number, The register may be the M @X, or @Y “register.”
The calling sequence is of the form:

dErEnEMVI B

Here d is the indexed displacement used only for the @X or @Y register op-
tions, r is the register, and n is the byte number. The keyword MV, is defined
as:

:EMVI, BOVERE3* M0l + HC, MSWAPEO< BIFESWAPEC B
THENMEC, H;

There are eight possible instructions of this type with the indexed forms being
4 bytes long and all others being 2 bytes long.

The Z80 has six instructions that move the A register to the memory loca-
tion whose address is the contents of the BC, DE, or HL register pair, or move
the memory location to the A register. Those involving the HL register pair are
evoked using the MOV, mnemonic keyword with M as an operand. The other
four instructions are all 1-byte instructions. These four instructions and two
other extended addressing instructions, which alse load or store to the A
register using the memory location whose address is embedded in the instruc-
tion, complete the 8-bit move group. One would like to evoke these six in-
structions via LDA, and STA, keywords. This can be done but at the expense
of some restrictions in the extended addressing mode. Specifically, a test is
made to see if the top stack value is 0000 {a BC operand result} or 0010 (a DE
operand result), rather than some other number that would indicate an ex-
tended address. This eliminates two out of sixty-four K memory locations
which could be addressed in the extended mode,

To use this approach, first define a keyword that will leave a True flag on
the stack only if the top stack entry is a BC or DE register pair mask. This
keyword can be defined as:

.BBCORDE@2DUPEBCH = BSWAPRDER=ME0ORN;

The four mask patterns involved are:

PXTINSICN PLEAN 19

b? b6_bS b4 bd ba bl ho

I oad ry

oOQ OO
=

l 0 0 «r, = 1
0 0 1 1 1
Hlore ‘0 O -~ 0

0 ¢ 1 1 0
I he keywords for the mnemonics are:

‘MLDA, BBCORDERIFROAN + BC, BELSEN3ANC, B MTHENE;
ESTA,BBCORDERIFEO02M + EC, HELSEN32EC, B, BTHENN;

Although this may appear unduly complex, it is the price one pays for an ir-
regular set of machine instructions.

7.2.3.4. 16-Bit Move Group

The 16-bit move group moves data around the machine in word-sized
hulnks. As in the 8-bit move group, there are several addressing modes.

The extended addressing, 16-bit move instructions load register pairs with a
word embedded in the instruction. The BC, DE, HL, and SP instructions are 3

bytes long while the IX and IY forms are 4 bytes long. The basic instruction has
the following form:

b7 b6 b5 b4 b3 b2 bl b0

0 0 —Iip — 0 0 0 1 — ny - -— Min -

Here rp i:? a register pair mask, n; is the low-order byte and n is the high-order
byte. This m.struction may be preceded by a DD or FD byte in the case of the
X or 1Y register designation, The calling sequence is:

rpEn@DM],

The DMI, {double move immediate} is fairly descripti i
. y descriptive of the action. Th
keyword DMI, is defined as: o0 ¢

:HDMI MSWAPEO1E +EC, H,1;

'The register pair to memory and memory to register pair move instructions are
fairly regular except that two forms exist for those involving the HL pair, The
odd forms of these two instructions are unfortunately both faster and shorter
than the regular forms and are the preferred forms. The register pair to
memtory move instructions are of the form:

AL FITRPALTEY INITRITRE TIVT 1T ANLUIALES

b7 b6 b5 b4 b3 b2 bl b0

Regular ED 0 1 «~rmp=-~ ¢ 0 1 1 — n, — = ny =
Irregular 0 o1 00 0 1 0 ~— n — — nyg —

The irregular HL form is different from the regular form and there is no leading
ED byte. The irregular form may be preceded by a DD or FD byte if the IX and
IY register pair is involved, The calling sequence for these instructions is:

nllrpBDSM,

The DSM, (double store to memory) keyword is defined as:

:ADSM, EDUFEHLE = RIFE22EC, BDROPERELSEREDBC, M43l +
BC ETHENS, B;

Note that this sequence will not allow the regular form of the HL move instruc-
tion to be assembled,
The memory to register pair instructions have the form;

b7 b6 b5 b4 b3 b2 bl bo

Regular ED
Irregular

by

' — Iy —_ — Ny —

1
ohn!_—.-—nﬂm

0 1 ~r,- 1 0
0O 0 1 0 1 0
The DLM, (double load from memory) keyword is called using the following
protocol:

rplinE@DLM,
The DLM, mnemeonic keyword is defined as follows:

:HDLM, RSWAPEDUPEHLE =EIFE2ABC, BDROPBELSENEDE
C,B4ER+ BC ETHENE NH;

Again the regular form of the instruction referencing the HL register cannot be
generated.

The Z80 has sixteen instructions to push 16-bit words from register pairs to
the stack and six instructions to pop 16-bit words from the stack to register
pairs. The instructions are of the form:

b7 b6 b5 bd b3 b2 bl BO

Push 1 1 =—r,—- 0 1 0 1
Pop 1 1 =-r,—- 0 0 0 1

These instructions may be preceded by the indexed byte indicator DD or FD.
The keywords necessary are part of a group of keywords that use the high-

IXEENDIIN FT AN 19y

level defining keyword deflned as follows:
- MIMASKE < BUILDSEBC, HDOES > BC@ESWAPEs "B+ AC, W,
I'he keywords are defined as:

C5E1MASK#PSH,
C1RIMASKBPOP,

7.2.3.5 Arithmetic and Logic Group

The arithmetic and logic group includes both 8- and 16-bit operations. The
accumulator for the 8-bit instructions is the A register, and for the 16-bit in-
structions is either the HL, IX, or IY register. Condition flags are contained in
I

There are eighty 8-bit instructions that operate on registers where registers
include the indirect M and indexed registers @X and @Y. The machine-code
forms for these instructions was given in Section 7.2.2. The mnemonic
keywords are defined using a high-level definition. The defining sequence is:

:MSALGHE < BUILDSEC, BDOES > BC@BOVERE
+HBC, M0o< BIFEC ETHENE;

SOMSALGEADD,
S8MBALGEADC,
90MsALGESUB,
98MBALGESBC,
AOMBSALGEAND,
ASHSALGEXOR,
BOMSALGEIOR,
BEMSALGECMP,

The generic code in the defining word encloses the displacement byte if the @X
or @Y forms are used,

The immediate forms of the 8-bit arithmetic and logic instructions are again
defined using a high-level keyword. Eight possible instructions can be
generated. The defining sequence is:

:HgIME <BUILDSEC,BDOES> EC@EC, HC, H;

CemSIMEADI,
CENSIMEACI,
DeMsIMESUL,
DESSIMESCI,

194 THREAINTT INTERPRUTIVE 1 ANCGLIACI

EcE8IMBANI,
EEMSIMEXOI,
FeMsIM BORI,
FEBSIMECPI,

There is nothing magic about the sequence, and the mnemonics are strictly
personal preference.

The 8-bit register increment and decrement instructions again zllow the ex-
tended definition of a register. The bit patterns for these instructions are:

b7 b6 b5 b4 b3 b2 bl bo

Increment 0 0 - r - 1 0 0
Decrement 1] 0 - r - 1 ¢ 1

The keywords are simply:

:HINC, BDUPES"M04H + BC, EIFEC, MTHENE;
:lDEC, ADUPMS* @osB+8C, BIFEC, NTHENE;

The 16-bit arithmetic instructions in the Z80 are:

BC DE HL SP X IY

Add to HIL 02 18 29 39 — -
Add to IX DD0o9 DD1¢ — DD39 DD29 —
Add to IY FD0O9 FD19 — FD39 — FD29
Add with carry to HL ED4A EDSA EDéA ED7A — -

Subtract with carry to HL ED42 EDs2 EDe2 ED72 — —

The problem with this instruction set arises in part from our definition of the
IX and 1Y keywords. The other part results from some type of indicator being
required for the indexed accumulator case. By defining the keywords such that
only the indexed keywords require two operands, a reasonable design results.
The following sequence of definitions will do the job:

:H@DAD, B9l +0C H;

;DAL BSWAPEOVERE = BIFE —1EDPE + !ETHENEBDAD, R;
:lDAC, BEDBC, B4AN + WC, H;

:WDSC, BEDRC, R428+ B . H;

The double-add indexed instruction moves the dictionary pointer back if an
LXMIX or an [YBIY operand sequence is input, since in this case two index
bytes are incorrectly enclosed in the dictionary.

Since the Z80 does not directly support a double subtract without carry in-
structions, an instruction of this type is generated by defining the sequence:

:HDSB, BEDAYE B42E +HC,H;

PYTTREON PTTARD (98

i he aequence EIDA7ER, encloses Flrat the A7 byte and then the ED. The A7 in-
atingtlon in o ABANID, instruction which resets the carry flag but leaves A un-
1 hanged. (This instruction also exists as RCF,.)

{ he technique of defining macroinstructions, such as DSB, is very useful. It
in (juile common in microcomputers to encounter sequences of instructions
which occur regularly. In the 8080, for example, it is possible to define a dou-
i+le length subtract instruction as a macroinstruction in the assembler since the
hasi¢ instruction set does not contain such an instruction. Macroinstructions
are casy to define and implement in a TIL assembler. It is even possible to
ilehine instructions such as multiply and divide if you want to generate these
spjuences as in-line code,

I'he double precision register pair increment and decrement instructions
He

b7 b6 b5 bd b3 b2 bl bo

Increment 0o 0 — r,—- 0 0 1 1
leerement 0o 0 -~ r,—- 1 0 1 1

['hese instructions may be preceded by the indexed byte indicator DD or FD.
I'he keyword mnemenic is defined using the 1IMASK defining word as follows:

03E1IMASKHEDIN,
OBEIMASKEDDC,

7.2.3.6 Rotate and Shift Group

The rotate and shift group is fairly regular except that there are four 1-byte
instructions that are duplicates of the regular 2-byte instructions. The 1-byte
versions do not have the leading CB byte (which is standard for the 2-byte
regular instructions), but are otherwise identical except for status flag results.
I'he form of the second byte is:

b7 b6 b5 b4 B3 b2 bl b0

6 0 - f - - r -

kere r is one of the extended register definitions. The f code is as follows:

Mask Function

000 Rotate left circular
001 Rotate right circular

196 TITRFATHTY [NTFRITH FIVT 1 ANGTALE

010 Rotate left through carry
011 Rotate right through carry
100 Shift left register

101 Shift right register

110 Not defined

111 Shift right logical

The choice to patch the four odd rotate instructions is optionai but will be con-
sidered here.

The keyword mnemonics are defined using a high-level defining word as
foltows:

{HRSGHE < BUILDSEC, BDOES> HCBEC BC@MDUPH20E —No< B
IFEOVEREO70 =0RIFR - 1D’ W+ /MTHENETHENBROVER o< B
IFELROTMC, MTHENE + BC, N,

The mnemonic keywords are:

COMRSGERLC,
08ERSGHMRRC,
10MRSGHERILT,
18@RSGERRT,
20EMRSGHESLR,
28WRSGESRR,
38MRSGHESRL,

The majority of the code in the defining word is devoted to dropping the

leading CB byte in the four odd cases. The third IF clause tests for indexing and
inserts the displacement in the third byte location, if so.

7.2.2.7 Bit Addressing

The Z80 bit addressing mode allows testing, setting, or resetting of any bit in
any register where the extended “register” definition is used. The forms of
these instructions are:

b7 b6 b5 b4 b3 b2 bl bO

Bit test CB © 1 - b = - —
Set CB 1 1 - b = r .
Reset CB 1 0O ~ b = - r —

Here b is the bit number ranging from 0 to 7. If the register is @X or @Y, the

PR LERnear AN 19y

L1} 1 1he second byte in the instructions, the dispacement Is the third byte and
the Fourth byte is the specifle Instruction byte. The calling sequences are:

b Mr@mnemonic
dBbEr M mnemonic .

I he keyword mnemonics are defined as follows:
BBITADM <BUILDSEC, EDOES> RCBEC, HC@BLROTHS*H
¢ MOVERE + HSWAP B0< BIFBSWAFPEC, BTHENBC, N,

40MBITADMEBIT,
80MBITADMRES,
CONBITADMBSET,

7.2.3.8 Block-Directed Instructions

Although it is not obvious from the ZILOG Z80 manual, the block move,
compare, input, and output instructions can be classified into one group. The
general forms of these instructions are:

b7 b6 b5 b4 b3 b2 bl bo

ED 1 ¢ 1 ~C—- 0 —f=
Here the condition mask and function masks have the following significance:

C Mask Condition

a0 Increment
01 Decrement
10 Increment and repeat
11 Decrement and repeat

f Mask Function

00 Load

01 Compare
10 Input

11 Qutput

The sixteen instructions can be defined as follows:

90 THRTADTTY INTERURT TTVE 1TANTDIAGIT

oCEMCCONSTANTRIC
O1ECCONSTANTEDC
10MCCONSTANTEIR
11ECCONSTANTEDR

:EBDIRE < BUILDSEC, BDOES> EEDEC BC@ -+ 0C B;
AONBDIRECLD,

A1RBDIRMCCP,

AZEBDIRECIN,

AJEBDIRECOT,

Here the constants are the conditional operands for the four basic mnemonic
types.

7.2.3.9 Miscellaneous Instructions

Several instructions, however, fall into no clearly defined category when
building the assembler, Consider the following: the Z80 restart instruction has
this form:

b7 b6 b5 bd b3 b2 bl b0

1 1 - 1n - 1 1 1

Here n’ refers to the restart number {0 to 7). These are modified page zero
addressing mode instructions. They are equivalent to a subroutine call to a
page zero address whose address is eight times the restart number, The eight
instructions are assembled by the keyword:

:MRST, B3~BC7H+BC.B;

Operands not in the set 0 thru 7 will obviously lead to problems.

The input and output mnemonic keywords expect an [/O port number on
the stack. These port numbers are in the set 0 to FF {0 to 255 decimal). The
basic instructions have no variables and are defined:

DBESIMEINA,
DIMsIMEBOTA,

There are three groups of instructions that assemble very different instruc-
tions but in a similar manner. One group assembiles instructions that exchange
the top stack parameter with a register pair. Another group loads the stack
pointer register with the register pair. The last group loads the central proces-

TRTTTHRHON TTATNE 19

sl unit program counter with the reginter pair conlents. The register pairs are
thin HI, 1X, or IY only. In all cases the basle Instructions are the same with in-
dixed bytes preceding the group instruction, The keywords are defined as:

IXST, RE3BC EDROPH;
'HJPM, BE9EC, MDROPH;
:@LSP, BFSEC EDROFPM;

In all cases, the keyword expects a register pair operand. The only purpose for
thin 15 to load the index bytes where applicable.

7.2.3.10 Call and Return Group

The call and return group of instructions assembles calls to subroutines or
returns from subroutines. The problem with using these instructions is
knhowing what the call address is. One cannot stop in the middle of assembling
u definition and define a label keyword to save the current stack pointer. This
would lead to disastrous resuits.

There are several methods of keeping track of critical system addresses, One
method is to simply use a HEREM. sequence at the critical point in the
amembly code followed by a quick resort to a pencil to note the address on a
loundry ticket or some other handy surface. The problem with this method is
the transient nature of such notations and the fact that the system does not
know the data. Another method is to define the entrance points as CON-
STANTSs before the definition is started. The CONSTANTSs may be filled with
the required address data using a LABEL keyword defined as follows:

:HLABELN'E2+ BHEREEMSWAPEI|E;

At the point in the code where the dictionary pointer is to be saved, the se-
guence LABEL followed by the name of the label is inserted in the assembly
ntream, The keyword LABEL uses the sequence 'l2+ to locate the code body
of the constant and then fills it with the current dictionary free space address.

The unconditional subroutine call instruction expects an address on the
stack left there by a number or label (CONSTANT) operand. The call instruc-
lion will simply assemble a CD byte followed by the 2-byte address. The
keyword mnemonic is defined as:

:HCAL BCDEC 1 B;
I'he unconditional return from a subroutine is a 1-byte instruction already

defined in Section 7.2.3.2.
The conditional call and return instructions have the formats:

b b6 b b,
Call 1 1 = ¢ = 1 0 0 ng b
Return 1 1 — ¢ - 0 0 0 n Ny

Here cc is one of the condition code masks. The calling sequence is of the form:
nBcc@mnemonic
The keyword mnemonics are defined using the following sequence:
:HCCODEM <BUILDSEC, HDOES>EC@ i+ RC 1, H;

C4NCCODERCLC,
COMCCODEMRTC,

7.2.3.11 Jump Instructions

The jump instruction includes both conditional and unconditional jumps to
either an absolite address or to an address relative to the instructions address,
The problem of using these instructions is obviously knowing the target ad-
dress of the jump. The mnemonic keywords do not care how the address data
got on the stack; it simply must be there, I shall consider methods of ac-
complishing this semi-automatically in a later section.

The conditional and unconditional absolute jump instructions are of the
form:

b7 bé b5 b4 b3 b2 bl bo

ng Ny

Unconditional 1 1 0 0 ¢ 1
- 4] I, Ty

0 1
Conditional 1 1 ~ «cc 0 1

Like the call conditional instruction, the operand order is address then condi-

tion code, The instruction mnemonic keywords are defined as follows:

:WMP,RC3EC 1 N;
C2ECCODENJPC,

The relative jump instructions have the following forms:

b7 b6 b5 ba b3 b2 bl bo

Unconditional 0 0 0 1 1 0 o
Conditional 4] 1] 1

5

PRTIHNION MTTART 201

Here the ¢¢’ conditlonn are the low-order 2 blta of the CY, NC, Z, and NZ con-
dition {enly), and n ls the relative-jump offset from the address following the
address of n, The value n s treated as a signed 8-bit value allowing relative
jumps of —128 to 4127 bytes relative to the next instruction following the
jump. The required keywords are defined as follows:

18 MB8IMME]JPR,
:H@JRC, 108+ EC EC, B;

The 280 has a relative jump instruction that first decrements the B register
and performs the relative jump only if the B register is not zero. If the B register
in zero after the decrement, the next instruction is executed. This instruction
keyword is defined as:

1I0MSIMEDIN,

7.2.3.12 Summary

The Z80 assembler presented here is a fairly complete, fundamental
asgsembler. The design requires about 1800 bytes in this form, The major disad-
vantage of the design is its weak error detection and protection. The only real
error detection is stack underflow. Adding the protective code is certainly
feasible but requires more memory. The design does contain extra code to op-
timize the assembled code where two instruction forms exist. Additionally, all
of the possible Z80 instructions are covered. Many instructions are scarcely
used, so including them is of limited utility. It is certainly possible to define a
limited subset of the design in about 1 K bytes of memory that will provide
well over 95% percent of the instructions usually used, The remaining instruc-

o

tions can be assembled using C, and ”,” keywords when encountered.

7.2.4 Structured Assembly Code

Up to this point, the forward and backward reference problem has not been
addressed. First, a brief explanation of the problem is in order, The problem
arises because it is sometimes necessary to execute code only if some event oc-
curs or to repeat code execution until some event occurs. If the code is to be
skipped over, the address where execution is to be continued must be known
to allow the forward jump. At assembly time, however, the address of the con-
tinuation point is not known until the intervening code is assembled in place, If

202 TIIRIAITY INTTRIPTTTIVE TANDUAD] "

the code is to be repeated, a jump backwards to some point In the code iy re
quired. This implies that someone or something must remember an address to
allow this backward reference.

A non-TIL assembler usually handles the forward and backward reference
problem in one of two ways. One solution is to employ a two-pass arrange-
ment. The code is written using labels instead of addresses, The first pass
through the code counts instruction bytes and builds a symbol table with the
address of each label noted. The second pass can then assemble the code since
all addresses are known. Another common method is to use a forward
reference table. This allows a one-pass assembler to be built. Each time a label
is encountered, a symbol table entry is opened with the address of the label
noted, If an operand label is encountered, the symbol table is checked to see if
the label is in the table. If it is, the address is known and the backward
reference can be resolved. If the label is not in the symbol table, the reference
must be a forward reference. In this event, the assembler stores the address
where a patch to the code is required in a forward reference table along with
the label itself. After each symbol table entry is made, the forward reference
table is tested to see if there are occurrences of the label just entered. If there
are, the code at the patch addresses is corrected and the patch address and
labels are removed from the forward reference table. At the end of the
assembly the forward reference table is checked to insure that it is empty or
that all forward references have been resolved.

Actually, implementation of these techniques depends on the available jump
instructions of the microcomputer in question. If only absclute jump instruc-
tions are available, the process is fairly simple since the number of bytes to be
counted or to be patched is fixed. Some microcomputers, such as the Z80,
have relative jump instructions that are shorter than the absolute jump instruc-
tions. In this case, the assembler designer is faced with the additional problem
of deciding which type of jump to employ. Most relative jumps are limited in
how far they can jump (—126 to +129 bytes in the Z80 case). In the
backwards reference case, it is easy to test and assemble the right type of jump.
In the forward jump case, the length of the jump is unknown when the byte
count for the instruction must be set. One method of resolving this dilemma is
to always assume the longer absolute jump. Another is to allow the program-
mer to specify the jump byte and to trust his judgment on the length of the
jump required.

The LABEL keyword introduced in Section 7.2.3.10 is one method that
could be used for resolving backward jumps. The problem with the technique
is that the associated CONSTANT keyword must be defined before the
assembly, and it will remain a part of the dictionary. In the case of a
subroutine, this is usually a desirable condition. For a simple backward jump
during program assembly, it is not a good technique.

The forward and backward reference problem in a TIL assembler is resolved
via the stack using constructs similar to those used in the language itself. This
technique is somewhat different from the usual assembler techniques. The fun-
damental difference is that a symbol table is never generated and cannot be
recovered after the assembly process. In a TIL assembler, the backward
reference address is pushed to the stack using a special keyword. Other

FXEENDION 1PEEALL 203

keywords are defined to retrleve the address from the stack and assemble the
backward jump. In forward references, the patch address is pushed to the
alark, and space is allocated for the jump instruction using a special keyword.
Al the target location of the forward jump, other keywords retrieve the patch
wdtlress (but only one time} and assemble the address to this location, The con-
slruct keywords are designed to assemble the constructs semi-automatically.
I}y semi-automatically I mean that in some cases the programmer must decide
whether to use an absolute or relative jump.

7.2.4.1 BEGIN—END Loops

The simplest construct is the BEGIN-—END loop, The loop differs somewhat
in form and usage from the equivalent TIL form. Instead of expecting a flag on
the stack, the END form keyword expects a condition code. Further, there are
peveral different END forms possible. Since the jump is a backward jump, the
keyword could decide between a relative and absolute jump depending on the
length of the jump, or two keywords could be defined which would require the
aperator to select the address mode,

In all cases, the BEGIN keyword simply pushes the next free dictionary ad-
dress to the stack, The keyword is defined in the assembler vocabulary as:

:EBEGINEMHEREW;

This keyword simply saves the address of the next instruction to be assembled
by pushing it to the stack,

The END form to be considered for the Z80 will consider the automatic
generation of the jump instruction depending ort the jump length and the con-
dition code, The condition codes considered in the basic assembler did not in-
¢lude an unconditional condition but only eight specific conditions (Z, NZ,
CY, NC, PE, PO, P, N). The first step is to define the unconditional “condi-
tion” as:

—1BCCONSTANTEU
This atlows the assembly sequence to be:
...HABEGIN... Mcondition@ENDM...

The END keyword will assemble a relative jump instruction back to the first
assembler instruction following BEGIN if the backward jump is less than 126
bytes and the condition code is U, Z, NZ, CY, or NC. Otherwise, the END
keyword will assemble an absolute address.

To generate the required END keyword, the first step is to define two

ZH TFIRFADTT? INTTRURFTIVE | ANCLIATL

keywords that will decide whether to assemble a conditional or unconditional
jump address, given that the addressing mode has already been decided. The
keywords are:

:HJRCEDUP B0 < MIFEDROPEJPR, BELSEEMJRC, B THENN
:@JACEDUPNO < BIFEDROPEJMP, BELSERJPC, MTHENE;

Both keywords expect the condition code on the top of the stack and the ad-
dress or relative address as the second stack entry. The END keyword can then
be defined as:

:IRENDEDUPE20H ~ H0< MIFECVERBHEREN?2 + N — EDUPESON
- B0< BIFM2SWAPEDROPEJRCEELSENDROPEJACETHENS
ELSERJACETHENME;

The outer conditional branch selects the absclute addressing mode if the condi-
tion code calls for PE, PO, P, or N condition since there are no relative jumps
for these conditions. The inner conditional branch tests the jump length and
assembles a relative jump if the jump is —128 bytes, or assembles an absolute
jump otherwise,

The keywords defined in this fashion are somewhat slow but very conve-
nient. The programmer never needs to consider which addressing modes are
applicable or how far the jump may be. The alternative is to define a sequence
of keywords that requires the programmer to specify the type of backward
jump required or to default all backward jumps to absolute jumps.

One final note. The unconditional END construct can lead to an endless
loop since it is the analog of the TIL OMEND form.

7.2.42 1F. . .ELSE. . .THEN

TheIF. . .ELSE. . . THEN assembler construct is similar in concept to the
TIL constructs. The problem is that both the IF and ELSE forms assemble for-
ward jumps. The IF forms always assemble conditional forward jumps, and
the ELSE forms always assemble unconditional forward jumps. The only
reasonable way out of the dilemma is to trust to the programmer’s judgment
on the length of the jump,

The decision to trust the programmer’s judgment implies separate keywords
for both absolute and relative IF forms. The ELSE form must then be informed
as to which type of IF form it must fill in an address, and whether its forward
jump is an absolute or relative jump. The THEN form must similarly know the
addressing type of the IF or ELSE form. The forms are then:

PRI NGIOR T ALE 05

RIF — A relative if

AIl An absolute if

RRELSE - Assumes a RIF and a relative else
RAELSE — Assumes a RIF and an absolute else
ARELSE — Assumes an AIF and a relative else
AALLSE — Assumes an AIF and an absolute else
RTHEN — Assumes a RIF or RRELSE or ARELSE
ATHEN — Assumes an AIF or RAELSE or AAELSE

I'he ELSE forms are optional as in the TIL constructs.

Ciiven the IF forms, the idea is to assemble a forward jump instruction, given
¢ ¢ondition code operand preceding the mnemonie, and to leave a pointer to
the jJump instruction variable field on the stack. The variable jump field will be
lilled with a 0 until filled in by an ELSE or THEN form. The definitions are:

:HRIFMOMSWAPEIRC, MHEREN;
:HAIFROESWAPEJPC, BHEREN2 + W;

The ELSE forms must assemble an unconditional forward jump, fill in the
variable field of the IF form and leave a pointer to the unconditional forward
jump variable field on the stack. This variable field is again filled with a O until
filled in by the THEN form. The ELSE form does not have any operands. The
keywords are defined as:

:MATHENBHEREBRSWAPE [H;

:BRTHENEOVERE — BSWAPE1-BCIE;
:RRELSEMMHERE M2+ @IRTHEN 188, RHEREM ;
:MRAELSEWHEREM 3 + BRTHEN HoB]MP, BHERES2— 0
:IMMARELSEMMATHEN M188, BHEREMN;
:MAAELSEMATHENBOMRMP, RHEREN 2 - I;

Observant of you to notice that the THEN forms were whiffled in and used to
define the ELSE forms, After all, both the ELSE and THEN are used to patch
forward jump variable fields and should look similar. It should also be realized
that the THEN forms do not actually assemble any code at the point that they
are evoked but merely fill in the previously reserved locations.

There is actually one important fact about the conditional branch constructs
which you may have noted. The True code and False code bodies are reversed
from the usual TIL constructs. This results from the fact that the Z80, like most
tnicrocomputers, jumps if the condition is met. The syntax diagrams are:

False Unconditional

True Unconditional

a0 TTOEADELE INTEIRPRE TIVE T ANGHAGH

False Unconditional
e .lconditionlxlll"l IxTHENI}l .
True

Actually this does not represent a problem with the Z80 since both senses of
condition codes are available, which can effectively reverse the sense of the
code bodies,

7.2.4.3 WHILE

The assembler WHILE construct is the exact analog of the TIL WHILE con-
struct. It does need to know, however, the addressing mode of the ELSE or IF
form it is to patch. This leads to the following forms:

:BRWHILERSWAPEUBEND BHEREBMRTHEN IB;
:HAWHILERMSWAPRUBREND WHERERATHEN M;

These keywords expect the address stored by BEGIN to be the second stack en-
try and the pointer stored by the IF or ELSE form to be the top stack entry. The
SWAPEUBNEND sequence will assemble an absolute or relative conditional
jump back to the address stored by BEGIN. The remaining code then patches
the IF or ELSE form as appropriate.

The construct syntax of Section 4.4.3 applies with minor variation. The dif-
ferences involve the condition code, the use of the relative or absolute forms
and the reverse code body sense in the IF form.

7.2.4.4 DO ... LOOP

The assembler DO . . . LOOP construct is substantially different from the
TIL construct. It is specifically designed in the Z80 assembler to utilize the
DINZ (decrement and jump non-zero) instruction (the DIN, in our notation),
This instruction decrements the B register and does a relative jump if the
register is non-zero, Otherwise, it executes the next instruction. The evoking
sequence for the assembler DO . . . LOOP construct is:

..nH@DOM.. BLOOPN...

PXTUNOION PHEART ag7

Here the LOQOP code will be repeated n times, An initial value of 0 will cause a
246-count loop, so that the loop may be executed from 1 to 256 times, The
keywords required for the construct are:

:BDOBHEREWBELROTEMVI, W;
:BLOOPEHEREN2+ W — EDIN H;

It is possible to use the LOOP keyword in a construct of the form:
....BEGIN....LOOP....

T'his construct presumes that the B register was suitably ioaded by some other
means (say by the result of some computation followed by a BEHABMOV,)
prior to the occurrence of BEGIN.

It must be noted that loop constructs of this form are not specific to the Z80
with its DJNZ instruction. The operation can just as easily be emulated on
other central processing units by defining a suitable macroinstruction. For ex-
ample, an 8080 assembler DJN, keyword could be defined as:

:HDJN, ABERDEC, ENZBJPC. W;

This, of course, presumes that the mnemonics for the 8080 are selected to con-
form to the design presented.

Other loop constructs could be defined for the Z80 using macroinstructions.
This will not be done in the basic assembler since there are no fundamental
machine instructions which they support. Other loop structures are applica-
tions specific,

7.2.4.5 Construct Summary

Implementing the structured constructs for the assembler requires an addi-
tional 375 bytes or so. The assembly language programmer job is eased
somewhat by the presence of these simple constructs, since they can keep track
of the addresses on the stack without effort on the programmer’s part. The
constructs can be nested as long as entire constructs are defined in one code
section. A validity test on nesting is simply that removal of any construct in its
entirety cannot remove part of another construct. This must be true for all
constructs.

If the constructs available do not match the programimer’s needs, the BEGIN
keyword plus the stack keywords of the CORE vocabulary can be used to
suitably manipulate addresses for the asgsembler jump keywords. As with all
TIL keywords, the assembler keywords do not care how their expected stack
entries arrived; they just assume they are there,

AV TETINEFVLAEL T OVIVAR MU MR LY) AL IR

7.2.5 Assembler Design Notes

The TIL assembler keywords are normally defined in the ASSEMBLER
vocabulary. The vocabulary is linked to the CORE vocabulary and is usually
intermixed spatially with the CORE vocabulary. Keywords to be defined in
assembly code are primitives. The defining word that creates the keyword is
called CODE. This keyword not only creates a primitive header but also sets
the CONTEXT vocabulary to ASSEMBLER. In my personal system, CODE
also sets the hexadecimal number base since] prefer to code using hexadecimal
numbers, The keyword CODE is thus defined as:

:BCODEWCREATEMHEX MASSEMBLER B;

All of these keywords exist in the CORE vocabulary. The keyword that ter-
minates the definition is NEXT, This keyword encloses in the dictionary the in-
structions necessary to return to the inner interpreter (IY MJPM, for the Z80)
and then sets the CONTEXT vocabulary to the CURRENT vocabulary. In ef-
fect, this restores the vocabulary before the keyword was defined. A formal
definition of NEXT is:

:ENEXTEIYE]JPM, BDEFINITIONS@;

NEXT exists in the ASSEMBLER vocabulary and differs from the NEXT de-
fined in the CORE vocabulary.

Inevitably the question arises about the viability of building a “real”
assembler using the TIL assembler. It is possible, but not easily accomplished,
and not without several modifications and extensions to the TIL assembler,
The modifications necessary are to solve problems that also arise in a non-TIL
assembler. Fundamentally, the non-TIL assembler is designed to input an
assembly code source file, generate machine code that is to reside and execute
at some given address but is stored at assembly time at some different location,
and, finally, to store the resulting machine-code file in some mass storage
device, A TIL-based real assembler must perform similar tasks.

The capability to store a file or some mass media and to load a file to the
system has been assumed just to build the TIL. The ability to generate an
assembly language source text file has not been considered. This requires some
type of editor program to generate and update the source test, This require-
ment is not really necessary for the short definitions encountered in a TIL
assembler. There is a vast difference between a 3-line keyword definition
and a long assembly language program, With the interactive TIL assembler,
the assembly “source” disappears when the line it is entered on is scrolled off
the display. An editor to generate an assembler source file and a virtual
memory system to access the files will be considered later.

The usual problem is relocating the assembly code. TIL source assembly
code is always assembled to the free dictionary space. All of the assembler

oE

keywords are constructed using the “,” and C, keywords which accomplish

FRTTNAIUN VAT e

this action. A more general scenario is to allow the starting location of the
tlesired program to be specified, but to actually save the program at some dif-
larent location. This implies that a program could begin at any memory ad-
dtess, including an address which is occupied by the assembler at assembly
lime,

There are two basic changes needed to allow a TIL assembler to be of more
peneral-purpose value. The keywords “,” and C, must be redefined prior to
defining any of the assembler keywords. The keywords that assemble absolute
adclresses must also be modified, These include both the assembler mnemonic
keywords and the assembler construct keywords. The reason for these
modifications is almost self-evident.

The keywords *,” and C, must be modified to pop words or bytes from the
stack and enclose them at the next consecutive assembler file location rather
than the next free dictionary location. The assembler file location can be set
cqual to the dictionary pointer to assemble TIL keywords or to any available
{ree memory space to support either direct assembly to the true target location
or to a file location which will later be stored on the mass media. The address
where the stack data is enclosed is referred to as the program counter (PC).
The CODE keyword could be designed to set PC to DP to assemble TIL
keywords,

The keywords that assemble absolute addresses to the program must also be
modified to support the assembly of a program to a different area of memory
than it will occupy at execution time. For example, the TIL may start with a
PC value of 4000, but the program may execute with the assembled program at
1000. Thus, the absolute address stored by the assembler must be 3000 less
than the PC value reference for the loading address at assembly time. The off-
set between the program origin and the initial value of the PC is always a con-
stant. To assemble TIL keywords or to assemble a program that will execute at
its assembly address, set this offset to 0. The CODE keyword could also be de-
signed to zero this offset value for assembling TIL keywords.

A “real” assembler does have some restrictions and disadvantages. The real
problem is that the programs must be fairly short due to the lack of a symbol
table. For those cases where the built-in constructs are inadequate, stack
management can become a very real problem. The interactive building of an
assembly program will not allow program documentation, If the editor and
virtual memory system are not supported, program debug and modification
really implies program re-entry via the keyboard and not correction of some
source text,

One final note about threaded interpretive language assemblers. Some in-
structions are used so rarely that the memory required to implement them ex-
ceeds their utility, The right answer is to ignore these instructions. The *,” and
C, keywords can always be used in the event the unimplemented instructions
are required. The TIL assembler should be designed for utility rather than for-
mal completeness.

210 TELKLALRN) INTERVRE LIVE LANGUAGL!

7.3 Virtual Memory

Virtual memory is a technique for transparently extending the addressing
space of a computer by using a combination of actual system memory and a
direct access storage device. A user could have an effective addressable
memory space of several hundred thousand bytes in a system that only has
12 K to 16 K bytes of actual memory. The direct access storage device could
be any of a number of devices. I will constrain this discussion to a floppy disk
system rather than opening Pandora’s box. This is the most popular type of
microcomputer system direct access storage device,

There are roughly forty skillion ways to implement a virtual memory
system. [won't even scratch the surface but will direct the presentation to a
particular philosophy. Because of the extreme hardware dependence of the
device interface, the level of the presentation will be somewhat sketchy. The
design of the virtual memory system is not extremely difficult if one is in-
timately familiar with both the disk system hardware and its associated soft-
ware. If not, it is almost impossible unless the disk system documentation is
absolutely superb.

7.3.1 The Device

A disk system usually consists of a disk controller board and an actual disk
drive mechanization, The object of the disk system is to allow storage of data
on the diskette media. The important point about the disk system is that the
data are stored in blocks of bytes which are accessed from consecutive
memory locations. The actual number of bytes in a block is usually 128, but
systems with 256 bytes per block are common and 4 K-byte blocks are not
unheard of.

The format the system uses to record the blocks on the diskette media is
device-dependent, The blocks are stored on tracks or circular areas on the
diskette, The mini-floppy diskette usually has thirty-five tracks and the floppy
seventy-six tracks for storage of data. The concentric tracks are usually
numbered from 0 upward, with 0 the outermost track. Within a track there are
a number of sectors defined. Depending on the device, a sector consists of data
used to synchronize and/or identify the sector, the actual data block, and
some type of block validation data. The most common sector formats consist
of twenty-six sectors of 128 data bytes or ten sectors of 256 data bytes, but
many other formats exist.

The total number of data blocks the disk system can contain is the number
of tracks times the number of sectors per track, The disk controller always ad-
dresses the blocks by track number and sector number. This addressing is ap-
plicable between the system and the disk controller.

FRETRAIN LAY 3k

LDisk controllers are extremely varlable In design. Some are very simple
ilevices that depend on the central processing unit for initialization and simply
signal the arrival of cach data block byte at the interface and expect the pro-
(0BYOr to store to the proper memory location. Other controllers have their
uwn processor on the controller board and quite sophisticated file manage-
ment software in read-only memory. Most controllers are somewhere between
these extremes.,

A common problem with disk controllers is that presumptions about the
location of a supporting disk operating system (DOS) are embedded in the
controller design. This may force the system designer to either patch the con-
iroller software (generally read-only memory resident) or build the threaded
interpretive language around the disk operating system. Exactly how this will
be accomplished is so system-dependent that no more can be said.,

7.3.2 Disk Access

The object of the virtual memory system is to access disk blocks by some ad-
dressing scheme such that the access is transparent to the operator. Correct ac-
cess will occur regardless of whether the block is currently system resident or
disk resident. If a block is not resident in the system when it is accessed, it is-
automatically loaded to the system memory. If a block has been modified
while systermn resident, it will be updated by the system under operator direc-
:Iion ;uch that the operator never needs to know which blocks are to be up-

ated,

Disk data blocks that are system resident are stored in buffers. There are
usually sufficient buffers defined to hold one or two screens of data. A screen
is 1 K bytes of data (which will just fill a display screen of 16 lines of 64
characters per line), For a block length of 128 bytes there are thus eight to six-
teen block buffers of 128 bytes each required. Data screens are a convenient
form for storing TIL source text. The block buffers are usually defined at some
convenient memory address out of the way of the main TIL language area.

The block buffers are used for temporary storage of data read from the disk
or to be written to the disk. Blocks of data are read from the disk and stored to
some block buffer using the keyword GETIT. Data in a block buffer are writ-
ten to the disks using the keyword PUTIT. These two keywords are the
primitives needed to implement all disk accesses. The target disk blocks for the
accesses are addressed by a block number. There is a mapping between the
disk block number and the disk track and sector number. The relationship is:

Block# = {Track#) X (Sectors/Track) + {Sectorf)+1
The block numbers are thus in the set [1—N] where N is system-dependent.

The primitives GETIT and PUTIT will interface with the system disk 1/O
routines to actually perform the disk read/write, These routines usually re-

212 HREADELY INTERIA) TIVE TANGUALI

quire a buffer address, a block number (or sector and track number) fmd i
drive number as input parameters, The drive number is usually stored in the
system variable DRIVE if multiple drives are available. The buffer addrcs.s and
block number are passed to the keywords on the stack. The availability of
these keywords will be presumed. '

Typically both GETIT and PUTIT are designed to reserve disk space at the
low end of the disk which is used to store the core language. This disk is usual-
ly placed in disk drive number 0 in a multidrive system. By defining a system
variable named OFFSET, the amount of reserved area can be stored as a
system parameter, The keywords DRO, DR1, . . . can be defined to b.oth sel
the DRIVE system variable and the OFFSET system variable as appropriate for
the given system configuration, This can be somewhat risky in a single drive
system.

Two other factors are important about GETIT. The keyword leaves a bu.ffer
address at the top of the stack when it completes. This allows for convenient
recovery of the address where the data is located. GETIT also tests the block
number to insure that a valid block is requested. If it detects an error, the error
routine is called by GETIT, with the address of a disk addressing error message
as a parameter. A similar scheme is employed in PUTIT. Depending on the
available disk software, read or write errors may be handled by the system
disk software or may need to be fielded by routines within the TIL che.

To implement GETIT and PUTIT in a somewhat uniform manner, it is usual
to segment the software tasks between the TIL and the system [/O code,
Typically the TIL code is designed to pass the data needed by the system 1/O
code in the system user area. For example, a typical scheme is for the TIL code
to set the following parameters:

TARGET — The starting address of the block buffer,
DRIVE — The drive number.

TRACK — The track number,

SECTOR — The sector number,

OPER — The operation (0 = Write, 1 = Read).

The definition of GETIT and PUTIT are then something like:

:MGETITRSETUPEQPEREMC1SETBDISKI/OM;
:BPUTITESETUPEOPER BCOSETEDISKI/OR;

Here SETUP pops the block number and the buffer address from the stack;
computes TRACK and SECTCR from the block number, OFFSET, and the
number of sectors per track; calls an error routine if the track number com-
puted is outside the boundaries of the disk; and exits with TARGET, TRACK
and SECTOR set. The DISKI/O routine then calls a system [/O routine which
actually performs the reading and writing of the 17O operation, Alternately,
GETIT and PUTIT can be written as primitives which perform the same opera-
tion using a subroutine $SETUP,

FREENGILING LT AL A1

7.4.3 Buffer Control -- - e e

By knowing the definition of the keywords GETIT and PUTIT, the actual
design of the virtual memory scheme can be considered. This involves laying
out the buffer area and designing keywords to load a specific disk block to a
specific block buffer or vice versa, This implies a control structure but the con-
trol should be invisible to the operator.

Buffers can have several states. They can be empty or otherwise available to
the system. They can contain some specific disk block exactly as contained on
the disk. They can contain either new data or modified versions of blocks that
are contained on the disk. The system needs to know the status of the buffers
to properly manage the system resources. One relatively simple way to store
the information is in a keyword called SBUF which contains the current status
of the block buffers.

The keyword SBUF is an array that contains two words for each block buf-
fer in the system. The first word is a status word and the second word is the ad-
dress of the starting location of the block buffer. The status word contains 0 if
the buffer is empty, or if it is in use, contains the block number of the block
currently located in the buffer, The high-order bit of the status word is 1 set if
the block is modified or updated. The array is a convenient way to store the
data the system needs to hide the disk accesses from the operation.

The keyword the operator uses to access any block is BLOCK. This
keyword expects the desired block number on the stack when it is evoked and
replaces the block number with the address of the first byte of the block. This

address is always the starting address of one of the block buffers. The defini-
tion of BLOCK is:

:MBLOCK MRESIDENT MIFEBUFFER WGETIT MTHENME;

The keyword RESIDENT searches the array SBUF looking for a status word
that matches the block number at the top of the stack {ignoring the most
significant bit). If a match is found, the block number is replaced by the ad-
dress of the starting location of the block buffer associated with the status
word and a False flag is then pushed to the stack. If a match is not found, a
True flag is pushed to the stack leaving the block number as the second stack
entry. The keyword BUFFER searches the array SBUF looking for a 0 status
word. If an empty buffer is located, the address of the starting location of the
block buffer associated with the 0 status word is pushed to the stack and the
buffer is loaded by GETIT. If there are no available buffers, the error routine is
called by BUFFER with the address of a buffer full message as a paratneter.

With the advent of BLOCK, a virtual memory scheme is at hand. Reading of
disk blocks to the disk is totally transparent to the operator. The operator
simply treats all blocks as if they were system-resident, There is no file direc-
tory and no “named” files except as defined by the operator. Named files can
be created by the operator as follows:

:@FILENAME Bi BBLOCK HjMBLOCKS....AnBBLOCKME;

204 THREADS 1) TN ERDRE TIVE T ANGLAGE

Herei. . . n are block numbers. As many blocks can be defined in FILENAMI
as there are block buffers. However, named files are strictly applications-
dependent.

The storage of updated block buffers back to the disk is not done
automatically. The operator must evoke this action manually using the
keyword SAVE, SAVE searches the array SBUF looking for status words with
their high-order bit set. If the update bit is set, the associated buffer is written
to the disk block using PUTIT and the status word is set to 0. If the update bit
is not set, the status word is simply 0 set, A keyword named ZBUF is also
defined; it merely sets all the status words in SBUF to 0. This implementation
does not change any block buffer contents when either SAVE or ZBUF is
evoked. This is sometimes helpful when the operator makes an error. The im-
portant point is that the operator does not need to concern himself about
which blocks need to be updated. The system will perform the task semi-
automatically. The system needs to be directed to perform the task to prevent
overwriting of disk blocks when this action is undesirable.

Setting of the update bit in the SBUF array status words is done by the
system using special keywords. The design of these special keywords hides the
activity from the operator. For example, if the operator is updating a data file,
the keyword D! is usually based instead of the 1" keyword. D! is defined as:

:BD/BUPDATENN,;

Just like “I"", D! expects an address at the top of the stack and a number as the
second stack entry. The keyword UPDATE searches the SBUF array starting
address locations. If the address at the top of the stack is within the block buf-
fer range of one of the buffer areas, the update bit of the associated status word
is 1 set. Other methods of setting the update bit will be considered later,

7.3.4 Screens

Source text for special vocabularies can be stored on the disk in screens. A
screen may be loaded to the system and assembled/compiled to the dictionary
space that exists when the load occurs. Typical applications for this technique
are language extensions that are required for some applications but are usually
not needed. A floating point package or an editor are examples. The source
text may be either primitives (defined using assembly language or numbers
followed by “," or C,) or secondaries, Primitives may not contain absolute ad-
dress references unless the address is known to be invariant (a system variable
for example) since the assembly origin is not known a priori, Listing 7.1 gives
examples of typical screens.

IR NGEANGTE AW 2

He'REEN O ELITOR, DCREEN § OF 2 0y 0 EDTTOR ; HEX

L) 40 CCONSTANT LENGTH

A1 1¢ CCONSTANT LBUF 160 CAl

1)+ LLBUP LBUF & LENGTH + 4 ;

1) : LCLEAR LBUF @ DUP 7F + ERASE

"y + 15TH SCREEN & @ 3C0 + ;

@) : LLISTH 15TH LENGTH + 1- ;

7} + BSTART DUP 0«< OVER F » OR IF QUESTION ELSE LENGTH *
SCREEN 8@ DUP -1 = IF QUESTION ELSE @ + THEN THEN

) CREATE INLINE ZEE Ca!

i) + REPLACE BSTART INLINE LBUF € LLBUF LROT MOVE LCLEAR

11} : CLEAR BSTART DUP LENGTH + 1- ERASE ;

t2) - DELETE BSTART DUP LENGTH 4 LI5STH LROT MOVE F CLEAR
LCLEAR

i 14) :+ INSERT DUP BSTART 15TH = IF REPLACE ELSE DUP BSTART

15TH 1- OVER LENGTH + MOVE REPLACE THEN ; 1 LOAD

T

— . e o m am

r

F

o

SCREEN 1 ~ EDITOR, SCREEN 2 OF 2)

1} : TYPE CRET BSTART DUP LENGTH + SWAP DO Ir C@ ECHO LOOP ;

£3) 1 SHOW CRET L15TH SCREEN ® @ DO I» €@ ECHO LOCP HIDE ;

3y ¢ LIST 1+ SWAP CRET CDO CI» 4 * 14 @LBUF GETIT DUP 40 +
SWAP DO I> C® ECHO LOCP CLOCP LCLEAR ;

. e

{ 14) : EM5G CRET [EDITOR LOADED, DECIMAL BASE]
(15) EMSG

; DECIMAL

Listing 7.1: EDITOR screens.

The method of addressing screens is by screen number. Screen numbers are
in the set (0...N) where N is a system configuration-dependent number,
Screens are always stored on the disk in consecutive disk blocks. There is a
mapping between screen numbers and the block number of the first of the con-
tiguous blocks that form the screen, The mapping is:

Block # = (Screen #) X 8 + (Offset #) + 1

The offset number is a system variable used to control the location of the first

defined screen. Typically this is desirable to allocate low-order blocks as data

biocks and high-order blocks as a screen block area. Usually the offset is con-

tained in the system variable SCRNOFF but is sometimes arbitrarily set to a

lcj%};tant. In any event remember that OFFSET is also applied by GETIT and
IT,

LA R RS L R IL NN AT e R R o Vo LT 4 S0 B

The purpose of having text screens is to use them as system inputs precisely
as if they had been typed in by the operator. The outer interpreter of Section 2
(figure 2.2) had provisions for loading the input buffer from a mass storage
device and for echo displaying the OK message when the input buffer is
empty, only if the keyboard is the input device. Consider this outer interpreter
and the design of the MASS keyword: in our present design, MASS will per.
form the input from the disk screen to the input buffer . . . not a block buffer.

To begin our design, first consider the initiation of the screen loading event,
A keyword name LOAD is defined to initiate the loading of the screen number
that is the top stack entry. The LOAD keyword simply sets two system
variables. The system variable SCRN is set equal to the screen number at the
top of the stack. The system variable LINE is set to 0. When the line in which
the keyword LOAD appears is complete, the outer interpreter returns to get
the next input. It first tests LINE to see if it is positive. If it is, MASS is called,
Otherwise, the keyboard input routine INLINE is called.

The keyword MASS can be defined many ways, one of which follows:

: MMASS BLINEEIFELBUF B @ MGETITEMDROPBELSEN
BTOLEATHENELBUFE@MLEPHE!A;

A fairly careful look at the undefined keywords should reveal the game plan.

The keyword 7LINE first computes a block number based on LINE, SCRN
and SCRNOFF. It next increments LINE by one and resets LINE to —1 if it
equals 8. ILINE then searches SBUF to see if the block is already system-
resident. If it is, the address of the block buffer and a False flag are pushed to
the stack. This will cause a branch to BTOL which will move the block buffer
to the input buffer. If the block is not system-resident, the block number and a
True flag are pushed to the stack. This will cause a branch to
LBUFE @ BGETITEDROP which will load the line buffer with the disk
block. The DROP removes the input buffer address, which was returned by
GETIT, from the stack. Finally, the line buffer pointer is reset to point to the
start of the input buffer.

When the outer interpreter regains control from MASS, it cannot tell how
the input line buffer was loaded. Whatever is in the line will be executed
precisely in accordance with the TIL syntax. If an executable token is scanned,
it will be executed just as if it had been typed by the operator. When the input
line is entirely scanned, the LINE variable is tested to insure it is negative
before the OK message is displayed. This prevents a sequence of QK messages
from appearing as the lines are executed. One final note: the error routine must
set SCRN negative if an error is detected. This forces operator response if an
error occurs during screen loading.

The above scheme allows eight successive blocks {(or sixteen display lines) to
be executed. After the eighth block is executed, LINE will be negative and the
OK message will be displayed. If only a partial screen of source text is
available, a method to cause early return to the INLINE input can be designed.
Consider a ;5 keyword that sets LINE to —1. By embedding ;S in a screen
block, forced exit to INLINE occurs on the completion of block execution. If a

FRTENSIIN I AN 247

LOAD command Is embedded In a sereen, it will terminate loading of the cur-
rent screen and initiate loading of the new screen. This allows screens to be
Chained together so that vocabularies or user programs are not constrained to
be a single screen in length.

One feature that is important in a virtual memory system of this type is
some means of identifying screen contents. This can be done by defining a
comment medium, placing descriptive comments on the first line of each
fcreen and defining a keyword that will display the first line of successive
nereens.

Since there is no way to retain source text, a comment keyword makes little
sense in a system without the virtual memory mechanization. Assume that the
comment keyword is defined as (" {left parenthesis). The keyword “(” sets the
token separator to “)” and scans the next token from the input line, It does
nothing with the token it scans. This allows text to be entered in a screen
following the B after the initial “(" unti] terminated by a “)" or the end of the
line. This text will be ignored by the system when the comment is encountered
In the input buffer. I usually include the screen number in the comment as well
as a brief description of the screen contents and note if more than ohe screen is
chained by the screen. See listing 7.1 for typical screen comment usage.

The keyword that displays the first line of successive screens is LIST. This
keyword expects a starting and ending screen in the input range. To allow the
operator to stop the display, a call to the WAIT keyword is coded after each
line is output. LIST needs at least one empty buffer to hold the first block of
cach screen as it is read from the disk. The first sixty-four characters of each
block are then displayed. Since there is no reason to make the first lines of the
screens permanently system resident, the buffer is marked empty after each ac-
cess.

A keyword that is very similar to LIST is SHOW. This keyword shows the
entire screen contents on the display rather than just the first line. At the end of
each screen display, a keyword named HIDE is called rather than WAIT,
HIDE not only waits for the next keyboard entry but also suppresses the cur-
sor. This allows the entire screen to be displayed without a hole at the cursor
point,

The protocol for screen residency is somewhat analogous to block residen-
cy. The keyword that loads a screen to the system is OPEN, OPEN expects a
screen number on the stack and will attempt to load the screen to one of two
sets of eight contiguous blocks, There are four important system variables
associated with the operation as follows:

SCRN — The target screen.

SCRNO — SCRN1 — The screen number of the screen resident in the nth
set of eight blocks (if resident) or —1 (if not).

SCREEN — A pointer to the start of the SBUF low-order or high-order
set of block buffers of the current screen.

OPEN will first test SCRNO and SCRN1 to determine if the screen is resident,
If it is, SCREEN is set to point to the start of the appropriate set of buffers, If

WIE LPIVVAIE AT DRI AT RS ITET L AL AL T

The purpose of having text screens is to use them as system inputs precisely
as if they had been typed in by the operator. The outer interpreter of Section 2
(figure 2.2) had provisions for loading the input buffer from a mass storage
device and for echo displaying the OK message when the input buffer is
empty, only if the keyboard is the input device. Consider this outer interpreter
and the design of the MASS keyword: in our present design, MASS will pers
form the input from the disk screen to the input buffer . . . not a block buffer.

To begin our design, first consider the initiation of the screen loading event,
A keyword name LOAD is defined to initiate the loading of the screen number
that is the top stack entry. The LOAD keyword simply sets two system
variables, The system variable SCRN is set equal to the screen number at the
top of the stack. The system variable LINE is set to 0. When the line in which
the keyword LOAD appears is complete, the outer interpreter returns to get
the next input. It first tests LINE to see if it is positive. If it is, MASS is called,
Otherwise, the keyboard input routine INLINE is called.

The keyword MASS can be defined many ways, one of which follows:

:MMASSILINERIFELBUFE @ SGETITMDROPBELSEN
BTOLETHENELBUFR@MELBPH!A;

A fairly careful look at the undefined keywords should reveal the game plan,

The keyword ?LINE first computes a block number based on LINE, SCRIN
and SCRNOFF. It next increments LINE by one and resets LINE to —1 if it
equals 8. 7LINE then searches SBUF to see if the block is already system-
resident. If it is, the address of the block buffer and a False flag are pushed to
the stack. This will cause a branch to BTOL which will move the block buffer
to the input buffer. If the block is not system-resident, the block number and a
True flag are pushed to the stack. This will cause a branch to
LBUFE @ BGETITEDROP which will load the line buffer with the disk
block, The DROP removes the input buffer address, which was returned by
GETIT, from the stack. Finally, the line buffer pointer is reset to point to the
start of the input buffer.

When the outer interpreter regains control from MASS, it cannot tell how
the input line buffer was loaded, Whatever is in the line will be executed
precisely in accordance with the TIL syntax. If an executable token is scanned,
it will be executed just as if it had been typed by the operator. When the input
line is entirely scanned, the LINE variable is tested to insure it is negative
before the OK message is displayed. This prevents a sequence of OK messages
from appearing as the lines are executed. One final note: the error routine must
set SCRN negative if an error is detected. This forces operator response if an
error occurs during screen loading.

The above scheme allows eight successive blocks {or sixteen display lines} to
be executed. After the eighth block is executed, LINE will be negative and the
OK message will be displayed. If only a partial screen of source text is
available, a method to cause early return to the INLINE input can be designed.
Consider a ;S keyword that sets LINE to —1. By embedding ;S in a screen
block, forced exit to INLINE occurs on the completion of block execution. If a

FTENGION 1) AN 247

LOAD command Is embecded In a gcreen, it will terminate loading of the cur-
rent gereen and initiate loading of the new screen. This allows screens to be
chained together so that vocabularies or user programs are not constrained to
be a single screen in length.

One feature that is important in a virtual memory system of this type is
some means of identifying screen contents. This can be done by defining a
comment medium, placing descriptive comments on the first line of each
fcreen and defining a keyword that will display the first line of successive
Bereens.

Since there is no way to retain source text, a comment keyword makes little
sense in a system without the virtual memory mechanization, Assume that the
comment keyword is defined as (" (left parenthesis). The keyword “(” sets the
token separator to “)” and scans the next token from the input line, It does
nothing with the token it scans. This allows text to be entered in a screen
following the B after the initial “(” until terminated by a “Y” or the end of the
line. This text will be ignored by the system when the comment is encountered
In the input buffer. I usually include the screen number in the comment as well
as a brief description of the screen contents and note if more than one screen is
chained by the screen. See listing 7.1 for typical screen comment usage.

The keyword that displays the first line of successive screens is LIST. This
keyword expects a starting and ending screen in the input range. To allow the
Operator to stop the display, a call to the WAIT keyword is coded after each
line is output. LIST needs at least one empty buffer to hold the first block of
cach screen as it is read from the disk. The Ffirst sixty-four characters of each
block are then displayed. Since there is no reason to make the first lines of the
screens permanently system resident, the buffer is marked empty after each ac-
cess,

A keyword that is very similar to LIST is SHOW. This keyword shows the
entire screen contents on the display rather than just the first line. At the end of
each screen display, a keyword named HIDE is called rather than WAIT.
HIDE not only waits for the next keyboard entry but also suppresses the cur-
sor. This allows the entire screen to be displayed without a hole at the cursor
point,

The protocol for screen residency is somewhat analogous to block residen-
cy. The keyword that loads a screen to the system is OPEN. OPEN expects a
screen number on the stack and will attempt to load the screen to one of two
sets of eight contiguous blocks. There are four important system variables
associated with the operation as follows;

SCRN — The target screen.

SCRNO — SCRNI — The screen number of the screen resident in the nth
set of eight blocks (if resident) or —1 (if not).

SCREEN — A pointer to the start of the SBUF low-order or high-order
set of block buffers of the current screen.

OPEN will first test SCRNO and SCRNT1 to determine if the screen is resident,
It it is, SCREEN is set to point to the start of the appropriate set of buffers, If

230 ELRE ALY INTLRIRELIVE LANGUALL S

records, and subfields are precisely like arrays defined in the core, always
available simply by their keyword names. o -.

When a data block, record, or subfield is updated it is important that D! by
used rather than “1" if the update is to be marked for later storage to the disk.
As previously described, a SAVE command is required to actually update the

disk.

7.3.6 Loose Ends

At this point we have considered most of what is required to implem'ent the
virtual memory system. There are, however, still a few loose ends to tidy up.

The virtual memory system is usually made a part of the CORE vqcab}llary.
There is little point in establishing a separate vocabulary for thle basic disk ac&
cessing routines. When the editor is discussed, sever:fl ?thgr disk (as oppose
to purely editing) functions will also be covered. Th:s_ is simply a convenient
place to hide the routines, since the editor vocabulary is us..ually dmk-resx-dent.

A system is usually designed from its inception to include the v1rt1..1al
memory extension. This isn’t surprising since most people rem(_ember spendllng
the several hundreds of dollars that disk hardware costs. Even if the expensive
part isn't acquired until later, the existing language is not lost, The INLH\}I]E
keyword address of the outer interpreter of Section 5 could be r.eplaced by the
word address of the keyword INPUT as an example. INPUT is a secondary
which is designed to choose between INLINE and MASS. A change to QUES-
TION also needs to be implemented to suppress the OK message appropri-

ately.

7.4 Editor

The threaded interpretive language editor is the tool for g.enerating and
modifying screens of source text. Unlike the assembler and v1rtua1. memory
keywords, the EDITOR vocabulary keywords are not system-resident but
must be loaded to the system when needed. The keywo'rd EDITOR ac-
complishes this by pushing the screen number of the initial ed:tF)r screen to'the
stack and then calling' LOAD. The first definition in the editor screen is a
redefinition of the keyword EDITOR so that the EDITOR vocabulary can be
discarded using FORGET when all editing tasks are completed.

[XTERSIGN) AN

7.4.1 Line by Line

The basic (not BASIC) editor is line-oriented. That is, it manipulates entire
lines of text rather than the characters within a line. The editor always
operates on a screen of data which is loaded to the block buffers using the
OPEN command. To modify an existing screen or to generate a new screen,
the screen must be loaded to the buffers before editing begins. To locate
ncreens or display screens, the keywords LIST and SHOW are available.

The editor commands are fairly simple. The commands ail assume that a
line number between 0 and 15 is on the stack when the command is evoked.
Any textual data to be input to the block buffers is done by calling the normal
INLINE input routine. If INLINE was implemented in the core language as a

headerless primitive, it can be given a header in the EDITOR vocabulary as
follows:

CREATENMINLINEMnnECA!W;

Here nn is the address of the first instruction of the INLINE primitive, not its
word address. (See line 9 of screen 1 in listing 7.1). One other point does bear
on this use of INLINE; only the first 64 characters may be used rather than the

usual 128 input characters. For example, the command to replace line O of the
current screen is:

OBREPLACER

Note that a carriage return follows REPLACE and the cursor point will im-
mediately drop to the start of the next line. Any text following REPLACE will
be ignored by the system since the input buffer is first cleared by INLINE. At
the occurrence of the next carriage return, the contents of the first sixty-four
characters in the input buffer are moved to the appropriate block buffer half.

As a result of the manner in which INLINE was designed, the backspace, line
delete, and carriage return functions work as always. In fact, an editor com-
mand to clear a line is not required since a replaced line with a single carriage
return will clear the line. The line editing commands include:

REPLACE — Pops a line number from the stack, fills the line with spaces, and
then replaces the line with the textual string following the REPLACE. Also
used to clear a line,

INSERT — Pops a line number from the stack, moves all lines from this line
through line 14 down one line, and replaces the line originally popped from the
stack with textual string following as if the REPLACE command were used.
The fifteenth (last) line is lost.

DELETE — Pops a line number from the stack, moves all lines from this line
number plus one up one line, and clears line 15.

TYPE — Pops a line number from the stack and displays the line.

222 FHREADNTY INTERIRET YD LANCGHAGED

To write the completed screen back to disk, the WRITE command must be
used. The keyword CLOSE is used to free the screen area.

Although the LIST and SHOW were presented as screen keywords, 1 usua!ly
embed them in the EDITOR vocabulary. Since screens are seldom played with
except in the edit mode, this is not a very restrictive feature. _

Actually the editor vocabulary is used to generate ii.:self‘ Tl}e editor
keywords are first designed and then the following sequence is typed in the ex-
ecute mode:

.MEDITOREnBLOADE; M. REDITORE; B EnBOPEN

This opens screen n (ie: makes it systemn-resident). Next, the keywords that
constitute the editor vocabulary are entered in the system. These keywords are
then used to generate the screen which contains the same definitions. The first
line of the screen is defined as:

(BSCREENEnM — BEDITOR®)M: BEDITORR;

Note that EDITOR in both this definition and the second occurrence in the
previous definition are simply placeholders used to forget the definitions alfter
the EDITOR screen(s) are generated. This editor is the minimum configuration
that should be considered. It can be assembled/compiled to the current dic-
tionary space in less than one second (typically) and occupies about 350 l?ytes:.

Listing 7.1 lists the two editor screens associated with ZIPD. The editor is
loaded by typing EDITOR and responds:

EDITOR LOADED, DECIMAL BASE

when loading completes. Note that ZIPD disk blocks are 256-bytes long.

7.4.2 In a Line

A more advanced line editor can be easily added to the line-oriented editor.
The line editor will allow the characters within a line to be modified without
retyping the whole line. The editor does not directty modify the block buftfe?'.
Rather it is used to generate a new line. When the new line is correct, it is
moved to the block buffer to incorporate the line in the screen.

The line editor function requires a sixty-four character array and two
pointers. The line pointer points to the block buffer where the line being echfed
is stored. The array pointer points to the array where the modified line is being
built. The line editor is called from the EDITOR using the command keyword
EDIT. The keyword will first display the line whose address is on the stack,
clear the array to ASCII spaces, set the line pointer to the first address of the

FXUTNSICN LAY 223

buffer half where the line to be modifled is stored, set the array pointer to the
First address of the array, and enter a special input mode. In this special input
mode, all commands to the editor are ASCII control codes. The control codes
angl the action they evoke follow:

CNTL-@(AL). Echoes a CRLF, the screen line, a CRLF, and the array line up
to the array entry point. Neither pointer is changed.

CNTL-A (Advance). Moves the character pointed to by the line pointer to the
location pointed to by the array pointer; echo displays the character and ad-
vances both pointers,

CNTL-B (Back). Enters a space at the current array point, decrements both
pointers, and echo displays the backspace command. This command will not
allow either pointer to be decremented past its starting address.

CNTL-C (Copy). Moves the remaining characters in the line from the block
buffer to the array buffer. Terminates when the end of either buffer is reached.
CNTL-D (Delete). Advances only the line pointer and echo displays a delete
symbol to the screen. (I use an X symbol, but this is arbitrary.)

CNTL-E {Enter). Echoes a < symbol to the display and enters an entry mode.
All characters entered via the keyboard except CNTL-E are moved to the array
buffer at the array pointer location and the array pointer is advanced, A
CNTL-E input results in the display of a > symbol and the entry mode is ter-
minated.

CNTL-F (Find). The command expects a second keyboard input. When the in-
put is received the line buffer characters are copied to the array buffer until the
line buffer character equals the second keyboard input character. Always ter-
minates if the end of either buffer is reached.

CNTL-G (Go). Moves the array buffer to the line buffer {sixty-four characters)
and exits the line edit mode,

CNTL-H (Home). Exits the line edit mode.

The line editor design sketched above is but one of many approaches. It has
one very important feature: the original line is not modified until all editing
functions are complete. An escape command (CNTL-H) allows the current line
to remain untouched and returns control to the editor to allow for a re-edit in
case one becomes totally confused. For me, such touches are a requirement.

In case you didn’t notice, the commands are in the set 0 thru 8 (the ASCII
codes for CNTL-@ thru CNTL-H). This allows a case construct to be built to
contral the calls to the various keywords that implement the actions. It is not
important that the editor be either super-fast or super-small. It can be defined
using existing CORE keywords rather than using a group of primitives. After
all, its main use is to generate and modify source text which is to be saved on
the disk. It is seldom called when any task program is actually system-resident.
More time is lost due to the operator’s snail-like pace than to keyword execu-
tion.

220 TLIRLADEDY INTLRERE DIVE T ANGLIAG Y

7.5 Cross-Compilation P o —

Cross-compilation of a threaded interpretive language program refers to the
process of generating a stand-alone program capable of executing some given
task. The program is always generated and stored on the disk rather than in
memory. The target address for the program being cross-compiled may be any
memory location in the system in which it will be resident, including the
memory space of the TIL being used to generate the program. The object of the
cross-compilation is to generate a threaded program which can be loaded to
the target system and which will autonomously perform some specific task.
The programs may be developed and tested using the TIL before being cross-
compiled. The intent is to delete all of the unnecessary features of the CORE
language and produce the smallest possible object program. For example, the
entire outer interpreter is the executive for the TIL and is not required by most
programs. It need not be resident in the autonomous program.

7.5.1 The End Result

The easiest way to understand the cross-compilation process is to consider
what the final object program will be like. Obviously the object program will
contain an inner interpreter, primitive and secondary keywords, and some
type of executive program to control execution. It will not contain the TIL
outer interpreter {the TIL executive) nor will it contain any keyword headers.
Keyword headers are designed to allow the TIL to thread keywords together,
This is not required of the object program since the scope of the program is
fixed.

The program being generated will be stored on the disk rather than in
memory. Actually it will be built in the block buffers and transferred to the
disk. The target address of the program maps directly to a disk block address.
That is, if the target address of the object program is hexadecimal 0000 to
Q1FF, and the program is to be stored in block 6, there is a constant offset of
hexadecimal 0600 between the block “address” and target memory address (ie:
the program will be stored in blocks 6, 7, 8, and 9).

Since the object program does not have headers in its keyword definitions,
the “dictionary” for the object program is not available in the usual sense. The
vocabulary for the object program is actually stored in the generating system.
When it is searched, it will return the word address of some keyword in the ob-
ject program, The object program vocabulary is essentially a symbol table of
the word addresses for the object program,

Because object program headers will be created in the resident vocabulary
but the code addresses will be stored in the object virtual space, all defining
words are redefined in the cross-assembler. The keyword CREATE in the
cross-assembler generates a header in the OBJECT vocabulary and saves the

FXTINSION UITART: 329

address of the next available locatlon In the free object program space at word
atdress location of the keyword, It then stores a pointer to the word that
tollows the next free object location at the build address and increments the
free object space location pointer. This creates a primitive code address in the
object program code whose word address is stored in the word address of the
hend(fr in the OBJECT vocabulary. This is diagrammed in figure 7.2, Note that
the virtual address where the object code is stored (the build address} is not the
rame as the target memory address where the object code will be located but is

offselt.) This offset is the offset from object to virtual memory (0300 in our ex-
ample).

RESIDENT OBIECT ViIRFEIAL
ADORESS
—
3
4
0102 0400
1] j
P a
o 7
-
LiINK
WORC ADDRESS 0100 NEXT

Figure 7.2: A cross-compiled DUP primitive example,

The point of all of this is not nearly as strange as it first appears. To build a
s.econdary implies locating a word address to be enclosed in the object dic-
ltlonary space. This word address is the word address of the keyword in the ob-
ject program when it is the resident program. The dictionary headers are
however, being added to the TIL free dictionary space, not the object space’
Further, the virtual address of the place where the code is to be stored is dif:
ferent from the object address where it will finally be located. This concept is
central to understanding the cross-assembler. ?

The keywords that enclose data in the object dictionary (,” and C,) also
must be redefined in the cross-compiler, This impacts the entiré assembl'y pro-
cess, A grotss-ase;t:mbler r;:ust be available to build entries to the object pro-
gram and store them to the virtual memory build space. Defini
as VA.RIABLE and CONSTANT must a]sr}; be redlzfined. eévesgt}:veo:\i;sl?::
handling routines of the outer interpreter are different in the cross-compilation
mode, since the literal handlers are differently located, The cross-compiler is

very different from the normal compiler/assembler,

L R LT TR I TE NN VRV NS F O N TE LRI RFLIN TNE)

7.5.2 The Process

The cross-compilation of TIL programs requires a substantial redefinition of
the resident TIL program, The cross-compiler is usually disk-resident. When it
is evoked, the cross-compiler and cross-assembler are loaded to the system. Ef-
fectively an entirely new outer interpreter is contained in the cross-compiler,
The object program to be cross-compiled is also resident on the disk in source
text form,

The usual technique is to define a special load screen for cross-compiler ob-
ject program generation. This screen includes the source text for an inner intes-
preter and several of the most useful keywords. These include the keywords to
support the branch and loop constructs, the defining words, literals, some
basic arithmetic, memory reference, relational, stack and interstack keywords,
{If some of the keywords are known to be unnecessary, this general-purpose
screen can be copied and edited first.) The screen is loaded by the cross-
compiler and becomes the core of the object program.

A second general-purpose screen is then loaded to establish the variable
storage policy for the object program. If the abject code will be placed in read-
only memory, special provision for correctly allocating variables to the pro-
grammable memory must be included. Otherwise the variable storage can be
in-line, One of two screens is loaded to the system to establish the variable
storage protocol.

Unless you are very lucky, the keywords embedded in the object program to
this point do not match the requirements of the object program load screen. If
the object program was generated by redefining all those keywords needed to
support the object code except those known to exist in the core object screen,
the object program screen can be loaded to produce the final object program,
In either event, remember that all keywords must be defined before they are
used in another definition,

It should be noted that the object program cannot be tested in the normal
system environment in its final form. The load screen used to generate the final
object program can be checked out interactively but the final object program
cannot, By including definition of all the keywords except those known to ex-
ist in the core object screen, a fairly high degree of assurance that the object
program is correct can be achieved before cross-generation.

7.6 Widget Sorters

Because the eticlogy of widgets is an obscure science, I won't even discuss
widgets here. Instead, 1 will discuss something even more vague.

The system software necessary to control the hardware is generally referred
to as the system monitor or the operating system, This software may be writ-

FRITMAT I FIFATE KAT

ten in threaded code just an caslly an any other program, The 170 routines
should still be coded as subroutines to allow aceess by other programs, but this
is a minor point. A review of the keywords and extensions will reveal that
mosl of the features of a general-purpose system monitor program are
available in the TIL,

There are several functions that are usually available in a system monitor
that have not been considered in the TIL. These include several debugging
teatures and utility functions. The core monitor features include the ability to
generate, display, and test programs, the ability to load programs to memory
and save programs on mass media, the ability to test the system hardware, and
the ability to perform housekeeping chores of various types (such as 170},

There are several ways to generate a threaded system monitor. The most
nimplistic approach is to design an outer interpreter that has the ability to ex-
ccute keywords but does not have a compile mode. This approach results ina
fiubstantially smaller outer interpreter with far fewer keywords needed to sup-
port the outer interpreter. This fixes the scope of the monitor at build time, A
2 K-byte monitor of this type will support an amazing number of features.
Only the keyword directly available to the operator needs headers, which
helps shoehorn the system into 2 K-bytes of memory.

Using this approach, the full-blown compiling outer interpreter must be a
separate program. The inner interpreter for the system monitor can be used by
the more comprehensive language exactly as if it were a utility program. All of
the keywords with headers can also be used if this is done. The primitive
keywords without headers in the system monitor can be given headers in the
main language with suitably defined coding addresses.

[t should be noted that even though the system monitor is a threaded inter-
preter, this does not imply that only threaded code can be supported by the
system. The menitor must be capable of loading a program to memory. It does
not care what the contents of the memory load are. By defining an uncondi-
tional jump keyword to the address at the top of the stack, any program can be
executed, I do run BASIC in a system with a threaded system monitor.

A saner but larger monitor can be constructed using a full compiling version
of the outer interpreter. The virtual memory features can be included in this
type of a monitor. Not all of the language features of the general purpose
language need be contained in the monitor, By concentrating the resources on
170 and other essential features, a subset of the language will suffice. The full
language can be called into play via a load screen. This is somewhat of an ad-
vantage in that only the monitor software need be in a fixed location, By set-
ting the dictionary pointer before calling the load screen, the language may be
relocated at will to any area of programmable memory.

There are several tacks that can be taken to achieve the desired goal. Most
involve bootstrapping. For example, the initial bootstrapping operation for
my Z80 system started with a 1 K-byte read-only memory monitor on the cen-
tral processing unit board, The monitor was debugged on an 8080 system; the
read-only memory was programmed and then installed in the Z80 system.
Using this monitor, the disk system (with its own read-only memory bootstrap
loader and disk operating system) was then installed. The disk operating soft-
ware was then specialized to the Z80 I/O using the 1 K-byte read-only

AT LITANAMACT, DT I NN (TFPT T rowe rywresss

memory monitor, Using the combined disk operating system/l K-byte moni
tor, a2 new system disk was generated that bootstrapped not the disk operating
system, but a more extensive system monitor. This monitor was then used to
develop the threaded syster monitor. Finally, a more extensive disk bootstrap
loader was generated and burned into a 1 K-byte read-only memory, and the
disk read-only memory and original system monitor read-only memory were
removed, In the end, a power-on or master reset boot loads the threaded
monitor from the disk. Other programs, such as BASIC, have their own in-
dividual bootstrap loaders. They can be loaded autonomously or by the
threaded system monitor.

By suitable trickery, a fairly universal operating system can be developed.
The compiling version of the system can even allow the development of
relocatable system utility software. As an example, a disassembler can be writ-
ten in threaded source code as a load screen, The advantage of this is fairly
simple to see. A program to be disassembled can generally be located at its in-
tended load point (unless it is located in the system menitor area). The
disassembler can be loaded to any free memory area by setting the dictionary
pointer prior to loading the appropriate screen. This leaves the source to be
disassembled where it should be, resulting in an easier disassembler design.

The ability to extend the language to system software has a subtle advan-
tage. There exists only one protocol and one set of input commands for both
the system and the language itself. There is no question about separators being
commas for one command language and spaces for another. The keywords
evoke the same response in both languages unless purposefully changed.
Uniformity has its advantages.

7.7 Floating Point

All of the arithmetic keywords considered so far have been restricted to
signed integers. There is no fundamental reason for not building a floating-
point arithmetic package for the TIL if it is required. If scientific computations
are needed, the TIL will certainly support your requirements. The only reason
that my current TIL does not support floating-point is my lack of time to teach
the beast the basics. A quick sketch of the fundamentals should point the more
ambitious in the right direction.

7.7.1 Formats

There are as many floating-point formats kicking around as there are opin-

IXTUNRION THTART e

ions about what constitutes beauty. All of the formats eventually reduce to the
form;

N= 4 A X Bx<

In this form A is called the mantissa, B is called the exponent base and C is
talled the exponent. After this simple fact is stated, all sanity disappears and
cmotion ensues.

The mantissa is usually constrained to be in the range:

Bi< |A|<B*

where i is an integer, Simply because computers are usually (but not always)
implemented as binary machines, the exponent base B is usually selected to be
some power of 2. Because B is selected a priori, it is not explicitly carried
within the floating-point number format but is implicit in the computational
routines. What needs to be carried in the floating-point representation is: the
sign of the mantissa, the mantissa magnitude, the sign of the exponent, the ex-
ponent magnitude, and, finally (because of the mantissa constraint), some in-
dicator of a zero mantissa condition.

Since computers are computers and generally recognize only integers (and
usually binary integers at that), there are some fundamentally rational ways to
define floating-point number formats, The way the format is designed affects
the attributes of the numbers to be represented. Two common choices for the

exponent base are 2 and 16, The numbers can be represented for the case i =
—1 as:

A, X2*¢ +A,X16%C

0.5<]A)|<1.0 0.0625< |A;| < 1.0

Given a maximum integer value for C, the dynamic range of the A, format is
much less than that of the A, format. This is easy to see since 2= 10* but
16 =10"". The larger the value of B, the fewer bits needed for C in order to
achieve the same dynamic range. The dynamic range advantage for a larger
value of B does not come for free. As a scaled binary number, the A, format
always has a 1 to the right of the binary radix point. The A, format may have
up to three leading zeros to the right of the binary radix point before the ap-
pearance of a 1. Given the same number of bits to define A, the A, format
always has the same number of significant digits but the A, format does not.
To illustrate this, consider a floating point number which is first divided by 2
and then multiplied by 2. In the A, format, the value of A, would not change
since the divide and multiply affect the value C only. In the A, format, the
divide could result in a right shift of A, and no change to C. The least signifi-
cant bit of A, if it were 1 set, would be lost by the divide and not recovered by
the multiply. In fact, there are variations of up to 3 bits in the significance of
the A, format due to the choice of C.

Two common formats for floating-point numbers are given in figure 7.3.

RADIX POINT
BM l,

| i

A e —
24 BIT MANTISSA 7 BIT EXPOMENT,
BASE 16, EXCESS €4

IMANTISSJ! SIGN BIT

'
4 l/HDDEN BIT (MANTISSA SIGN OVERLAY!

k. |
24 RIT MANTISSA 8 BIT EXPONENT,
BASE 2, EXCESS 128

Figure 7.3: Twa common floating-point number formats. One is used by 1BM, the other
is in general use.

In both formats, the exponent is carried as an excess number and the special
case of C = 0 indicates that A = 0. For example:

Exponent Value Exponent Mantissa
in Hex -
FE 24127~
TFormat 80 20 b 0.55A<10
0'1 2“1"'7 s
00 - A=0

In the IBM format, the mantissa is allocated 24 bits but may have only 21
significant bits. In the “?” format, the MSB (most significant bit) is known to
be a 1 so that it is hidden by the sign bit which overlays the MSB. In both for-
mats a mantissa sign bit of 0 indicates a positive mantissa and a mantissa sign
bit of 1 indicates a negative mantissa.

If your computer supports hardware floating point, all of this is moot since
it fixes the format to be used. If not, the ideal format depends on your re-
quirements for precision, dynamic range and the ease with which your format
can be mechanized on your machine. Since some microcomputers support
BCD (binary coded decimal} arithmetic, even these forms of floating-point

UXTENRIDN 1T FALE 3N

arithmetic are feosible (le: nn exponent base € of 10},

Within the constraints of most mlcrocomputer instruction sets, the fastest
Hoating-point arithmetic routines are usually exponent base 2 formats, If speed
in nol the important criteria, select the format with the right attributes for your
upplication. Whatever the criteria, the use of formats with multiples of 16-bits
are generally preferred for TILs since the stack is 16 bits wide.

There are actually four different formats associated with TIL floating-point
numbers: the conceptual format, the format used to store floating-point
numbers in code bodies or when in threaded code lists as literals, the format
when the number is on the data stack, and the 1/O {input/output) format.
There are no fixed rules for designing these formats., The “right” answer
depends on the microcomputer and the ease of the implementation.

7.7.2 Floating Keywords

The keywords required for floating-point manipulation are remarkably
similar to those required for integer manipulation. The biggest potential
change to the TIL in adding floating-point involves the [/O. None of the outer
interpreters considered to this point allowed for the possibility that an input
number could be a floating-point number rather than an integer number,
There are several ways to correct the I/O to allow this eventuality.

The floating-point philosophy is exactly the same as the integer philosophy:
data type resolution is incumbent on the programmer, All floating-point
keywords are predicated on the stack being preloaded before the keyword is
evoked, The necessary keywords for general programming are relatively easy
to predict.

The stack-oriented keywords consist of FDROP, FDUP, FOVER and
FSWAP as a minimum. The only essential difference between these keywords
and the equivalent integer versions is that a single floating-point number oc-
cupies two {or more) consecutive stack entries. The interstack floating-point
operators F<R and FR> are simply multiple transfers of floating numbers.

The memory reference operators F@, F! and F+1 involve conversions be-
tween floating-point stack and memory formats. The F+| operator does not
have the utility of the +1 operator and may not be needed.

The floating arithmetic operators include FABS, FMINUS, F+, F—, F*, F/,
E/MOD, FMOD, FMAX, FMIN, and F10*, Obviously this is where the nitty-
gritty of the floating-point resides. Oddly enough, FABS and FMINUS are
easier to implement than ABS and MINUS. If only the remainder were! The
floating-point relational operator includes F=, F>», F<, F0=, and F0 <. The
first three of these routines are mildly complex.

Clearly, floating-point defining words FCONSTANT and FVARIABLE and
a floating-point number literal handler *F# are required. Routines to convert
signed integers to floating-point (ITOF) and fleating-point to integer (FTQI)

232 THIREALCD INTERPROTIVE TANGHAGLES

are also desirable. A floating-point output routine such as F. would be nice
too. Except for ITOF and FTOI, thése routines are concerned with 1/Q and
170 formats.

There are several ways to implement the 1/0 routines, One method is to
change the outer interpreter to allow floating-point input numbers to be
generated if a token is one of the following forms:

N = { X
XEY
where; X=f i
i.J for i and j integer base 10
J
—i
—i]
-]
Y ={ i
—i for i integer base 10

This change to, the outer interpreter is clearly the preferred implementation
since the system can decide whether to push the result to the stack (execute
mode) or add the floating-peint literal handler plus the floating-peint number
to the threaded list (compile mode).

An alternate approach is to define two separate keywords. A keyword
named FLOAT could be defined to scan the next token from the input buffer,
convert the token to the internal floating-peint stack format and leave the
result on the stack. An immediate keyword could perform a similar conversion
in the compile mode except it would enclose the floating-point literal handler
plus the converted number to the threaded list of code being compiled. This
method works but does have the potential for error.

7.7.3 Summary

Clearly, there are many additional operands that could be defined to extend
the system capabilities beyond the level supported by these relatively
simplistic operands. Once a floating-point capability is available, trigono-
metric and other mathematical functions are reasonable candidates. All of this
is in the works for my TIL, with a floating-point design half complete and my
eye on cordic-based mathematical algerithms,

EXTINSION PTLALE 23

7.8 Extension Summary

The extensions to the language are a somewhat mixed blessing. As more and
more features are added, the language becomes bigger and bigger. On the
other hand the language utility increases. However, the good part is that an
initial threaded interpretive language of size 4 K can grow and grow as the
system grows. A 12 K-byte TIL should support an absolutely incredible set of
capabilities, 1 simply cannot imagine a TIL of that size.

04 THREADFD INTHRPRUTEVE 1ANLLAGLY

8 | Life With a TIL

When it comes down to brass tacks, living with most pro-
gramming languages is like living with your mother-in-law:
tranquility interspersed with moments of incredible rage.
The most insidious aspect is getting the "thing” to do what
you want. For “thing” read mother-in-law, BASIC, FOR-
TRAN, ..., but not TIL,

8.1 Starting Qut

The aspect of the TIL which is most enjoyable and also the most hazardous
is its interactive nature. TILs love to “talk” to people and are extremely adept
at learning (given proper guidance). TILs are very happy to reveal their inner-
most secrets and show you their home. There is no part of the system which
can’t be displayed, changed, manipulated, and occasionally messed up in your
conversations with the TIL. The problem is the very ease with which new
keywords can be added to the language. It leads to the “design-at-the-
keyboard” (DATK) syndrome,

The only known cure for the “design-at-the-keyboard” syndrome is a
deliberate effort on the part of the programmer to design a program before the
keyboard is touched. Designing a TIL program is not much different than
designing in other languages. A TIL does demand a modest amount of struc-
ture in a program: that is, a keyword cannot be used before it is defined, and it
does demand that the structured construct syntax be complete (ie: a LOOP or
+LOOP must terminate a DO). The actual structure of a program must be en-
forced by the programmer,

In designing a TIL program, I generally attack the problem in a very rigid
fashion; design the keywords from the top-down and then enter the program
in a fixed format. The fixed format for program entry is a self-enforced,
disciplined technique, rather than something demanded by the language itself,
The other steps are simply common sense. (Programming does demand a cer-
tain amount of common sense, although I will admit that some programs
reflect more than others.) It should be pointed out that the techniques I will

TUTsIrr A T 213

copouse are designed (o picserve my sanily, since they work and work very
well.

8.2 Program Structure

There are several reasons for insisting on a fixed structure for a program.
Fundamentally it allows one to reconstruct the crime at some later point in
time from the scattered remnants of keywords covering the baitleground.
There is nothing worse than trying to figure out some program post-facto.
ldeally the program should be a source code version stored on the mass media
rather than an embedded program in some vocabulary. In any event some
type of listing of the program should be created during the build process to
allow later program meodification or simply to allow precise determination of
what the code actually does.

The structural aspects of the program are designed both to satisfy the
undefined keyword problem and to put items that are declared in a logical
order. All programs are arranged as follows:

® Vocabulary definitions,
@ Data type definitions,
® Global data definitions.
® Procedure definitions,
® Main program.

While this is the general format of a program, a certain amount of
precedence must exist within each category. This will become obvious later
(hopefully), since it is part of the design process.

8.2.1 Vocabulary Definition

Defining the vocabulary is fundamental to determining the resources
available for program design. Almost all programs (except for cross-compiled,
stand-alone programs) are linked back to the core vocabulary. How the pro-
gram is linked to the core language can seriously affect the attributes of the
program. For example, consider that a complete floating-point arithmetic
package exists as a separate vocabulary that is linked to the core vocabulary.
The floating-point vocabulary could contain a complete set of keywords for
the generation, manipulation, and display of floating-point data types. By
linking the new program vocabulary to the floating-point vocabulary rather
than directly to the core vocabulary, the new program could contain both in-

21 VHREAITTHINTERTHILIVE | ANGLALET

teger and floating-point data types.

The rationale for linking indirectly to the core vocabulary through a
vocabulary such as the floating-point vocabulary only makes sense if the
linking vocabulary is always system-resident or if the linking vocabulary
redefines keywords that also exist in the core vocabulary. In the case of the
floating-point vocabulary, both the floating-point data declaration types and
other definitions are contained in the vocabulary. The data declaration types
need to be available before global data definitions are attempted.

In cases where it is desired to include an entire library of standard functions
in a new program, an alternate technique to vocabulary linking can also be
used. How this is done is dependent upon whether the new program is being
built on disk or is being interactively defined. If the program is being built on
the disk, the library screens are first duplicated, the first screen of the library
routine is reidentified as the first screen of new program and the screen load
linkages are redefined to incorporate all of the library screens. The reiden-
tification shotld include the name of the new program as a keyword definition
to allow FORGET < new program>> to delete the entire program. It is simply
required to type in the names of the library functions desired after the
vocabulary is established. Simply including the names of the desired library
functions on a screen will not work. The screen calls are not nested so that the
appearance of the library-loading keyword in another screen will load the
library but will not return to the calling screen. If you want, a routine called
LIBRARY could be defined to initiate a screen-load nesting operation. The
final screens in each library vocabulary would have to contain the denesting
code to complete this scenario.

The important point about the vocabulary definition step is that it defines
the basic capabilities available to the new program. Keywords that are unique
to the new program are not placed in libraries or added to the resident
vocabularies to allow linking via the unique vocabulary. The vocabulary
definition simply establishes the basic keywords available as resources to
define the unique keywords of the new program.

8.2.2 Data Type Definitions

The basic TIL language contains only limited predefined data types. De-
pending on how you have defined the language, arrays, strings, user blocks,
and other data types may not be available to a particular applications pro-
gram, If required, they must be added. Data files unique to the program and
the record structure of the data files must be defined along with any unique
data type definitions. The keywords for the data and file definitions must
precede the definition of the global data. In this case the appearance of the data
type definitions before data declaration is required. Simply demanding that

PIE WA LI a0

they all appear in one place is not required; It is common sense,

8.2.3 Global Data Definitions

Although it has not been stressed to this point, a TIL distinguishes between
tocal and global data. Any named data such as a variable is globally available
via its keyword name and occupies dictionary memory space. Data passedto a
procedure or program on the stack or stack data internal to the procedure is
local to the procedure and occupies stack memory space. Local data may be
nothing more than a copy of global data, but once the quantity is on the stack,
it is local data.

One other interesting feature of a TIL is that it allows data passage by value,
by address, by pointer to an address, or by any other conceivable means. Ex-
amples of the first three methods are constants, variables, and user variables.
In all cases the correct resolution of the data rests with the programmer and
not the system.

In defining global data, 1 generally define the keywords in the order of in-
creasing complexity. Constants are defined first, followed by variables, ar-
rays, pointers, strings (messages), data files and records, etc, An important
point about defining data keyword names is to make them descriptive. Proper
keyword names and suitable usage of the keywords in subsidiary definitions
lead to much more lucid programs. The use of a constant keyword with a
descriptive name is much preferred, for example, over the isolated appearance
of some number in the middle of a keyword definition. Although this is at
odds with the desire to conserve memory, a self-documenting keyword is a
boon to understanding the intent of the program.

8.2.4 Procedure Definitions

The procedural definition phase is where all of the keywords required to
stupport the main program are defined. Procedures may be operands, func-
tions, subroutines, program control directives, or other actions required by
the main program. Because a keyword cannot be referenced before it is de-
fined, it is not unusual to observe a natural precedence in the entry order for
procedures. The “natural” precedence order is from the most primitive level to
the most sophisticated level, Usually this is precisely the order demanded by
the define-before-use criteria.

During the procedure definition phase, it is not unusual to incorporate
library routines by stealing the source code from the disk and merging it with

L0 THREADLDIN 2R TEVETANGLUAGE

the program source code. A library of such source code routlnes is very helpful
in generating programs, As an example, trigonometric floating point routines
could be stored on the disk in a library file. Those routines required by a given
application program could be copied to the procedural definition area of the
program. This process limits the resulting program size since only the subset of
the library really needed for the application is added to the program, Devel-
oping the library is not easy, but it is easier than regenerating the same
routines each time an application stumbles by.

As in the case of the global data, names of the procedures are important,
Comments are also helpful. Anything that supports an understanding of the
procedures will turn out to be useful in the final analysis.

8.2.5 Main Program

The TIL main program will always turn out to be the final keywerd defini-
tion in an applications program. There may actually be several interrelated
main programs, but this is an exception rather than the rule. The editor
vocabulary can be viewed in this context, for example. The more usual situa-
tion is to have a single main program. The appearance of the main program as
the last entry is consistent with the fact that keywords cannot be used before
they are defined.,

A TIL main program is often a loop which returns to the outer interpreter
only on operator command., Whatever its design, it is a stand-alone program
which is not constrained to have the same characteristics as the outer in-
terpreter. The operator’s interactions with the program are defined by the pro-
gram design.

8.2.6 Physical Records

Any TIL application program must exist somewhere as a source code listing.
This may be in program screens on disk or it may be on the back of a laundry
ticket or it may be only in the mind of the programmer. The above list is in
decreasing order of preference. The subtle inference that a disk system is
available is embedded in the entry structure discussion. The fundamental ad-
vantage to the disk is that it produces a self-documenting file when the entry
takes place. This is not true of the other methods of listing generation.

If the mass media supported by your system is cassette storage, source file
generation and program retrieval are much more difficult, Usually hand
documentation combined with recording of the object file (the entire TIL

TIT WITH A TT1 239

language with the application program already entered) is required. Other
methods that allow saving or londing only the source file could be designed but
they usually require Fairly large memory blocks for the source code. At that, it
is to be preferred over hand documentation.

Given that a disk system is available, one important factor must be raised.
Store your applications programs on a disk different from your system disk.
The system disk should contain a bootstrap loader for the TIL, the basic TIL
language, the operator message block, system utilities such as the editor, and
the library routines. An application program should be on a separate disk
which contains only the operator message block, applications programs, and
possibly the application data files. Intermixing the system and applications
programs on a single disk is rarely an advantage,

The physical récords of any program determine the long-term utility of the
code. Undocumented or poorly documented programs are as useful as a JSW
{jump somewhere)} assembler mnemonic,

8.3 Program Design

As has been noted, the disadvantage of a TIL is that its interactive nature
can Jead to poor programming practice. It is so easy to add, check-out, and re-
tain code that program design tends to occur at the keyboard rather than at the
desk (the DATK syndrome). Program entry must be bottom-up, but a bottom-
up program design leads to a poor design. The design stage must be top-down
if a reasonable design is to result,

So much has been written about top-down design that I hesitate to muddy
the water with my oar. Suffice to say that there are advocates of flowcharts,
structure charts, ALGOL-like languages, HIPOs, Warnier-Orr diagrams, and
numerous other techniques, all of which are advertised as being the technique
for top-down design. Use whatever technique you feel comfortable with,
Whatever design approach you use, if it isn't straight-out TIL code, a conver-
sion to TIL code format is necessary before a real design exists. I shall concen-
trate on the TIL code format.

8.3.1 Vertical Design

The top-down design of a TIL program or procedure (ie: a keyword) should
ideally result in both a syntactically and semantically correct design. Although
there are no quick and easy rules for determining the total correciness of a
given definition, there are some guidelines that help during the design phase.
The TIL entry format of tokens separated by spaces does not readily indicate

the underlying structure of the definition. During the design phase, 1 use a ver-
tical format with setbacks to more clearly indicate the structyre, For example:

:JOBEBEGIN BWORD1IRWORD2BTESTH
[FETASK1MELSEMTASK2 B THEN MFLAGEENDE:
:lJOB
BEGIN
WORD1
WORD2
TEST
IF
TASK1
ELSE
TASK2
THEN
FLAG
END

;

Although both definitions are precisely the same, clearly the vertical format
with setbacks is far more informative of the keyword structure than the
horizontal format. In the vertical format it is much more obvious that the syn-
tax of the constructs is complete. Simple syntax completeness will not prove
program integrity, but the lack thereof will assure problems.

Given that the top-level form of the main program keyword is defined, the
local (stack) data at the completion of each keyword in the definition is noted
to the right of each keyword used in the definition. This is a fairly simple way
to display the stack input/output requirements. The changes to the global data
are every bit as important, but not as evident at any given stage in the program
design, It is clear, however, that local data disagreements are fatal. In noting
the keyword stack data 170 requirements, 1 distinguish between flags,
numbers, addresses, pointers, and other data types. It is important that the
stack depth and types be in agreement with the keyword 1/0 needs. If the
keyword is undefined at the next lower level, the [/O requirements are in-
dicative of the algorithmic transfer function needed to define the keyword, If
the keyword is defined, the I/O and computational functions must match the
keyword definition.

The identification of the 17O and processing requirements of all the unde-
fined keywords in the main program completes the top level design of the pro-
gram. The total design of the program is not complete until all of the keywords
have been completely detailed. This involves exactly the same techniques as
used on the top-level keyword.

At the top-level design stage, the use of macroinstruction secondary
keyword definitions greatly simplifies the overall design. A macroinstruction
secondary keyword is simply a keyword that serves as an alias for a group of
keywords (ie: a subroutine or subprogram). The outer interpreter of Section 5
has several examples of macroinstruction secondaries (eg: INUMBER, 7EX-
ECUTE, etc}.

The identification of global data requlrements is among the more difficult
tasks in program design using any language. A threaded interpretive language
will not make this aspect any easier. The subject of data structures is so impor-
tant that many texts are devoted solely to the data structure aspects of pro-
gram design, A list of the keywords which initialize, use, or change each global
parameter is very helpful. This is aided by noting, to the right of the stack 1/O
for each keyword in the total program, a list of the global parameters used
directly by the keyword. Unfortunately there is no ready way for the system
itself to aid in the documentation of the global data changes.

8.3.2 Program Executives

A TIL program does not necessarily use the outer interpreter as the control-
ling executive, It is perfectly feasible to design a TIL program which, when
evoked, never returns control to the outer interpreter. This implies that the en-
tire /O protocol for a TIL program can be redefined and need not follow the
interactive protocol established by the outer interpreter for program genera-
tion and execution. In short, the TIL is only a resources base for the design of a
program and does not constrain the program/user interactions,

A more useful situation involves a program executive which will return con-
trol to the outer interpreter only if a specific event occurs, The design of such
an executive is not difficult. The fundamental program executive is designed as
a loop with a jump out of the loop embedded within an IF construct. Escape
code such as this is desirable particularly during the program checkout phase,

A program executive serves as the main program in most designs. This outer
executive can cause a lower-level executive to be called as the result of some
event. This nesting of executives commonly occurs to cause changes to 1/0
protocols. As an example, the EDIT command of the EDITOR evokes a lower-
level command structure in which a subset of the ASCII control codes is
recognized. The CNTL-E {ENTER) command in this structure then evokes a
still lower-level executive with an entirely different set of I/O protocols. In
both the EDIT mode and the ENTER submode of the EDIT mode, the code
design uses the primitive keyword KEY to access the I/0O device: the keyboard.
The existence of primitive I/O keywords such as KEY is the attribute of the
TIL which allows designs of this type to be mechanized.

8.4 Entry and Test

Entering the code really involves more than typing in the keywords. I use a
more complex approach in that keyword testing is intermixed with keyword

242 TTIT ADETY INTERPET TIVE T ANGIIALT™

entry. Although the design was top-down, the coding and testing will occur in
a bottom-up fashion,

8.4.1 Keyword Contention

The very first step in any program entry after the establishment of the
vocabulary linkage is a test for keyword duplication. The proposed keyword
names are tested using the sequence Il’'B <name> Hi. M. If the keyword is
present in the vocabularies, the word address of the keyword will be displayed
to the operator. At this point the choice is to rename the keyword or to allow
the definition in the new program to take precedence. This latter course will
eliminate use of the older keyword in the current program. If the keyword is
not present, an error message will be echoed to the operator and the name is
known to be acceptable. This simple test avoids grief. More than once I have
discovered duplicate keywords and/or contending keyword names simply by
not following this procedure,

8.4.2 Keyword Testing

Each keyword is tested as it is entered. If the program is being built on a
screen, keyword definitions are added one at a time. After each new definition
is added, the current program is deleted from the system using FORGET, and
then the screen is reloaded for testing using the LOAD command. The newest
keyword is then tested and debugged before the next definition is added to the
screen.

Keyword testing is unusually simple for any TIL. First, any global data
manipulated by the keyword is initialized. Input stack parameters are then
typed in while in the execute mode, followed by the name of the keyword be-
ing tested. Any results left on the stack can then be examined using the “.”
keyword. Always attempt to output one more stack item than is expected. If a
stack error message does not result, a problem exists with the definition. Any
global data manipulated by the keyword is then examined to confirm data in-
tegrity. All keywords are tested including the global parameters.

The most difficult part of keyword testing is the design of the local and
global data values needed to completely test the keyword. All possible paths
through the keyword code should be exercised and the various extremes of all
algorithms should be tested. This usually requires a good deal of thought on
the part of the programmer/designer and may explain why most “tested” code
comes asunder at embarrassing moments,

When approached in this rather methodical manner, most, but not all,

TR WA 1L

errors of oversight and negligence are revealed. This level of testing will not
uncover all possible programming errors, A bad algorithm carefully coded and
lested ig still a bad algorithm. Further, an exhaustive test of all possible paths
through a program may not be feasible. At this point you might as well resort
to prayer beads because [can guarantee that if you don't test them all, an error
will occur in a path you did not check. ’

8.5 Tricks of the Trade

As in any programming language, operating system, or other substantial
chunk of code that interacts with a user, a degree of familiarity is required to
b.ecc:me truly comfortable with the operator protocol. An advantage to de-
signing your own language is that you have complete control over the pro-
tocol. There is absolutely nothing sacred about any part of a TIL. If you reall
want to emulate the operator protocol of some system you are familiar withy
do it. It may require a substantial amount of work to design the parser, but i;
can be done. The capabilities of a TIL are in how ingeniously you can’deﬁne
what you need for your problem, given your environment,

244 FIRYADEEEINTDRUET TIVE T ANGUALTS

Bibliography and Notes

Part of the problem in writing a bibliography for a text of
this nature is the broad range of subjects one would like to
cover. This is much easier said than done. The other part of
the problem is the dearth of material on threaded inter-
pretive languages,

Of the potential number of subjects which could be covered, a very limited
number will be considered. This is partially due to the vast amount of
computer-related literature and partially due to my own laziness. The selected
references cover most of the threaded interpretive language sources that I used
in the development of the TIL I use.] am aware that others exist, but I do not
have access to them. The other references are mostly background material or
material useful to extending a TIL in new directions.

Interpreters and TILs

The simple utility of interpreters is well-known. The use of interpreters is as
old as the art of computer programming. Gries, for example, devotes a chapter
in a compiler design text to the subject of interpreters and their utility. Almost
all BASIC languages are implemented as interpreters rather than as compilers.
Allison, et al, present a fairly simple method for generating an interpreter for
Tiny BASIC. It is relatively simple to extend this concept to other Janguages.
The interpretive language or “onion” approach espoused is very similar to the
threaded code approach. Forsyth and Howard discuss trade-offs of inter-
preters, threaded interpreters, and compilers on microprocessors, but con-

NI RATTIY AMTY NOTTTR 348

¢lude that threaded code is “troublesome” to Implement on an 8-bit
microprocemsor. [f might be well not to press this point with an experienced
FORTH programmer,

Most of the literature on threaded interpretive languages is very FORTH-
specific, Variations on basic FORTH semantics and syntax appear in languages
such as IPS and in STQIC, a language that I have not investigated. James gives
an excellent overview of FORTH and a brief description of how it is mechan-
ized. There is not quite enough description to allow a variation of FORTH to
be impiemented, The microFORTH PRIMER is also descriptive, particularly
with regard to register assignments, but does not come close to a full discus-
sion of the language. | am sure that FORTH has fully descriptive documents,
but they are not publically available. The DEC Users’ Society Program Library
document is available and contains a great deal of mechanization detail for a
PDP-11 version of FORTH. Still another version of FORTH is discussed by
Rather and Moore (the latter being the original developer of FORTH). The
reference gives timing comparisons between BASIC and FORTH, although it is
difficult to judge benchmarks when the absolute test conditions are unknown,

Background and Extenstons

The design of the screen keywords implies at least a basic understanding of
file structures. I have never been particularly enthralled with the screen
keywords I designed for ZIPD}, my current TIL. Klein explains at least the fun-
damentals of file structures and management, which could serve as a point of
departure for a screer: keyword redesign. Files are not my strong point and I
can easily envision improvements being made by someone with a better
perspective on files.

The design of the assembler is somewhat primitive, mostly because of its in-
tended use simply as a keyword extension tool. Extending the assembler to a
fully relocatable, macroassembler would be nice. Fylstra and Emmerichs are
references which introduce the assembler problems and offer solutions to some
of the more common problems. Both of the texts are tutorial, but present
useful approaches.

The extension that I most want is floating-point arithmetic keywords. Time
to design the keywords has been the problem. The essentials are available in
Hashizume and Rankin and Woziak. The former presents flowchart-level
designs for floating-point routines while the latter presents a code design for a
6502. A modest amount of conversion should vield a code design for some
other microcomptuer {(such as my Z80}.

Widget Sorters

The definitive reference to widgets is Kripke. This text depicts the conver-

6 THIEATHT INTVRITITTIVE T ANGLIALTS

sion of lignite glop, anthracite glop, and hard glop Into high-grade and low-
grade muckle by the Acme Muckle Mfg. Co., and the subsequent use of the
muckle by the Amalgamated Widget Works to manufacture widgets.
Although an overabundance of time is spent discussing the partial derivatives
involved in widget production, little thought is devoted to the problem of
sorting and grading the widgets produced. If anyone finds the definitive widget
sorting reference, please put it in a bottle addressed to the author.

References

Allison, D et al, *Build Your Own BASIC.” Dr. Dobb’s Journal of Computer
Calisthenics & Orthodontia, Volume 1, January 1976, page 7.

Allison, D and M Christoffer. “Build Your Own BASIC — Revised.” Dr.
Dobb’s Journal of Computer Calisthenics & Orthodontia, January 1976, page
8.

Allison, D et al. “Design Notes for Tiny BASIC.” Dr. Dabb’s Journal of Com-
puter Calisthenics & Orthodontia, January 1976, pages 8 thru 12.

Emmerichs, J."Designing the Tiny Assember.” BYTE, April 1977, pages 60
thru 67.

Forsyth, H and R Howard, “Compilation and Pascal on the New
Microprocessors.” BYTE, August 1978, pages 50 thru 61.

Flystra, D.“Write Your Own Assembler.” The Best of Byte, Morristown, NJ:
Creative Computing Press, 1977, pages 246 thru 254.

Gries, D. Compiler Construction For Digital Computers. New York: John
Wiley & Sons, 1971.

Hammond, H and M Ewing. FORTH Programming System For the PDP-11.
DECUS Programming Library, Numbers 11 thru 232, 1975.

Hashizume, B “Floating Point Arithmetic.” BYTE, November 1977, pages 76
thru 78, 180 thru 188.

James,].“FORTH for Microcomputers.” Dr. Dobb’s Journal of COMPUTER
Calisthenics & Orthodontia, May 1978, pages 21 thru 27.

Klein, M. “Files on Parade, Part 1: Types of Files.” BYTE, February 1979, pages
186 thru 192.

B AT LY ANLY ROy 247

Kleln, M, “Hiles on Parade, Part 2: Using Files.” BYTE, March 1979, pages 32
thru 41,

Kripke, B. Introduction To Analysis, San Francisco: W.H. Freeman and Co,
1968,

Meinzer, K. “IPS, An Unorthodox High Level Language.” BYTE, January
1979, pages 146 thru 159.

MicroFORTH Primer. Manhattan Beach, California: FORTH, Inc, 1976.

Rankin, R and S Wozniak. “Floating Point Routines for the 6502.” Dr, Dobb’s

lournal of COMPUTER Calisthenics & Orthodontia, August 1976, pages 17
thru 19.

Rather, E and C Moore. “The FORTH Appreach to Operating Systems.” Pro-
ceedings of the ACM, 1976, pages 233 thru 239.

208 LLLRGADLL INFERDRLTIVE T ANGUALES

SUBJECT INDEX

A
Address
Code 14
Return 7, 14
Word 12
Arithmetic Operators
Fixed Point 5%
Floating Point 232
Array 45
ASCII 3, 10, 12, 42
Assembler
Definition 2, 181
Macroinstructions 195, 207
Real 208
Structured 201
Vacabulary 208
280 182

B
Backward Reference 182, 202
Base, System Number 40, 47
BEGIN....END
Assembler 203
TIL 59
Blocls 210
Branches
IF.. FLSE...THEN 60
WHILE 61
Bufters
Block 211
Control of 213, 214
Line 3, 9

C

Case constructs 65

Code Address
Primitives 20
Secondaries 20

Code Body
Active 13
Passive 13
Primitive 14
Secondary 14
Code Keyword 208
COLON 20, 29, 36
Comment Keyword 217
Compiler 2
Compiler Directives 15, 66
Compile Made
Definition 5, 17, 21
Termination Directive 22
Computer, Generic 28
CONSTANT 23
Constructs
Assembler 201
TIL 58
Context Vocabulary 26, 47
Core Vocabulary 4, 26
CREATE 22, 66
Cross-compiling 6, 224
CURRENT Vocabulary 26, 47
Cursor 9

D
Data
Constants 43
Flags 42
Strings 42
Users 46
Variables 45
Defining Words 4, 21, 67
DEFINITIONS 26
Dictionary 4
Format 12
Free Space 17
Headers 12

Pointer 17
Searching 12
Directives
Program Contro] 5
System 58
isk, Floppy 180
[Yisk Messages 219
DO...LOOP
Assembler 206
TIL 62

E
Editor
In a Line 222
Line by Line 221
Efticiency, Timing 6, 35
Error Messages 4, 11
EXECUTE 21, 29, 36
Execute Mode 10, 15, 17, 48
Executive B
Extensible 2
Extensions
Assembler 182
Cross-Compiler 224
Editor 220
Floating Point 228
Supervisor 227
Virtual Memory 210

F
Files, Disk 181
Flag, Logical 42
Floating Point
Keywords 231
Formats 228
FORGET 26
FORTH 7
Forward Reference 182, 201

G
Clobal Data 237, 241

H

Headerless Keywords 12, 25
Headers
Creating 22

TN T INTTEX 249

Description 4
Extended Form 15
Primitive 20, 22
Secondary 20

High Level Definitions 69

|
IF...ELSE... THEN
Assembler 204
TIL 60
Immediate Keywords 15
INLINE 88
Input/Qutput
Operators 54
Primitives 75
Stack 43
Input Submode 9
Instruction Register 19, 47
Integers 40
Internal Form 2
Interpreters 2
BASIC 2, &
Inner 7, 18, 28, 32
Quter 8, 14, 77
Pure 2
Threaded Code 2, 7
Interstack Operators 50

K

Keywords
Definition 4
Descriptions 4
Headerless 12, 25
Immediate 15
Primitive 7
Secondary 7

L

LABEL 199, 202

Library, Subroutine 236
Line Buffer 3, ¢

Linked List 4, 12

Literal Handlers 5, 12, 43
Literals 5, 14, 43

Local Data 237

Logical Operators 53
Loops

280 TELAL ADUEY IMELRPRITIVE L ANGLAGED

BEGIN...END 58, 203
DO...LOOP 62, 206

M

Macros, Assembler 195, 207
Mask Patterns 183

Mass Memory 3, 15, 210
Memory Reference Operators 49
MODE 47

N

NEXT 19, 29, 36

Numbers
Floating Point 40
Integer, Byte 40
Integer, Word 40
Routine 40, 94
Subroutines 100
System Base 15

0]

Operands 4

Operators 48
Arithmetic 50
Interstack 50
[0 54
Logical 53
Memory Reference 49
Relational 33
Stack 48
System 56
Utility 57

P
PATCH 98
Polish notation, reverse 2, 4, 182
Procedures 237
Program
Control Directives 5
Design 239
Entry 241
Executives 14, 241
Structure 235
Testing 6, 242

Q
QUESTION 97

R

Records 238

Relational Cperators 53
Return Address 7, 14
RPN 2, 4, 182

RUN 20, 29, 36

S
SCODE 23, 67
Screen 211
SEARCH 92
Secondaries 7
SEMI 20, 29, 36
Sizing
Assembler 201, 207
Editor 222
Self-generating TIL 85
Total TIL 6
Source Code 208
Stack
Data 4
LIFO 4
Operators 48
Return 4
Routine 98
Testing 5
STATE 47
Strings 42
Subfields 220
Subroutines 4, 14, 100
System
Qperators 56
Parameters 46

T
Threaded
Code 2, 7
Interpreters 2
Interpretive Languages 2
Tokens
Definition 3
Separator 3 i
Translator 2, 182 i

U
Update Bit 213, 214

|

Block 46, oy
Parameler 4o
Utitity Qperators 57

\%
Variables
Detining 45
System 46
Vertical Design 239
Virtual Memory 181, 210
Vocabulary 4, 25
CONTEXT 26, 47
Core 4, 25
CURRENT 26, 47
Defining Words 72
Linking 25
Lost 25
Obiject 224
Searching 12

W
WHILE
Assembler 206
TIL 61
Widget Sorters 1, 226
Word Address
Definition 12
Register 19, 47

LIRS TOINES X 251

Text set in Paladium Medium
by Byte Publications

Edited by Raymond Cote

Design and Production Supervision
by Ellen Klempner

Copy Edited by Sheila S. Hayward

Figure and Table Illustrations by
Tech Art Associates

Printed and bound using 50# Matte
by Halliday Lithograph
Corporation, Arcata Company, North
Quincy, Massachusetts

