QDOS SMSQ
Compatlble Products

AU

“ ZOM?W Barton, Yate, Bristol, BS17 5NF, UK
" Telephone/Fax: (01454) 883602

. . 4

Miracle Systems Ltd

QXL
SUPPLEMENT

20 Mow Barton, Yate, Bristol, BS17 SNF, UK
Telephone/Fax: (01454) 883602

MIRACLE SYSTEMS LTD QXL SUPPLEMENT
QXL INSTALLATION

WARNING: the QXL contains static sensitive devices and should be kept in the black
anti-static bag supplied when not plugged into the computer.

Owners of our QL Hard Disk should not load WIN_REXT on the QXL.

INSTALLING THE QXL HARDWARE

If your PC offers a turbo mode this may have to be disabled before installing the QXL. Some
PCs also have the ability to switch off wait states on the I/O bus. This facility may have to be
disabled in the CMOS setup to allow wait states. Failure to do the above will not cause
damage but may result in unreliable operation. The software will only support one QXL so
put only one in your computer.

The QXL will work in an 8-bit or 16-bit ISA slot. It comes configured for port address 2B0
hex so should work in most machines without alteration. Leave the switches on the QXL
alone unless you are sure that they need changing.

If you are at all unsure as to how to fit an expansion card to your computer please read the
computer’s User Manual first. Make sure that the power to the computer is switched off
before removing its cover. Choose a slot for the QXL; a 16-bit slot consists of two
connectors in line, one slightly longer than the other; an 8-bit slot consists of just one
connector. Once a slot has been chosen remove the appropriate slot cover and retain the
screw if there is one. Push the QXL into the chosen slot by its edge taking care not to apply
pressure to any components and if the slot cover was retained by a screw use it to secure the
QXL’s bracket. Replace the computer’s cover then switch it on.

INSTALLING THE QXL SOFTWARE

The software supplied with the QXL can be installed on a hard disk but this is not obligatory.
Starting from hard disk

Assuming the QXL diskette is in drive A:, from the C: prompt type the following lines
pressing ENTER after each line.

CD\

MKDIR QXL

CD QXL

COPY A:SMSQ.EXE C:

Entering the lines above will put a subdirectory called QXL on the hard disk and transfer the
contents of the diskette in drive A: into that subdirectory. To activate the QXL, after typing
the lines above, simply type : SMSQ then press ENTER.

MIRACLE SYSTEMS LTD QXL SUPPLEMENT

To make the computer power up as a QL it is necessary to edit the file called
AUTOEXEC.BAT which should be in the root directory of the hard disk, reached by entering
CD\ . The last two lines of AUTOEXEC.BAT need to be
I
CD QXL
SMSQ

See the computer’s manual on how to do this.

Giving the QXL access to the hard disk

Once the QXL is running it is possible to create a hard disk. The hard disk is called WINI _
and must be formatted before use. The size is specified in Megabytes and follows the device
name. For example, a 100 Megabyte hard disk is created with

FORMAT "WIN1_100"

Do not worry. This does not format the PC’s hard disk, just creates a file 100 Megabytes
long on the C: drive called QXL.WIN in the root directory.

There is currently no way of accessing MSDOS files on the hard disk.

To boot from WINI_ make sure there is no diskette in FLP1_ before starting the QXL, an
attempt is then made to load a file called WIN1_BOOT,

Starting from floppy disk

Reliable as they are floppy disks wear out. This means you should not use the floppy disk
supplied by us except when making a working copy of it.

The easiest way to make a working copy is with the DOS command DISKCOPY. If your
machine does not have a hard disk and the diskette with the DISKCOPY command on it is in
drive A: type

DISKCOPY A: A:

then press ENTER. The computer will prompt for the SOURCE diskette which is the master
diskette from MIRACLE SYSTEMS so put this in drive A: and follow the instructions. After
a while another prompt will appear asking for a DESTINATION diskette so put the diskette
intended for use as the working copy of the QXL software in drive A:. The diskettes may
have to be changed again before copying is complete. The diskette used as the
DESTINATION does not need formatting first but be careful as any files on it will be lost.

To start the QXL, with the working copy in drive A:, enter SMSQ

e’

MIRACLE SYSTEMS LTD QXL SUPPLEMENT

RETURNING TO THE DOS PROMPT

To return to the DOS prompt hold down the CTRL key and press the key marked ScrollLock
then release both keys. Control will be passed back to DOS.

If you wish to restart the QXL from where you left off enter
SMSQ/
To reset the QXL having left it with CTRL-ScrollLock reenter

SMSQ

EXECUTING PROGRAMS ON THE QXL

A list of differences between the QXL’s SBASIC and the QL’s SuperBASIC is contained in a
later section of this manual.

To start a copy of QUILL that has been changed to run from FLP instead of MDYV, place the
diskette in drive A:, which from now on is referred to as FLP1 _, and enter

EXEC W "FLP1_QUILL"

Replace QUILL with ABACUS, etc for other PSION programs.

THE PARALLEL PORT

The QXL has access to the host PC’s paralle]l port, LPT1:, via a device called PAR. To give
software that can only use SER access to the parallel port there is a command called
PAR USE. QUILL can be configured to use PAR as its default printer using
INSTALL BAS. Alternatively, enter

PAR_USE "SER"

before starting QUILL to achieve the same effect. All output to SER, SER1 or SER2 will
then be redirected to PAR.

To restore access to the serial ports enter

PAR_USE "PAR”

MIRACLE SYSTEMS LTD QXL SUPPLEMENT
THE SERIAL PORTS

The QXL has access to the host PC’s serial ports, COM!: and COM2:, via device names
SERI and SER2. The QXL software comes configured with SER2 disabled to allow a serial
mouse to work from COM2:. The Pointer Environment must be loaded to use the mouse and
_the PC’s mouse driver must have been instafled; see the instructions that came with the mouse
for its installation.

PLEASE NOTE: if your PC does not have a COM2: or your mouse does not allow operation
in COM2: and you wish to use the mouse under the Pointer Environment the software needs
to be reconfigured. If your PC has no COM2; set SER2 to none, an AT needs to be set to
COM2/IRQ3 and a PC/XT needs to be set to COM2/IRQ4. If the configuration is altered the
computer must be rebooted; just restarting the QXL is not enough. See the section POINTER
ENVIRONMENT USERS for morc information.

Additional facility

There is an additional facility added to the SER and PAR drivers. This is "A" mode and can
be used instead of the existing "C" mode and will convert the <LF> character into
<CR><LF>.

If the following was entered:
OPEN #3,"SER1"
PRINT #3,"This is line one”
PRINT #3,"This is line two"
PRINT #3,"This is line three”

CLOSE #3
and the output on the printer was:
This is line one
This is line two

This is line three
then if "SER1A" was used instead of "SER1" the print-out would be correct.

The correct output could also have been obtained by changing the switches on the printer but
the "A" option is easier and doesn’t alter the operation of the printer with other software.

See the the Concepts section under Devices in the QL User Guide for more information on
the "C" mode if necessary.

The way to enable or disable the serial ports is using the QPAC2 "Config" program supplied
on the QXL disk.

O

O

. MIRACLE SYSTEMS LTD _ OXL SUPPLEMENT

NETWORK PORTS

The QXL can access devices over the network or act as a file server in the same way as a QL
fitted with a SUPER GOLD CARD, GOLD CARD or TRUMP CARD.,

FORMATTING DISKETTES

Diskettes must first be formatted under MSDOS. They can then be cross-formatted simply by
using the standard FORMAT command from within SMSQ.

SCREEN HANDLING

Mode 8 does not support FLASH.

POINTER ENVIRONMENT USERS

The POINTER ENVIRONMENT files Pr_Gen, WMan, and Hot_RExt are included on the
QXL software diskette in files called PTRGEN, WMAN and HOTREXT respectively. These
are not special versions only for the QXL but supersede earlier versions. Don’t forget to add
the underscore when copying them from the diskette.

e.g. To copy these three files to a subdirectory on "Winl_" called "PtrEnv_" from "Flpl_":

COPY "Flp!_PTRGEN" to "Winl_PuEnv_Ptr Gen"
COPY "Flpl_WMAN" to "Winl_PtrEnv_WMan"
COPY "Flpl_HOTREXT" to "Win]_PuEnv_Hot RExt"

The Qjump CONFIG program (also supplied) can be used on the SMSQ file to provide access
to bigher resolution screens. Pointer Environment and SBASIC can use the higher
resolutions; Xchange 3,901 (available from IQLR) also makes use of the higher resolutions.

The supplied diskette is in MSDOS format and so cannot support executable files. To make
CONFIG executable get the QXL up and running then put the QXL diskette into drive A: and
enter the following:

Adr=RESPR(5510)

LBYTES "Flpl Config",Adr

SEXEC "Winl_Config",Adr,5510,1792

which will leave the executable version of Config on Winl_.
To use Config, put an MSDOS format diskette with SMSQ on it into Flp]l_ and then enter:

EXEC "Winl_Config”

MIRACLE SYSTEMS LTD _ QXL SUPPLEMENT

then press CTRL-c uatil the cursor flashes in the Config window and follow the on screen
instructions. The name of the file to configure is "Flpl_SMSQ.EXE"

If you are using the QXL from hard disk it is necessary to go to MSDOS, with
CTRL-ScrollLock, and copy the file called SMSQ.EXE to an MSDOS format floppy diskette
before it can be modified with CONFIG. Re-enter the QXL by entering SMSQ/ and the file
can be modified by CONFIG.

KEYBOARDS

CONFIG can also be used to change the keyboard from its default of English to German or
French and enable or disable the parallel port and serial ports. Keyboards currently supported

are:
Numeric Code Alpha code Type
1 USA American
33 F French
44 GB English
49 D German

How To Configure The QXL For Use At Different Addresses

If you are sure that the /0 port address of 2BOH for which the QXL comes configured will
clash in your system consult the table below. In practice an address clash will be fairly
obvious; the system refusing to start properly or the QXL not working together with, for
example, a network card that no longer functions. If, starting the QXL for the first time, you
get the error message: oy

The QXL at IO address 02BOh is not responding

it is a sure sign that something is wrong. All QXLs are tested before shipping so unless it has
been damaged in transit the above message may indicate an address clash or the PC is in
turbo mode or the CMOS setup has been set for zero wait states on 1/O cycles.

A computer fitted with the usual peripherals will not cause problems because they have
predetermined addresses, none of which coincide with the QXL’s address. Usual peripherals
are:

(1) a display card such as for VGA,

(2) wwo floppy disks,

(3) a bard disk,

(4) two serial ports,

(5) a parallel port,

(6) a games port.

(2) to (6) may all be on a single "Super 10 Card” but the addresses used remain the same,

O

O

9

MIRACLE SYSTEMS LTD QXL SUPPLEMENT

QXL SWITCH SETTING

The switches on the QXL allow the following addresses =

SWITCH NUMBER 10 PORT FUNCTION ON
1 2 3 4 ADDRESS COMPUTER
OFF OFF OFF ON 280H - Notused ===~
ON OFF OFF ON 290H . Not used

OFF ON OFF ON 2A0H - Not used

ON ON OFF ON 2BOH - QXL default
OFF OFF ON ON. 2C0H Not used

ON OFF ON ON . 2DOH Not used

OFF ON ON ON 2EOH Not used

ON ON ON ON None -

OFF OFF OFF OFF 300H Prototype card
ON OFF OFF OFF 310H Prototype card
OFF ON OFF OFF 320H XT hard disk
ON ON OFF OFF 330H Not used

OFF OFF ON OFF 340H Not used

ON OFF ON OFF 350H Not used

OFF ON ON OFF 360H Not used

ON ON ON OFF None -

If the switches on the QXL are changed the software must be informed. For example if you
have decided to place the QXL at address 290H enter the following:

SMSQ 290

The address supplied will be written to a file called QXL.DAT. This saves having to
remember the QXL’s address. If the QXL has been started from a write protected floppy
diskette you will get an error message. Set the write protect tab to write enabled and press R
to retry the write. Don’t forget to set the tab back to write protected once the QXL is up and
running.

.«x(\
cro B0
cpo ootk

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

1 INTRODUCTION

SMSQ/QXL is based on the SMS Kernel which was designed to provide a QDOS compatible
interface. The kernel has been modified to improve compatibility with most of the "DIRTY
TRICKS" which QL programmers were cither forced to use or used to satisfy their perverted
sense of fun,

The Kernal itself (Memory Management, Task Management, Scheduling and I0) has also
been extended to provide facilities which were not available with QDOS. It is now an over
inflated 10K bytes. Despite this inflation, the SMSQ operating system kernel remains more
efficient than the old QDOS kernel.

Superbasic has been replaced by SBASIC which is a threaded code INTERPRETER which
executes at speeds more often associated with compiled SuperBASIC than INTERPRETED
SuperBASIC. There is no longer any need to compile SuperBASIC programs: You can just
execute them.

In addition, SMSQ/QXL is supplied with entirely new filing system device drivers which
allow "FOREIGN" disk formats to be recognised and new formats to be added "AT RUN
TIME".

2 NEW AND MODIFIED FACILITIES

SMSQ/QXL includes all the QL SuperBASIC commands, the TK2 commands (activated by
the TK2_EXT command - this manual does not concern itself with standard SuperBASIC or
TK2 commands.) SMSQ/QXL supports 99% of SuperBASIC. SMSQ/QXL supports all the

devices which were supported by the drivers supplied with the TRUMP CARD and GOLD

CARDS,

There are, however, a number of significant new facilities and improvements, some of which
may be familiar to some useres.

FACILITY USAGE OR DIFFERENCE SECTION
$ann %nnn Hexadecimal and binary values accepted 4.1
ATAN ATAN (X,Y) yields a four quadrant result 7.10
BAUD Independent baud rates 10.3
BGET BPUT Transfer multiple bytes to and from strings 1.9
CACHE ON CACHE OFF Tum internal caches on or off 32
DEV * A defaulting filing system device 11.3
DEV_LIST Lists the current DEVs 11.3.2
DEV_NEXT Enquires the next DEV for a DEV 11.3.3

DEV_USE Sets the real device for a DEV 11.3.1

MIRACLE SYSTEMS LTD

SMSQ/QXL & SBASIC

FACILITY

DEV_USE$
DEVTYPE

END FOR, END REPEAT
EX EW EXEC EXEC_W

EPROM_LOAD
EXIT

IF
10_PRIORITY
JOB_NAME
KBD TABLE
LANG_USE
LANGUAGE($)
LOAD LRUN
LBYTES
LRESPR

MERGE MRUN
NEXT

NUL

PEEK etc.
PEEKS

PIPE

POKE etc.

POKE$

PROT DATE
QLOAD QLRUN
QMERGE QMRUN
QSAVE QSAVE O
QUIT

REPeat

SAVE SAVE O
SBASIC

SBYTES SBYTES O
SELect

SEXEC SEXEC O
SLUG

TRA

VER$

WMON WTV

USAGE OR DIFFERENCE

Enquires the real device for a DEV

Find the type of device open as a channel

Do not need names

Extended to execute SBASIC programs

Loads and initialises a "QL EPROM cartridge"
Does not need a name

Multiple nested inline IFs, nesting is checked
Set the priority of IO retry scheduling

Sets the job name for SBASIC jobs

Uses international codes to set keyboard tables
Sets the message language

Language enquiry

Accept QLOAD _SAV files and save filename
Accepts channel number in place of name

If used to load extensions within an SBASIC job

SECTION

11.3.3
5

4.5.4
8.3
7.6
4.5.4
4.2
3.1
8.2
10.2.3
10.2.1
10.2.2
7.1
7.5
8.4

other than job 0, the extensions are private to that job

Accept QLiberator _SAV files

Does not need a name

A bottomless bin for output or endless input
Extended to access system and SBASIC variables
PEEKs multiple bytes

Named or unnamed pipes for intertask
communications

Extended to access system and SBASIC variables
POKESs multiple bytes

Protect the real time clock

QLiberator compatible quick load for _SAV file
QLiberator compatible quick merge for _SAV file
QLiberator compatible save to _SAV file
Removes this SBASIC job

Does not need a name

Use previously defined filename, update version
Starts an SBASIC daughter

Accepts channel number in place of filename
Both integer and floating point SELects

Accepts channel number in place of name

Slows the machine down

Language selectable and language independent
Minerva compatible

Allow the SBASIC windows to be offset

7.1
4,5.3
11.1
7.8
7.7
11.2

7.8
1.1
7.11
7.3
7.4
7.4
8.3
4.5.5
7.2
8.1
7.5
4.3
7.5
33
10.2.4
7.12
8.1

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC
3 SMSQ PERFORMANCE

In general, SMSQ is more efficient than QDOS. There are, however, a number of policy
differences which are either accidental because, unlike other"QDOS compatible” systems
SMSQ is not based on QDOS but is completely redesigned, or deliberate because certain
QDOS policies have shown to be less than ideal.

In particular, the IO retry scheduling policy is completely different. This results in a very
much higher priority for retry operations which greatly improves responsiveness of a heavily
loaded system at the cost of a modest reduction in crude performance (typically 10%). If
crude performance is important to you, you can reduce the 1O priority to QDOS levels.

3.1 10_PRIORITY: The IO PRIORITY (priority) command sets the priority of the
1O retry operations. In effect, this sets a limit on the time spent by the scheduler retrying 10
operations.

A priority of one sets the 10 retry scheduling policy to the same as QDOS, thus giving a
similar level of response but with a higher crude performance.

IO_PRIORITY 1 QDOS levels of response, higher crude performance
I0_PRIORITY 2 QDOS levels of response, better response under load
IO_PRIORITY 10 Much better response under load, degraded performance
I0_PRIORITY 1000 Maximum response, the performance depends on the number

of jobs waiting for input,

3.2 CACHE _ON CACHE_OFF: The performance of the more powerful
machines depends on the use of the internal cache memory. For the MC680X0 series
processors, the implementation of the caches is less than perfect. As well as introducing
unnecessary overheads on operating system calls (slightly improved in the MCG68040) the
MC680X0 cache policy is incompatible with certain programming techniques. It may,
therefore, he necessary to disable the internal caches.

No provision is made for disabling the external caches (where these exist) as none of these
external caches seem to suffer from the design flaws of the MC680XO0 series.

CACHE_OFF Turn the caches off to run naughty software
CACHE ON And turn back on again

3.3 SLUG: The designers of SMSQ have spent much time and effort trying to make the
system fairly efficient. Their efforts seem not to be appreciated. Some people will always
complain! SLUG (slug factor) will slug your machine by a well defined factor.

SLUG 2 Half speed ahead
SLUG 5 Dead, slow
SLUG 1 Full ahead both

O

O

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

4 SBASIC / SuperBASIC LANGUAGE DIFFERENCES

Some differences between SBASIC and SuperBASIC may be accidental. There are, however,
a number of known, deliberate differences. Most of these differences are extentions to
SuperBASIC. In some cases, however, limitations have been introduced to reduce the chances
of difficult-to-track-down program errors.

4.1 Hexadecimal and Binary Values: Hexadecimal and binary values may be
included directly in SBASIC source. Hexadecimal values are preceded by a $. Binary values
bya %.

IFa% && %1001 check bits 3 and 0 of 8%
IF PEEK_L($28000)=$534D5351 check if SMSQ (very naughty)

4.2 IF Clauses: Multiple "in-line” IF clauses can be nested on one line. SBASIC checks
for incorrectly nested IF clauses.

4.3 SELect Clauses: SELect clauses may select an action on the value of an integer
variable (integer SELect) or on the value of a floating point variable or expression (floating
point SELect). Integer SELect is more efficient. SBASIC checks for incorrectly nested or
inconsistent SELect clauses. ;

4.4 WHEN ERRor: WHEN ERRor is suppressed within the command line to stop
SBASIC rushing off into your error processing if you mistype a command. You can turn off
WHEN ERRor by executing an empty WHEN ERRor clause.

100 WHEN ERRor

110 CONTINUE :REMark ignore errors

120 END WHEN

130 A=1/0 :REMark no error

140 WHEN ERRor :REMark restore error processing
150 END WHEN

160 A=1/0 :REMark BANG!!

4.5 Loop Handling

4.5.1 FOR Loop Types: SuperBASIC requires FOR loops to have a floating point
control variable. SBASIC allows both floating point and integer control variables. Integer
FOR loops are more efficient than floating point FOR loops: particularly if the control
variable is used to index an array.

FOR i% =0 TO maxd% : array(i %) =array(i%)*2 is preferred to
FOR i=0 TO maxd : array(i) =array(i)*2 which is less efficient

N.B. the type is determined before the program is executed.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

4.5.2 In-Line Loops: Whereas SuperBASIC only allows a single structure to be
defined "in-line”, SBASIC allows many loops (and other structures) to be nested in-line
without END statements:

I
100 FOR i=1 TO n : FOR j=1 TO m : a(i,j)=a(i,j) +b(.j)

4.5.3 The "NEXT Bug": The "NEXT bug” reported in many articles about
SuperBASIC, which many people have asked to be fixed, has not been fixed. IT IS NOT A
BUG. NEXT is defined to fall through to the next statement when the loop is exhausted. It
does not go to the statement afier the END FOR (which may not be present). If that is what
you wish to do, follow the NEXT by an EXIT,

4.5.4 Upnamed NEXT, EXIT and END Statements:

Loop structures are "opened” with a FOR or REPeat statement and closed with an END FOR
or END REPeat statement. SuperBASIC requires all loop closing statements as well as the
intermediate NEXT and EXIT statements to identify the loop to which they apply. SBASIC,
on the other hand, will accept unnamed NEXT, EXIT, END FOR and END REPeat
statements, These are applied to the most recent (innermost) unclosed loop structure.

100 FOR i=1TO 10
110 FOR j=1TO 10

120 IF a(i,j) <0:EXIT implicitly EXIT j

130 sum =sum +a(i,j)

140 END FOR implicitly END FOR j, closes FOR j
150 IF sum < |00:NEXT loop j is closed, so this is NEXT i
160 PRINT i,sum

170 sum=0

180 END FOR implicitly END FOR i, closes FOR i

4.5.5 REPecat Loops: Whereas SuperBASIC requires all REPeat clauses to have a
name, SBASIC allows unnamed REPeats. These unnamed REPeats may be combined with
unnamed NEXT, EXIT and END REPeat statements.

100 REPeat

110 a$=INKEY$(-1)

120 IF a$=ESC$:EXIT goes to 210 (outer loop)
130 1IF a$< >'S":NEXT goes to 110 (outer loop)
140 REPeat

150 a$=INKEY$(-1)

160 IF a$=ESCS$:EXIT goes to 190 (inner loop)
170 x$=x3$&a$

180 END REPeat goes to 150 (inner loop)
190 IF LEN(x$) > 20:EXIT goes to 210 (outer loop)
200 END REPeat goes to 110 (outer loop)

210 PRINT 'DONE’

O

\\\/'

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

4.6 Multiple Index Lists and String Slicing: For various reasons SBASIC
does not support multiple index lists.

100 DIM a(10,10,10)
110 a(3,4)(5)=345 OK for SuperBASIC, SBASIC will not handle this
120 a(3,4,5)=345 Means the same, is easier to type and SBASIC likes it

To make up for this limitation, SBASIC allows you to slice strings at any point in an
expression.

200 a$=2468(3) Sets a$ to ’6’ in SBASIC, prohibited in SuperBASIC
210 ax=1234

220 a$=(abcdef* &ax)(5 to 8) Sets a$ to ’ef12’ in SBASIC

230 b$="abcdefghi’

240 a$=b$(2 to 7)(3 to 5)(2) Sets a$ to ’e’ in either SBASIC or SuperBASIC

Also, in SBASIC, the default range for a string or element of a string array is always (1 TO
LEN(string)) and zero length slices are accepted at both ends of a string. A$(1 to 0) or
AS$(LEN(string)+ | TO LEN(string)) are both null strings).

5 Writing Compiler Compatible Programs

SuperBASIC compatible programs which are written in such a way as to be used both
compiled and interpreted by SuperBASIC often have a small code fragment at the start to
allow for the differences in compiled and interpreted environments.

The problem is not that SBASIC is "incompatible” with these code fragments but SBASIC is
compatible with SuperBASIC in a way which the two "compiled” SuperBASICs are not. The
simplest way to avoid these problems is to give up using compiled BASIC and remove the
junk from your programs. If, on the other hand, you wish to continue using compiled BASIC
and also wish to use the programs in SBASIC daughter jobs, you may require some code
changes.

There are three principal differences between the SuperBASIC environment and the
QLiberator and Turbo environments.

1. When executing in compiled form, the program will probably not be requiring windows
#0, #1 and #2 in the same form as when it is being interpreted by SuperBASIC. In particular:

- channel #0 (the command channel) may not be required at all in the compiled version, but it
is essential to keep it open in the SuperBASIC version otherwise no commands can ever be
given again;

- a compiled program may be started with no windows open, a program interpreted by
SuperBASIC will (usually) start with windows #0, #1 and #2 open.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

This distinction is not so much a difference between compiled and not compiled, but is a
difference between interpreting a program within the permanent SuperBASIC interpreter and
executing a transient program.

2. An interpreted program may be interrupted and rerun (so that the starting state may be
different each time), while a compiled program will always start "clean” (always having the
same starting state).

3. An interpreted program will report error messages to window #0 while compiled programs
have their own error message facilities.

From the point of view of the last two differences, SBASIC is always much closer to
SuperBASIC than to a compiled BASIC. For the first (and most important difference)
SBASIC can behave either like a compiled BASIC or SuperBASIC.

- If SBASIC is started off with an SBASIC command, then SBASIC behaves like
SuperBASIC: window #0 (at least) is open,

- If SBASIC is started off with an EX (etc.) command or from a HOTKEY or QPAC2 EXEC
menu, then SBASIC behaves more like a compiled program: there are no windows open by
default and window #0 is not required.

Unfortunately, the code that usually appears at the start of these compatible programs does not
distinguish between compiled and interpreted environments, but between job 0 and other jobs,

100 IF JOBS$(-1)< > " :REMark is it a named job (NOT SuperBASIC)
110 CLOSE #0,#2 :REMark close spare windows in case

120 OPEN #1,"Con_512x256a0x0" :REMark our #1

130 ELSE

140 WINDOW 512,256,0,0 :REMark for SuperBASIC, just set #1

150 END IF

160 CLS

When used in an SBASIC daughter job, this will treat SBASIC as compiled whereas it should
possibly be treated as interpreted as SBASIC programs can be re-run,

The problem cannot be resolved by using a function to distinguish between compiled,
SuperBASIC and SBASIC, as there is no such function in SuperBASIC and it cannot be
assumed that a suitable extension has been loaded.

SBASIC jobs are, however, always called SBASIC until the name is set by the JOB_NAME
command.

The best approach would be to have program start up code which is sensitive to the
environment and not having a different behaviour just because the job number is 0 or the job
bas no name. This is, however, not practical with the old QL BASIC compilers.

O

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

The least bad solution may be to have a "four way switch” at the start of the program.

100 my$="myjob’;j$=JOBS(-1) :REMark set my assumed and real names
110 IF j$="" :REMark is it an unname job (SuperBASIC):
120 do SuperBASIC or SBASIC job 0 fiddles

130 END IF

140 IF j$="SBASIC’ :REMark is it start of an SBASIC daughter?
150 do SBASIC daughter initialisation

160 JOB_NAME my$:REMark from now on it is a named job
170 $="" :REMark no further action required

180 END IF

190 IF j$ =my$:REMark is it rerun an SBASIC daughter?
200 do SBASIC daughter re-initialisation

210 j$="" :REMark no further action required

220 END IF

230 IF jS<>"" :REMark must be compiled!

240 do compiled BASIC initialisation

250 END IF

Within the initialisation code for SBASIC the DEVTYPE function may be used to determine
whether a channel is open.

This returns an integer value of which only the most significant (the sign bit) and least
significant two bits are set. To ensure future compatibility, nothing should be assumed about
the other bits.

The value returned will be negative if there is no channel open. Otherwise bit 0 indicates that
it will support window operations (i.e. it is a screen device), bit 1 indicates that it will support
file positioning operations (i.e. it is a file).

100 a% =DEVTYPE(#3) :REMark find the type of device open as #3
110 IF a% <O:PRINT #3, "not open” :REMark negative is not open

120 SELECT ON a% && %11 :REMark ensure we only look at bits 0 and 1
130 =0:PRINT "#3 is a purely serial device"

140 =1:PRINT "#3 is a windowing device"

150 =2:PRINT "#3 is a direct access (filing system) device”

160 =3:PRINT "#3 is totally screwed up”

170 END SELECT

6 Error Reporting and Statement Numbering

SBASIC will usually report error in the form:

At line 250:3 end of file

The number after the colon is the statement number within the line.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

N.B. SBASIC generates a small number of additional statements (jumps round DEF PROCs,
jumps to END SELect before each ON and END statements on inline clauses) which are not
visible in the SBASIC program. If you like piling up structures and statements into a single
line, you may find that the statement number in the error report is larger than you would
expect!

7 Extended SuperBASIC Commands and Functions

7.1 LOAD, LRUN, MERGE and MRUN: LOAD, LRUN, MERGE and
MRUN have been extended to accept Liberation Software’s _SAV file format. In addition, if
the filename supplied is not found, SBASIC will try first with BAS and then _SAV added to
the end of the filename.

7.2 SAVE and SAVE_O: X no filename is given, the name of the file that was
originally loaded will be used (if necessary substituting BAS or _SAV at the end). The file
will be saved with a version number one higher than the file version when it was LOADed.
(Repeated SAVEs do not, therefore, keep on incrementing the version number). If a filename
is given, the version number is setto 1,

7.3 QLOAD and QLRUN: The extension of the SBASIC LOAD command makes
the real QLOAD and QLRUN commands (which require a copy or near copy of QDOS
ROM s to function at all) nearly redundant. QLOAD and QLRUN are implemented in SBASIC
as versions of LOAD and LRUN that ensure that there is a _SAV at the end of the filename.

7.4 QMERGE, QMRUN, QSAVE and QSAVE_O: Thesc are versions of
MERGE, MRUN, SAVE and SAVE_O which work with _SAV files.

If there are 4 SBASIC programs in the data default diréctory called FRED, JOE, ANNE and
CLARA with either _BAS or _SAV at the end of the names:

FRED

JOE BAS

ANNE_SAV

CLARA_BAS

CLARA_SAV
QLOAD fred Fails as there is no FRED_SAV
LOAD fred Loads FRED
SAVE Saves the program as FRED
QSAVE Saves the program as FRED_SAV (quickload format)
SAVE junk_bas Saves the program as JUNK_BAS
QSAVE Saves the program as JUNK_SAV(quickload format)
MERGE joe Merges the file JOE_BAS into the program
MERGE anne Quick merges the file ANNE_SAV into the program
SAVE Saves it as JUNK_BAS (MERGE does not change the name)
LOAD clara Loads CLARA_BAS
QLOAD clara Quick loads CLARA_SAV
LOAD clara_sav Also quick loads CLARA_SAV

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

7.5 LBYTES, SBYTES, SBYTES O, SEXEC and SEXEC O:

All accept a channel number in place of a name. This can improve efficiency.

nc=FOP_IN("file") Open file once only
base=ALCHP(FLEN(#nc)) ... to allocate a bit of heap
fdi=FUPDT(#nc) ... get the update date
LBYTES #nc,base ... and load it

CLOSE #nc

7.6 EPROM_LOAD: The EPROM_LOAD(filename) command is a special trick for
loading the image of a QL EPROM cartridge. Most EPROM cartridges are programmed so
that the cartridge may be at any address. Some require to be at exactly $C000, the QL ROM
port address. The first time the command is used after reset, the EPROM image will be
loaded at address $C000. Subsequent images may be loaded at any address. A fussy EPROM
image must, therefore, be loaded first. An EPROM image file must not be longer than 16K
bytes.

To make an EPROM image, put the EPROM cartridge (for example the Prospero PRL
cariridge) into your QL and turn on. SBYTES the image to a suitable file with the magic
numbers 49152 (3C000) for the base address and 16384 (16K bytes) for the length:

SBYTES "flpl_PRL",49152, 16384 Save Prospero PRL image

On your SMSQ machine copy the file to your hard disk and add the EPROM_LOAD
statement to your "Boot” file:

EPROM_LOAD "winl_PRL" Load Prospero PRL image

7.7 PEEK$ POKES: PEEKS (address,number of bytes) returns a string with the
number of bytes starting from address. The bytes need not, of course, be text.

POKES (address,string) pokes the bytes of the string starting from the address.
PEEKS$ and POKES can be used for copying memory.

a$=PEEKS (Basel,1000) Peek 1000 bytes from address Basel
POKES Base2,a$... and poke them back to Base2

PEEKS and POKES can accept all the extended addressing facilities of PEEK and POKE.
Indeed, POKES is identical to POKE which can now which can now accept string parameters.

7.8 PEEK, PEEK_W, PEEK L, POKE, POKE W, POKE L
The standard PEEK functions and POKE procedures have been extended to provide
compatibility with the Minerva versions. There are three main changes:

1. The address may be specified relative to the base of the system variables or the (current)

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

SBASIC variables.

2. The contents of the memory at the address may itself be used as a basc address with a
second value providing an offset for this address. ‘

3. Morc than one value may be POKEd at a time.

- For POKE_W and POKE L the address may be followed by a number of values to poke in

succession.

- For POKE the address may be followed by a number of values to poke in succession and the
list of values may include strings. If a string is given, all the bytes in the string are POKEd in
order. The length is not POKEd.

7.8.1 Absolute PEEK, POKE: The standard forms of PEEK and POKE are
supported even though the use of PEEK and POKE is best regarded as a from of terrorism.

a=RESPR(2000)

LBYTES myfile,a Load myfile

PRINT PEEK(a) Prints the value of the byte of myfile

POKE L a+28,DATE,0 Set the 28th to 35th bytes to the DATE (4 bytes) and 4 zeros
POKE a+8,0,6,’'My Job’ Set the standard string (work Iength followed by the chars)

7.8.2 Pecking and Poking in the System Variables: If the first parameter
of the peek or poke is preceded by an exclamation mark, then the address of the peek or poke
is in the system variables or referenced via the system variables. There are two variations:
direct and indirect references.

- For direct references the exclamation mark is followed by another exclamation mark and an
offset within the system varinbles.

- For indirect references the exclamation mark is followed by the offset of a pointer within the
system variables, another exclamation mark and an offset from that pointer.

ramt=PEEK L(!1520) Find the top of RAM $20 bytes on from the base of
sysvars

POKE W !1$8¢,3 Set the auto-repeat to 3

jobl =PEEK_L(!$68!4) Find the base address of Job 1 (4 on from base of Job
table)

POKE 1$B0!2, "WIN" Change the first 3 characters of DATA_USE to WIN

There is slightly more parameter checking than in the Minerva versions. Nevertheless, errors
and deliberate abuse are not likely to be detected and may have different effects on SMSQ and
Minerva.

O

O

(\ j

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

7.8.3 Peeking and Poking in the SBASIC Variables: If the first
parameter of the peek or poke is preceded by a backslash, then the address of the peck or
poke is in the SBASIC variables or referenced via the SBASIC variables. There are two
variations - direct and indirect references.

- For the direct references the backslash is followed by another backslash and an offset within
the SBASIC variables.

- For indirect references the backslash is followed by the offset of a pointer within the
SBASIC variables, another backslash and an offset from that pointer.

dal=PEEK_W(\\$94) Find the current data line number

n6=PEEK W(\$18\2+6*8) Find the name pointer for the 6th name in the name table
0l6 =PEEK(\$20\n6) ... and the length of the name

n6$=PEEK$(\$20\n6 + 1,n16) ... and the name itself

7.9 BPUT BGET: BPUT will accept string parameters to put multiple bytes,. BGET

will accept a parameter that is a sub-string of a string array to get multiple bytes.

BPUT #3,27,’R1’ Put ESC R 1 to channel #3
DIM a$(10):BGET #3,a$(1 TO 6) Get 6 bytes from #3 to a$

7.10 ATAN: The ATAN function has been extended to provide a 4 quadrant result by
taking two parameters. If x is greater than 0, ATAN(x,y) gives the same result as
ATAN(y/x). Otherwise it returns values in the other quadrants (>PL/2 and <-PI/2).

7.11 PROT_DATE: Where the system has a separate battery backed real time clock,
the date is read from the clock when the system is reset. Thereafter, the clock is kept up to
date by the SMSQ timer. (Thus the impressive speed gains made by some accelerator
software: slowing the clock down by disabling interrupts can do wonders for your benchmark
timings.)

In general, the system real time clock is updated whenever you adjust or set the date. As some
QL software writers could not resist the temptation of setting the date to their birthday (or
other inconvenient date) this can play havoc with your file date stamps, etc..

PROT_DATE(O or 1) is used to protect (1) or unprotect (0) the real time clock. If the real
time clock is protected, setting the date affects only SMSQ’s own clock, the real time will be
restored the next time the computer is reset.

PROT_DATE 1 protect the RTC (should never by required)
PROT DATEQ unprotect the RTC (normal)

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

7.12 VERS: The VERS function has been extended to take an optional, (Minerva
compalible) parameter. If it is non zero, information is taken from the OS call for system
information, Otherwise, the normal SBASIC version (HBx) is returned.

PRINT VERS$ prints HBA (or later SBASIC version ID)
PRINT VER$(0) also prints HBA (or later SBASIC version D)
PRINT VERS$(]) prints 2.xx

With a negative parameter, VERS does not return a version at all, but returns a fairly arbitrary
choice of information.

PRINT VERS(-1) print the Job ID (O for initial SBASIC)
PRINT VERS$(-2) print the address of the system variables (163840), WHY? ()

8 Multiple Copies of SBASIC

There never was much of a problem getting multiple copies of SuperBASIC to run under
QDOS. There is even less of a problem getting multiple copies of SBASIC to run under
SMSQ. The problem was always what to do with the windows.

SBASIC has four distinct forms:

1. Job 0 is the "guardian” of SBASIC extensions, permanent memory allocation and channel #
0.

2, SBASIC "daughter jobs" may be created with the SBASIC command., These may be
created with the same set of 3 windows as the initial Job 0 windows. Alternatively, they may
be created with a single channel #0 or even no windows open at all.

3. SBASIC source files (ending in _bas) may be executed by EX, EXEC, EW or EXEC W.

4. SBASIC may be invoked as a Thing which may either operate within the context of an <D
invoking Job or, once set up, operate as an independent daughter Job,

8.1 SBASIC Daughter Jobs: Having a number of SBASIC jobs which completely
cover each other may not be very useful. SBASIC daughter jobs may, therefore, either be
created either with the full set of standard windows (in which case they all overlap) or they
may be created with only one small window (#0).

The SBASIC command, which creates SBASIC daughter jobs, has an optional parameter: the
x and y positions of the window #0 in a one or two digit number (or string).

- If no parameter is given, the full set of standard windows will be opened.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

- Otherwise, only window #0 will be opened: 6 rows high and 42 Mode 4 characters wide
within a 1 pixel border (total 62x256 pixels).

- If only one digit is given, this is the SBASIC "row" number: row 0 is at the top, row | starts
at screen line 64, row 4 is just below the standard window #0.

- If two digits are given, this is the SBASIC "column,row” (x,y) position: column 0 is at the
left, column 1 starts at 256 pixels in from the left.

SBASIC create an SBASIC daughter with the 3 standard windows
SBASIC 1 create an SBASIC daughter with just channel #0 in row 1
SBASIC 24 create an SBASIC daughter to the right of and below the standard

windows (an 800x600 display is required)

Because it is quite normal for an SBASIC job to have only #0 open, all the standard
commands which default to window #1 (PRINT, CLS, etc.) or window #2 (ED, LIST, etc.)
will default to window #0 if channel #1 or channel #2 is not open. This may not apply to
extension commands.

If you have a screen larger than 512x256 pixels, it is useful to be able to reposition the
SBASIC windows. The TK2 WMON and WTV commands have been extended to take an
extra pair of parameters: the pixel position of the top left hand corner of the windows. If only
one exira parameter is given, this is taken to be both the x and y positions.

WMON 4,50 reset windows to standard monitor layout displaced 50 pixels to
the right and S0 pixels down

If the mode is omitted, the mode is not changed, and, if possible, the contents are preserved
and the outline (if defined) is moved.

WMON ,80,40 reset windows to standard monitor layout displaced 80 pixels to
the right and 40 pixels down, preserving the contents

A border has been added to window #0 to make it clearer where an SBASIC Job is on the
screen.

8.2 JOB_NAME: The procedure JOB_NAME(job name) can be used to give a name to
an SBASIC Job. It may appear anywhere within a program and may be used to reset the name
whenever required. This command has no effect on compiled BASIC programs or Job 0.

JOB_NAME Killer sets the Job name to "Killer”
JOB_NAME "My litle Job" sets the Job name to "My little Job"

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

8.3 Executing SBASIC Programs: SBASIC program files (ending in _BAS,
_bas, SAV or _sav) may be executed using the EX (EXEC) and EW (EXEC_W) commands.

EX| my_little_prog_bas executes the SBASIC program "my_little_prog_bas"
Just as for "executable" programs, if file or device names (or channels) are given after the
program name, the first file device or channel will be #0 within the program, the second will

be #1, etc.. A simple program for "uppercasing” could be:

100 JOB_NAME UC

110 REPeat
120 IF EOF#0):QUIT

130 BGET #0,2% O
140 SELect ON a%

150 =97 TO 122:BPUT #1,a%""32

160 =REMAINDER: BPUT #1,a%

170 END SELect

180 END REPeat

Saved as "uc_bas", this can be used for printing a file in upper case:

EX uc_bas,any _file,par
It can also be used as a filter to uppercase the output of any program sending its output to the
“standard output”,

EX my_prog TO uc_bas,par

The command QUIT should be used to get rid of an SBASIC job whether it has been created
by the SBASIC command, EX or any other means.

8.3.1 Channel #0: There are some oddities in the handling of channel #0 which have
been introduced to make the use of SBASIC a litile easier. Q

- On normal completion of a program, if #0 is not open, SBASIC will die naturally. If #0 is
open, SBASIC will wait for a command.

- In case of error, if #0 is not open, a default window #0 will be opened for the error
message.

- Likewise, if an operation is requested on a default channel (#0, #1 or #2) and neither the
default channel or #0 are open, a default window #0 will be opened for the operation.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

8.4 SBASIC and Resident Extensions: Resident extensions linked into Job 0
(the initial SBASIC) are available to all SBASIC jobs. If extension procedures and functions
are linked into other SBASIC Jobs (using LRESPR), they are local to those Jobs and will be
removed when the Jobs die or are removed.

Note that, because or this feature, LRESPR cannot be used from a Job, other than Job 0, to
load files which include system extensions (i.c. MENU_REXT, QTYP, etc.).

8.5 SBASIC Exccutable Thing: The SBASIC executable Thing is called
"SBASIC". The provision of an SBASIC executable Thing enables the diehard QDOS fanatic
to go well beyond the facilities provided by the SBASIC and EX commands. Depending on
how it is invoked, SBASIC can execute independently of the invoking program, or it may
take its channels and program from the invoking program.

On being invoked, SBASIC expects to find some channel IDs and a string on the stack
(standard QDOS conventions). Because, however, SBASIC requires"‘some BASIC source code
in order to be able to execute, the treatment of these channel IDs and the string on the stack
are slightly unconventional.

- If SBASIC is invoked without any channel IDs on the stack, SBASIC will behave either as a
normal SBASIC interpreter, with the standard set of windows, or as an interpreter with no
windows initially opened.

- If the string on the stack is null, the standard set of windows is opened and SBASIC waits
for a command. (This is what happens when you give an SBASIC command without
parameters or when you start SBASIC from the QPAC2 EXEC menu without a command
string.)

- If the string on the stack is not null, no windows are opened and the string is treated as a
command line. (This is what happens when you start SBASIC from the QPAC2 EXEC menu
after specifying a command string.)

- If there are one or more channel IDs on the stack, SBASIC will normally treat the first ID as
the SBASIC source program file, the next ID as channel #0, the next ID as channe] #1 and so
on. The string defines the initial value of the cmd$ variable within the SBASIC program.
(This is what happens when EX executes an SBASIC program.)

- There is a special "trick” for setting up an SBASIC program with just window #0 open. The
X,y coordinates of the top left hand corner of the required window #0 are complemented and
put on the stack in place of the channel ID.

- If there is only one channel ID on the stack, and this is a "false” ID (i.e. the ID is negative),
a 6 line by 42 column channel #0 is opened with the origin at NOT the MSW (x) and NOT
the LSW (y) of the false ID. The string is treated as a command line. (This is what happens
when you give an SBASIC command specifying the position of window #0.)

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

- If there are two channel IDs on the stack and the second is a "false™ ID, the first is used as
the SBASIC program source file and the second ID is used to define window #0. The string
defines the initial value of the cmd$ variable. (This could be useful.)

8.6 The SBASIC Interface Things: Two interface Things are provided for the
interface to the SBASIC extension which are compatible with two of the established
execulable program interfaces. The first is called "SBAS/QD" which provides a QDS
compatible F10 interface (Jochen Merz). The second is a "Filenlafo” Thing (Wolfgang
Lenerz) which recognises and executes files starting with _sav or _bas.

If QD (Version 5 or later) is configured to use the SBAS/QD Thing, then you can create (line
numbered or unnumbered) SBASIC programs with QD and execute them by pressing F10
(shift F5). QD may be temporarily configured to do this by executing it with the appropriate
command string.

EX QD;"\T SBAS/QD’ Execute QD using SBAS/QD Thing

The Filelnfo Thing is used by the QPAC2 Files Menu (amongst others) to determine how to
"Execute” a file. With the default Filelnfo Thing incorporated into SMSQ, files ending with
_sav or _bas may be executed directly from the Files menu and any other utility program
which uses the Filelnfo Thing.

9 Input Line Editing

The range of standard input line editing keystrokes is now much wider and has been made
compsistent for INPUT and ED.

Key With Operation

Left arrow move left on character
Right arrow move right one character
TAB SHIFT move left eight characters
TAB move right eight characters
Left arrow SHIFT move left one word

Right arrow SHIFT move right one word

Left arrow ALT move to start of line
Right arrow ALT move to end of line

Left arrow CTRL delete left one character
Right arrow CTRL delete right one character
Left arrow CTRL SHIFT delete left one word
Right arrow CTRL SHIFT delete right one word
Left arrow CTRL ALT delete to start of line
Right arrow CTRL ALT delete to end of line

Down arrow CTRL delete whole line

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

Some keyboards have Delete and Backspace keys:

Key With Operation

Backspace delete left one character
Delete delete right one character
Backspace SHIFT delete left one word
Delete SHIFT delete right one word
Backspace ALT delete to start of line
Delete ALT delete to end of line

10 Language Facilities

SMSQ/QXL incorporates several language variations and extra variations may be added "at
run time”.

10.1 Language Specification: A language may be specified either by an
international dialling code or an international car registration code. These codes may be
modified by the addition of a digit where a country has more than one language.

Language Code Car Registration Language and Country
33 F French (in France)
44 GB English (in UK)
49 D German (in Germany)

10.2 Language Control Procedures: There is a set of procedures and functions
which allow the language of the messages, the keyboard layout and the printer translate table
to be set. Where a language is to be specified, the parameter may be an integer value (the
telephone dialling code), a string (the car registration letters), a variable or expression which
yields ag integer or string result, or a variable name.

It is not necessary for the car registration letters to be in upper case.
10.2.1 LANG _USE: The language of the messages is set by the LANG USE

command. This sets the OS language word, and then scans the language dependent module
list selecting modules and filling in the message table.

LANG_USE 33 set Janguage to French
LANG USED set language to German
LANG_USE 'g’&’b’ set language to English

WARNING: if you assign a value to a variable, then you will not be able to use that variable
name to specify the car registration letters.

D=33:LANGUAGE D set language to French (dialling code 33) rather than
German

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

10.2.2 LANGUAGE LANGUAGES: The LANGUAGE and LANGUAGE$
functions are used to find the currently set language, or to find the language that would be
used if a particular language were requested. They can be used to convert the language
(digling code) into car registration and vice versa.

PRINT LANGUAGE the current language

PRINT LANGUAGES$ the car registration of the current language
PRINT LANGUAGE(P) the language corresponding to F

PRINT LANGUAGES$(45) the car registration corresponding to 45
PRINT LANGUAGE®977) the language that would be used for Nepal

10.2.3 KBD TABLE: The keyboard tables are selected by the KBD TABLE
command.

KBD TABLE GB keyboard table set to English
KBD TABLE 33 keyboard table set to French

Private keyboard tables may also be loaded.
i=RESPR(512):LBYTES "kt",i:KBD TABLE i keyboard table set to table in "kt"

For compatibility with older drivers, a "private” keyboard table loaded in this way should not
be prefaced by a flag word.

10.2.4 TRA: The SBASIC TRA command differs very slightly in use from the QL JS
and MG TRA. The differences are quite deliberate and have been made to avoid the
unfortunate interactions between functions of setting the OS message table and setting the
printer translate tables. If you only wish to set the printer translate tables, the only difference
is that TRA O and TRA 1 merely activate and disactivate the translating. They do not smash
the pointer to the translate tables if you have previously set it with a TRA(address) command.

If you wish to change the system message tables, then the best way is to introduce a new
language. This is done by LRESPRing suitable message tables.

Language dependent printer translate tables are selected by the TRA (1, lang) command. If no
language code or car registration code is given, the currently defined language is used.

Language independent translate tables are set by the TRA (n) command where n is a small
odd number.

Private translate tables are set by the TRA (addr) command where addr is the address of a
table with the special language code $4AFB.

O

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

TRA O translate off, table unchanged

TRA 0,44 translate off, table set to English

TRA 0,F translate off, table set to French

TRA | translate on, table unchanged

TRA 1,GB translate on, table set to English

TRA 1,33 translate on, table set to French

TRA 3 translate on, table set to IBM graphics

A=RESPR(512):LBYTES "tratab",:TRA A translate on, table set to table in
"tratab”

To use the language independent tables, your printer should be set to USA (to ensure that you
have allthe # S @[1{} \ " ~ symbols which tend to go missing if you use one of the special
country codes (thank you ANSI), and select IBM graphics codes as appropriate,

For the IBM tables, QDOS codes $CO to SDF are passed through directly and QDOS codes
$EO to $EF are translated to $BO to $BF to give you all the graphic characters in the range
$BO to $DF. QDOS codes $F0 to $FF are passed through directly to give access to the odd
characters at the top of the IBM set.

10.3 BAUD Command: For the QXL, the standard BAUD command mimics the QL
BAUD command.

BAUD 4800 Set SER1 and SER2 to 4800 baud

Both the SuperBASIC BAUD command and the OS baud trap have been extended to support
independent baud rates for each serial port.

BAUD 1,19200 Set SER1 to 19200 baud
BAUD 2,0 Set SER2 to 153600 baud

11 Virtual Devices

Virtual devices are not associated with any physical hardware. NUL devices are complete
dummies (very useful for benchmarking: SMSQ/QXL has one of the fastest, if not the fastest,
fully functional NUL device in the world). PIPEs are buffers for storing information or
passing it from one task to another. The PIPE is double ended: what goes in one end, comes
out the other in the same order (FIFO - first in first out).

11.1 NUL Device: The NUL device my be used in place of a reat device. The NUL
device is usually used to throw away unwanted output. It may, however, be used to provide
dummy input or to force a job to wait forever. There are five variations.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

NULP waits (forever or until the specified timeout) on any input or output operation.
NUL, NULF, NULZ and NULL ignore all operations (the output is thrown away).

NUL, NULF, NULZ and NULL return a zero size window in response to window
information requests. Pointer Information calls (IOP.PINF, IOP.RPTR) return an invalid
parameter error.

NUL is an output only device, all input operations return an invalid parameter error.

NULF emulates a null file. Any attempt to read data from NULF will return an End of File
Error as will any file positioning operation. Reading the file header will return 14 bytes of
zero (no length, no type).

NULZ emulates a file filled with zeros. The file position can be set to anywhere. Reading the
file header will return 14 bytes of zero (no length, no type).

NULL emulates a file filled with null lines. The file appears to be full of the newline character
(CHR$(10)). The file position may be set to anywhere. Reading the file header will return 14
bytes of zero (no length, no type).

11.2 PIPE Device: There are two variations on the PIPE driver: named and unnamed
pipes. Both of these are used to pass data from one program to another. Unnamed pipes
cannot be opened with the SBASIC OPEN commands but are opened automatically by the EX
and EW commands when these are required to set up a "production line" of Jobs. Whereas, if
a pipe is identified by name, any number of Jobs (including SBASIC) can open channels to it
as either inputs or outputs.

If, using named pipes, matters become confused, then that is a problem for the Jobs
themselves. This is not as bad as it sounds. Unlike other devices, named pipes transfer
multiple byte strings atomically unless the pipe allocated is too short to hold the messages.
This means that provided the messages are shorter than the pipe, many jobs can put messages
into a named pipe and many jobs can take messages out of a named pipe without the messages
themselves becoming scrambled.

If a PIPE is shared in this way, there are two simple ways of ensuring that the messages are
atomic. The first, using fixed length messages, is not available to SBASIC programs. The
second, using "lines" terminated by the newline character, works perfectly. N.B. the standard
PRINT command will not necessarily send a line as a single string for each item output.

PRINT #3,a\b Bad, sends 4 strings: the newline are separate
PRINT #3,a$&CHRS (10): Good, sends 1 string, including the newline
INPUT #4,b$ - Good, reads a single line from the pipe

O

™

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

Named pipes should be opened with OPEN_NEW (FOP_NEW) for output and OPEN_IN
(FOP_IN) for input. A named pipe is created when there is an open call for a named pipe

which does not exist. It goes away when there are no longer any channels open to it and it has
been emptied.

As well as the name, it is possible to specify a length for a named pipe. If the pipe already
exists, the length requested is ignored.

OPEN_NEW #4,PIPE_xpf Open named output pipe of default length (1024
bytes)

OPEN_NEW #5,PIPE frd 2048 Open named output pipe of length 2048 bytes

OPEN_IN #6,PIPE_xfr Open named input pipe

11.3 DEV - A Virtual Filing System Device: DEV is a defaulting device that
provides up to 8 default search paths to be used when opening files. As it was designed to be
dumped on top of QDOS it is not very clean, but, equally, it is reasonably efficient.

Each DEV (DEVI to DEV8) device is a pseudonym for a real filing system device or
directory on a filing system device.

Files on a DEV device can be OPENed, used and DELETFEA in the same way as they can on
a real device.

11.3.1 DEV_USE: Each DEV device is defined using the DEV_USE
(number,name,next) which specifies the number of the DEV device, the real device or
directory and the next device in the chain.

DEV_USE 1,raml_ DEV1_ is equivalent to raml _

OPEN #3,devl_f1 opens ram|_f1

DEV_USE 2,flpl_ex_ DEV2_ is equivalent to flpl_ex_

OPEN #3,dev2_f1 opens flpl_ex_f1

DEV_USE 3,winl_work_new DEV3_ is equivalent to winl_work_new
OPEN #3,dev3 {1 opens winl_work_newfl

DELETE dev3_junk deletes winl_work_newjunk

Note that, unlike the defaulting commands PROG_USE and DATA_USE, the underscore at
the end of the real device or directory is significant.

There is a neat variation on the DEV_USE call which enables you to set up default chains. If
you put a "next” number at the end of the DEV_USE command, this will be taken as the
DEV to try if the open fails. This next DEV can also chain to another DEV. You can even
close the chain: the DEV driver will stop chaining when it has tried all the DEVs in the chain.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

DEV_USE l,ram]_,3 DEV]_ is equivalent to ram1_, next is DEV3_
DEV_USE 2.flpl_ex_,1 DEV2_ is equivalent to flpl_ex_, next is DEVI_
DEV_USE 3,winl_work_,2 DEV3_ is equivalent to winl_work , nextis DEV2_
LOAD devl_aanc will try raml_anne (DEV1)
then winl_work_anne (DEV3)
and finally flpl_ex_anne (DEV2)
LOAD dev2_anne will try flpl_ex_anne (DEV2)
then raml_anne (DEV1)
and finally winl_work_anne (DEV3)
Note that DELETE only operates on the DEV specified, it does not chain. (D
.

A DEYV default may be cleared by giving no name.
DEV_USE 2 clear definition for DEV2_

11.3.2 DEV_LIST: DEV_LIST(channel) lists the currently defined DEVs in the
specified channel (default #1).

DEV_LIST lists the current DEVs in #1
DEV_LIST #2 lists the current DEVs in #2

11.3.3 DEV_USEs DEV_NEXT: The DEV_USES$(number) function returns the
usage for the specified DEV. The DEV_NEXT(number) function returns the next DEV after
the specified DEV.

PRINT DEV_USES$(3) priats the usage for DEV3 _
PRINT DEV_NEXT(1) prints the next DEV in the chain after DEVI_
11.3.4 Interaction between DATA_USE, PROG USE & DEV: <)

If you are going to use the DEV defaulis, it makes sense to set the DATA USE and
PROG_USE defaults to use DEV, and when moving from directory to directory change the
DEV definition rather than the DATA_USE.

DATA_USE devl_ data default directory is DEV1_
DEV_USE 1,flp2_myprogs_ ... which is myprogs on FLP2_
PROG_USE dev2_ programs from DEV2_

DEV_USE 2,flp]_ex_,1 ... which is flpl_ex_ or my data default!

O

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC
12 SMSQ/QXL Trouble Shooting

Q1: 1 get a "not found” error message when trying to write a file to a DOS format
diskette.

Al: There are three problems to watch out for.

The first is that it is obligatory to create directories (if required) on a DOS format disk before
you put files into them. You cannot just use any name you like as you have been accustomed
to do on QDOS format disks.

The second is that the filing system automatically converts underscores to directory
separators: a filename "MY_FILE" cannot be distinguished from a file "FILE" in a directory

"MY".

The third is that the filing system does not automatically attempt to convert files which end in,
for example, "_bas” to files ending in ".bas".

Q2: Files which 1 intended to write to a DOS format floppy disk were copied instead to
my data default directory with "FLP1_" in front of the name.

A2: The same problem as above.

Q3: When I try to QMON a file, 1 end up tracing Job 0 in a rather bizarre way.

A3: Unlike SuperBASIC, SBASIC initialises all variables to zero or null string.

In order to distinguish 2 name (which would be a filename) from a number (which would be a
job number) QMON, and a small number of other programs, made the assumption that a file
name would not have a value. This is not necessarily true for SuperBASIC, it is never true for
SBASIC. '

Either put the file name in quotes or upgrade your QMON.

Q4: I have some software which works in the initial SBASIC but does not work when 1
try to nse it from an SBASIC daughter.

AA4: The initial SBASIC is 99.9% compatible with SuperBASIC. SBASIC daughter Jobs are
only 99% compatible with SuperBASIC. In particular they are not Job 0 and the channel IDs
for #0, #1 and #2 are not $00000, $10001 and $20002.

Some software cannot cope with this difference. Old versions of QMON cannot, but old
versions of JMON can. Turbo cannot, QLiberator can.

MIRACLE SYSTEMS LTD SMSQ/QXL & SBASIC

Either update the software or use this software in the initial SBASIC only.

Q5: 1 get the message "unknown error” instead of a proper error message when I use the
SBAS/QD F10 Thing.

AS: Some of the SBASIC error messages are longer (hopefully more helpful) than the old
SuperBASIC error messages. Older versions of the Menu extensions cannot cope with these
long messages. Update your MENU_REXT and WMAN.

Q6: When [try to use the SuperBASIC channel table from another Job, I find that it is
empty.

AG: As you can have many SBASIC Jobs, you can have many SBASIC channel tables: one in
each set of SBASIC variables. From within an SBASIC Job, these look just the same as the
SuperBASIC channel table.

The tricks that can be used with QDOS to find the SuperBASIC variables area will, in SMSQ,
find a dummy variables arca which holds only the global name table. This is the only part of
the SuperBASIC environment which is common to all SBASIC Jobs.

To find any other part of a SuperBASIC variables arca from another Job, you must define
which copy of SBASIC you wish to poke about in. To do this you need to go to supervisor
mode and find the value of A6 for the particular SBASIC Job you are about to interfere with:
the channel table and most other parts of the SuperBASIC variables area will be found at their
usual offsets from A6.

-

Miracle Systems Ltd

SUPER GOLD CARD
SUPPLEMENT

20 Mow Barton, Yate, Bristol, BS17 SNF, UK
Telephone/Fax: (01454) 883602

MIRACLE SYSTEMS LTD Super Gold Card Supplement

(NOTE: If you are using a Gold Card please skip this supplement.)

OVERVIEW

The Super Gold Card brings true 32-bit processing to the QL for the first time together with
several other benefits. These are:

68020 microprocessor running at 24dMHz for high speed

3968K of 32-bit, no wait state memory seen by QDOS

Parallel port for fast graphics printing

Two disk drive connectors for four drive capability

Battery backed clock with crash protection

Automatic booting option for unattended operation

Automatic enabling of Toolkit Il option

External regujated 5V input connector to allow easy connection of switch mode
power supply

F itﬁ% the Super Gold Card: The Super Gold Card contains static sensitive
devices and should be kept in the anti-static bag supplied when not plugged into the QL.
Other types of anti-static bag could cause the clock battery to discharge.

Make sure that the power to the QL is switched off. Remove the cover at the left hand end of
the QL. Very carefully plug the Super Gold Card into the now exposed expansion port. The
gold coloured heatsink should just touch the QL’s case top when the Super Gold Card is fully
plugged in. Power may now be applied.

The Super Gold Card has all the functionality of the Gold Card and all references in the
manual to Gold Card also refer to the Super Gold Card.

Connecting the disk drives: There are two disk drive connectors on the Super
Gold Card. If you have a double drive it should be plugged into the upright connector, i.e the
one nearest the QL, and the drives are FLP1_ and FLP2 _as expected.

" A second double drive may be plugged into the connector to the left of the first and the drives

become FLP3_and FLP4_.
The upright connector is wired so that all four drives can be connected to it via a single cable
but the third and fourth drive mechanisms must bave their jumpers set for DS2 and DS3

respectively. If in doubt please consult the data sheet for the drive mechanism in question.

Details of the disk drive connectors appear later in this supplement,

MIRACLE SYSTEMS LTD Super Gold Card Supplement
PARALLEL PORT

To connect the Super Gold Card’s parallel port to the printer plug one end of the cable
provided into the connector below the gold coloured heatsink and plug the other into the
printer. The main advantage of the parallel port over the serial port is high speed printing of
graphics but it also simplifies setting up as once the cable connects the Super Gold Card to the
printer nothing else is required.

The device name is PAR and in addition to the parameters accepted by the SER device four
new options are available. The T option, which is the default, will use an active translation
table. The D option does aot translate. (The default SDP_DEV uses PARD. See page 10 for
more on SDP_DEV.) The A option precedes every line feed. CHR$(10), with a carriage
return, CHR$(13). The A option is only necessary if the printed page looks something like
this:
This is line one
This is line two
This is line three

The F option sends a form feed, CHR$(12), at the end of a file i.e. when the channel is
closed.

The following will print a file ending with a form feed: COPY_N "flpl_myfile" TO "parf”

To print the same file followed by a form feed but with all line feeds preceded by carriage
returns: COPY_N “flpl_myfile” TO "paraf”

For compatibility with other parallel port drivers, the name PAR may be followed by an
underscore and a number, optionally ending in a K character although this is ignored. For
example: OPEN #3,"par_6K"

The PAR USE command: To allow the parallel port to be used with software
that only allows output to SER]1 or SER2 a command PAR USE has been provided. An
example is: '

PAR_USE "ser”
COPY N *fipl_myfile" TO "ser2"

which will send the file to PAR.

If you use QUILL and it currently prints to one of the serial ports just put the line PAR_USE
"ser” at the beginning of the boot program and it will print using the parallel port.

PAR_USE also allows the use of extra parameters. For example

PAR_USE "ser”
COPY_N *flpl_myfile” TO "serlf"

will print the file to PAR ending with a form feed.

MIRACLE SYSTEMS LTD Super Gold Card Supplement

Bufferigg output to PAR: To print a file using the parallel port using free

memory as a buffer enter the following:

PAR_USE “Ipt”
PRT_USE "par","Ipt"
COPY_N "flp]l_myfile" TO "par®

If you are using a program, for example QUILL, configured to print via SERI or SER2 and
you wish it to print via PAR with a buffer add the following to the start of the BOOT
program.

PRT_USE "ser","par”
See later in the manual for more information on PRT_USE. Details of the parallel port
connector appear later.

ENABLING TOOLKIT II & AUTOMATIC BOOTING

If your QL has a Sinclair ROM installed there is the option of simulating the pressing of FI or
F2 as well as invoking TK2_EXT. On a QL fitted with Minerva these commands will only
invoke TK2_EXT as all Minervae auto boot.

To invoke TK2_EXT and simulate pressing F1 enter: AUTO_TK2FI
To invoke TK2_EXT and simulate pressing F2 enter: AUTO_TK2F2

To disable automatic booting or if you have software that does not work if Toolkit II has been
enabled enter: AUTO_DIS

FLP JIGGLE

The Gold Card and Super Gold Card incorporate a software fix for a problem when accessing
Mitsubishi ED disk drives in the form of a number of rapid steps of the drive head. This rapid
stepping of the drive head, referred to as a jiggle, when applied to other makes and types of
disk drive can result in the drive giving ’not found’ or ’bad or changed medium’ errors. There
is a command to enable or disable this jiggle.

Suppose your system comprises one of our Dual ED Disk Drives for FLP1_ and FLP2_and
some other make of double drive for FLP3_ and FLP4_. To boot up reliably the head jiggle
must be enabled so from the command line enter: FLP_JIGGLE |

FLP3_ and FLP4_ do not require the head jiggle so add the following lines to the start of
your boot program:

FLP _JIGGLE 3,0

FLP_JIGGLE 4,0
If the command is given only one parameter it is memorised and remains in force the next
time the QL is powered up or reset. Individual settings are not memorised and have to be set
each time the QL is powered up or reset.

MIRACLE SYSTEMS LTD Super Gold Card Supplement
THE CACHE

There is a cache on the Super Gold Card that can increase performance but it can cause
problems with programs that modify themselves during execution.

There is no way of knowing whether or not a program is self-modifying so try each program
first with the cache off, by typing: CACHE_OFF and then with the cache on, bytyping:
CACHE_ON

If the program behaves differently with the cache on, other than going slightly faster, it is a
sign that it is self-modifying and should only be run with the cache off.

EVEN MORE SPEED

The QL’s hardware allows the screen to be taken from one of two arcas in memory. Sinclair
ROMs offer no choice but some games ignore the ROM and use the second screen and
Minerva offers this as an option. If you do not make use of the second screen it is possible to
disable it and gain maximum performance.

Entering the command SCR2DIS disables the second screen. To reenable it enter SCR2EN
This command is memorised by the Super Gold Card so it is only necessary to type it once,

EXTERNAL POWER INPUT

If you are using your system with a standard power supply ignore this section. If you wish to
power your system from a switch mode power supply 5V may be fed into the Super Gold
Card directly via a 2.1lmm power connector located under the heatsink. The heatsink should
not be removed and the regulator should be left in place.

Wire the plug with +5V on the outside and the centre grounded. A suitable plug is available
from Miracle Systems.

ASSEMBLY LANGUAGE

If you are interested in using assembly language on the QL please read this section.

First and foremost the Super Gold Card is for running existing QL programs faster. QL
programs are written for the 68000 and there is software on the Super Gold Card to make it
look as much as possible like a 68000 system.

Also we recommend that your programs do not make use of special 68020 instructions so that
they run on all QL systems. This is a panticularly important consideration for any program
destined for sale or publication. The golden rule is: assume you are writing for the 68000,

O

'
/

MIRACLE SYSTEMS LTD Super Gold Card Supplement

Incidentally, we did not use or need a 68020 assembler in extending the Gold Card software
for the Super Gold Card. The only 68020 instruction is the one to write to the cache coatrol
register.

Additional information regarding the 68020 is NOT available from Miracle Systems.
The cache from assembler The cache is always on in supervisor mode and

should not be turned off. To do so would cause problems for device drivers such as the
Microdrives which are written to work at the speed of the 68020 with its cache enabled.

There is no operating system call to alter the cache mode. The CACHE ON command
should be used from SuperBASIC. However, it is possible to turn the cache on from user
mode temporarily by entering supervisor mode. Once the program goes back to user mode
the cache will be disabled after the next interrupt or TRAP call.

Reading the status regiSLEr The instruction to read the status register:

MOVE.W SR, <ea>

is privileged on the 68020. For QL program compatibility the Super Gold Card intercepts
this privilege violation and emulates the instruction in software.

Exception stack frame The 68020 stacks at least one additional word of
information when an exception is generated and consequently expects this additional
information when the RTE instruction is executed.

If your programs use the technique of going from user mode into supervisor mode and
stacking an address and the status register and then executing an RTE to return to user mode
they will cause problems on the Super Gold Card.

If your program entered supervisor mode from user mode only return to user mode by writing
to the status register.

User definable exception VECLOTS All the user definable exception vectors
that require it are preceded by code that makes the information on the stack look like that
generated by the 68000 except that the format word stacked by the 68020 is also there. This
need not be a problem as the format word is the first thing stacked as explained by the
following example.

Suppose you wish to use the trace mode to invoke your own set of routines. The exception
stack frame on the left is as generated on a QL and the one on the right by a QL fitted with
the Super Gold Card and not as that generated by the 68020.

The stacked PC is the address of the instruction being traced.

MIRACLE SYSTEMS LTD Super Gold Card Supplement

Example
address

$28480

$2847E

$2847C

$2847A

$28478

$28476

| || | A7 before

I ? (. ? | <-(AD)

| (. |

| Low word of PC | |Format word | <-(A7-2)

| (. I

| High word of PC | |Low word of PC | <-(AT4)

| (. |

| Status register | |High word of PC | <-(A7-6)

I [|

| Empty | |Status segister | <-(A7-8)

| | | A7 after ()
1 Empy | | Empty | i
| |

The trace handler might look a bit like this:

MOVEM.L
MOVE.L
MOVE.W

MOVEM.L
RTE

DO/AO,-(AT)

2*4+2(A7),A0

(A0),DO

(AT)+,D0/AO

* Save a couple of registers
* Get address of instruction
* Get instruction itself

* Take some action

* Restore registers saved

* Resume execution of main program

The above example would work without modification on the QL with or without a Super Gold
Card and know nothing about the extra word on the stack.

PRINTER PORT CONNECTOR DETAILS

View looking into the plug.

NC

GND
GND
GND

GND

GND
GND
GND
GND
GND
GND
GND
GND

26
24
22
20
18
16
14
12
10

N & O\ oo

f5T9)
lojo]
lojo|
[ofo]
lolo]
lolo

lojo

lojo

[o]o]
lojo]
Jojo]
[olo]
lole]

23
21
19
11
15

- W~ D -

NC
Busy
NC
D7
D6
D5

D3
D2
D1

/Strobe

MIRACLE SYSTEMS LTD Super Gold Card Supplement
THE EXPANSION CONNECTOR: The expansion connector on the

Super Gold Card is detailed below. Signals marked NC are signals either not required or not
provided by the Super Gold Card depending on whether they are inputs or outputs
respectively. Below is a view into the Super Gold Card’s expansion connector.

Use on SGC Use on SGC
VIN VIN |b32 a |VIN VIN
VIN VIN b3l a | VMI2 NC
NC EXTINTL |30 a |VPI2 NC
IPLIL IPLIL |b29 a | SPO GND
NC BERRL |b28 a | SP] GND
NC IPLOL | b27 a | DSMCL NC
GND SP3 |b26 a | SP2 GND
A2 A2 |b25 a | DBGL NC
Al Al |b24 a | A3 A3
NC ROMOEH |b23 a | A4 Ad
A0 A0 |b22 a | A5 A5
NC FCO |21 a | A6 A6
NC FCl |b20 a | A7 Al
NC FC2 |b19 a | A8 A8
NC BLUE |b18 a | A9 A9
NC GREEN |b17 a | AlO AlO
NC VPAL |bi6 a | All All
NC VSYNCH |bl5 a | AlI2 Al2
NC E |]b14 a | A3 Al3
Refresh CSYNCL |b13 a | Al4 Al4
RESETCPUL RESETCPUL |b12 a | RED NC
AlS AlS |bll a | CLKCPU NC
GND BRL |b10 a | Al6 Al6
NC BGL |b9a | AY7 Al7
DTACKL DTACKL |b 8a | A18 Al8 See text
RDWL RDWL |b7a | A19 Al9 See text
DSL DSL |b6a | D7 D7
Same as DSL ASL |b5a | D6 D6
DO DO |b da | D5 D5
D1 D1 |b3a | D4 D4
D2 D2 |b 2a | D3 D3
GND GND [b_1a | GND GND
| I

Signals A0..A19, DO..D7, DSL and RDWL are high impedance while RESETCPUL is low.

The Super Gold Card can drive peripherals, which it maps into the area from $4C0000 to
$4FFFFF, provided that they do not use VPAL, E, BRL, BGL or BERRL. Signals are not
synchronised with CLKCPU. Signals A18 and Al9 on the expansion connector are both high
during accesses to the peripheral area. Al8 and A19 are both low during other accesses to
the QL.

MIRACLE SYSTEMS LTD Super Gold Card Supplement
DISK DRIVE CONNECTOR DETAILS

View looking into the plug pointing upwards.

Direction Function Function
- NC 34 [o]o] 33 GND
OUTPUT SIDE ONE SELEC ECT 32 |o]o] k)| GND
INPUT READ DATA 30 |o|o| 29 GND
INPUT WRITE PROTECT 28 |ojo] 27 GND
INPUT TRACK ZERO 26 |ojo] 25 GND
OUTPUT WRITE GATE 24 |o]o| 23 GND
OUTPUT WRITE DATA 22 Jo|o] 21 GND
OUTPUT STEP 20 |o|o 19 GND
OUTPUT - STEP DIRECTION 18 |olo 17 GND
OUTPUT MOTOR ON 16 |o]o 15 GND
OUTPUT DRIVE SELECT 2 14 |ojo| 13 GND
OUTPUT DRIVE SELECT | 12 |ojo| 11 GND
OUTPUT DRIVE SELECT 0 10 Jojo] 9 GND
INPUT INDEX 8 |ojo| 7 GND
OUTPUT DRIVE SELECT 3 6 |ojo| 5 GND
- NC 4 |o|o| 3 GND
- NC 2 |o]of 1 GND

View looking into the plug pointing sideways.

Direction Function Function
- NC 34 [o]o] 33 GND
OUTPUT SIDE ONE SELECT 32 |o|o] 31 GND
INPUT READ DATA 30 |o|o] 29 GND
INPUT WRITE PROTECT 28 |o|o| 27 GND
INPUT TRACK ZERO 26 |o]o| 25 GND
OUTPUT WRITE GATE 24 |o]o| 23 GND
OUTPUT WRITE DATA 22 Jo]oj 21 GND
OUTPUT STEP 20 |o|o 19 GND
OUTPUT STEP DIRECTION 18 |o]o 17 GND
OUTPUT MOTOR ON 16 |o|o 15 GND
OUTPUT DRIVE SELECT 2 14 |o|o| 13 GND
OUTPUT DRIVE SELECT | 12 |o|o| 1 GND
OUTPUT DRIVE SELECT 0 10 |o|o] 9 GND
INPUT INDEX 8 |o|o| 7 GND
OQUTPUT DRIVE SELECT 3 6 jojol 5 GND
- NC 4 |o|o] 3 GND
- NC 2 Jolo] 1 GND

Miracle Systems Ltd

GOLD CARD
SUPPLEMENT

20 Mow Barton, Yate, Bristol, BS17 SNF, UK
Telephone/Fax: (01454) 883602

e

MIRACLE SYSTEMS LTD Gold Card Supplement

The GOLD CARD contains static sensitive devices and should be kept in the anti-static bag
supplied when not plugged into the QL. Other types of anti-static bag could cause the clock
battery to discharge.

WARNING

The GOLD CARD must not be used on a QL fitted with the Q-Power regulator. If one is
fitted to the QL then replace it with the original regulator before plugging in the GOLD
CARD.

Connecting Up

Make sure that the power to the QL is switched off. Remove the cover at the left hand end of
the QL. Very carefully plug the GOLD CARD into the now exposed expansion port. Only
the gold heat sink should be left protuding beyond the left hand extremity of the QL. If disk
drives are to be connected plug their cable into the connector on the exposed edge of the
GOLD CARD. Power may now be applied. It is recommended that the whole system is
powered up at the same time. Alternatively, power up the peripherals first and then switch on
the mains to the QL. Do not switch the QL on and off using the low voltage connector at the
back of the QL as this can permanently damage the QL, GOLD CARD or both.

After power up the QL does two resets. During the first reset the GOLD CARD checks the
first 128K of RAM then reads the contents of the QL’s ROMs. Their contents are copied over
to the GOLD CARD RAM and patched. A second reset is then run that checks all the
memory. To auto-boot from disk make sure that the disk is in FLP1 before the F1/F2 prompt

appears.

DISK DENSITIES

The GOLD CARD supports the following densities:

DD - Double Density, old QL standard, 720K bytes
HD - High Density, 1.44M bytes
ED - Extra High Density, new QL standard, 3.2M bytes

The capacity that a diskette will be formatted to depends on the diskette and the drive
according to the following table:

Diskette: DD HD ED

Drive

DD 720k T720k? 720k? (? = unreliable)
HD 720k 1.44M 720k?

ED 720k 1.44M 3.2Mm

MIRACLE SYSTEMS LTD Gold Card Supplement

If you bought your disk drives from Miracle Systems you may ignore the section regarding
step rates and proceed to the section headed SUBDIRECTORIES.

Disk drive step rate and disks that will not boot: some older
drives may not work correctly with the step rates provided by default on the GOLD CARD.
However, there is a way to enable such drives to boot as long as the correct step rate is

known. The numbered steps given below assume a dual drive with a step rate of 6
milliseconds (ms) and a start up time of 800 ms.

Reset the QL

Press Fl or F2.

Type TK2_EXT then press ENTER.

Put a blank diskette in FLP1_. C)
Put the diskette holding the software to be copied in FLP2_.
Type 100 FLP_START 40 then press ENTER.

Type 110 FLP_STEP 6 then press ENTER.

Type RUN then press ENTER.

Type FORMAT FLP1_MIRACLE then press ENTER.

Type 120 LRUN FLP1_BOOT!I then press ENTER.

Type SAVE BOOT then press ENTER,

Type COPY FLP2_BOOT TO BOOT!I then press ENTER.
Type WCOPY FLP2_ TO FLPI _ then press ENTER.

14. Press the letter A when requested.

15. When asked to overwrite FLP1_BOOT press N.

16. When both drives’ lights are out remove the diskette in FLP2_,
17. Press the reset button.

18. Pressing Fl or F2 should now boot as expected.

L ol B ol ol

—_— =
wN e

FLP STEP in more detail: The step rate is set automatically by the GOLD
CARD to be 3ms for an 80 track drive and 6ms for a 40 track. This can be overridden using
FLP_STEP. If only one parameter is given its value applies globally, e.g. C\‘

FLP_STEP 12

will set the step rate on all drives to 12ms. When two parameters are given the first is the
drive number and the second the step rate, ¢.g.

FLP_STEP 3,6

will set FLP3 to step at 6ms. Repeated seek errors cause the step rate to be slowed.

SUBDIRECTORIES

Creating a_subdirectory: The command MAKE DIR is used to create a new
subdirectory. It takes one parameter: the subdirectory filename. As it can return a variety of
errors there is also a function to do the same.

("\

MIRACLE SYSTEMS LTD Gold Card Supplement

operation: FMAKE_DIR which returns the error code or 0.
MAKE DIR filename or ferr=FMAKE_DIR (filename)

Normal Error Codes

-7 not found Medium or drive is not available
-8 already exists Already directory/file of that name
-9 in use Already directory/file of that name
-15 bad parameter Device can not handle subdirectories

If there are any files which, by virtue of their names, would belong in the directory being
made, then these files will be transfered to the new directory, even if they are open. For
example:

MAKE DIR "FLP2_letters” or MAKE_DIR "FLP2_letters_"
followed by
DIR FLP2_

would show in its output the file "letters ->". The " ->" signifying that "letters” is a
subdirectory. Copying a file to "FLP2_letters_bankmanager” would create a new file in the
"letters_" subdirectory and

DIR FLP2_Jetters_
would now show one file: "letters_bankmanager”.
To remove a subdirectory, firstly delete its contents then delete the subdirectory itself. COPY
and WCOPY deal only with files at the specified directory level. Subdirectories can also be
applied to RAM disks. Please note that subdirectories should not be put on disks that are to

be used with a TRUMP CARD system.

THE DEV DEVICE

DEYV is a generalised default device and is a fudge to enable existing software, such as Quill,
Archive, Abacus and Easel to make use of subdirectories. It is not intended as an excuse to
write bad software.

As usual, there are up to 8 DEV devices; DEV1 to DEVS. Each DEV device is attached to a
particular real device or a particular default directory on a real device. Files on a DEV
device can be opened, used, and deleted in the same way as on a real device. Note that DEV
definitions are global.

Each DEV is attached to a device by the DEV_USE command.

DEV_USE DevNumber, RealDirectory

MIRACLE SYSTEMS LTD Gold Card Supplement

An example of DEV USE with QUILL: The following description
assumes a version of QUILL configured to take its files from mdvl_and mdv2_. Floppy
disk users with a copy of QUILL reconfigured to access flp should replace occurrences of
mdv with flp.

Place the original copy of QUILL in mdvl_ and, after having pressed Fl or F2, put the
floppy diskette on which the program is to run in flpl_ and enter these lines of BASIC.

TK2_EXT

MAKE DIR flpl_quill

MAKE _DIR flpl_quill_data

WCOPY mdvl_TO flpl_quill_ :REM Press A to copy all

O

Now enter the following BASIC program.

100 INPUT "which dir [flpl_quill data_]?"!DataSource$
105 IF DataSource$="":DataSource$="flpl_quill data "
110 DEV_USE 1,FLP1_quill

120 DEV_USE 2,DataSource$

130 DEV_USE mdv

140 EXEC_W mdv1_quill

150 DEV_USE :REM Clear the DEV setting after quitting

SAVE flpl_quill boot :REM Key Y to overwrite old boot
In future QUILL can be run by entering: "LRUN flpl_quill boot”

Files will then load from the specified directory. The subdirectory in which the QUILL _doc
files are to be found is first requested. If ENTER is pressed the program assumes files are
located in a subdirectory called DATA_ in the QUILL_ subdirectory. Otherwise enter the
name of the device followed, optionally, by the subdirectory holding the files. C)

The same process can be employed with Archive, Abacus and Easel as there is pleaty of
space even on a double density diskette for all four programs. The fact that they are in
different subdirectories means they can all have their own PRINTER_DAT.

Running INSTALL BAS using DEV: INSTALL_BAS was written with
Microdrives in mind but the listing given below shows how this can be circumvented.
Assuming you have just copied the contents of the QUILL Microdrive to flpl_quill_, enter
this:

NEW :REM Clear out the old program

100 DEV_USE 1,flp_quill_
110 DEV_USE 2,flpl_quill
120 DEV_USE mdv

130 LRUN mdvl_install_bas

MIRACLE SYSTEMS LTD Gold Card Supplement

SAVE flpl_quill_install_boot

Now the original INSTALL_BAS program can be used to change the PRINTER_DAT file by
entering: "LRUN flp!_quill install boot” but don’t forget that the DEV_USE settings will
still be in force when the program finishes.

DEV in more detail: The DEV driver is also usable from SuperBasic. However,
this is not something we recommend. It is easy to get confused about the settings; if in doubt
don’t use DEV,

DEV_USE |, raml_ devl_ equivalent to ram! _
DEV_USE 2, flpl_letters_ dev2_is flpl_letters_
DEV_USE 3, winl_work_new dev3_is winl_work_new

NOTE: unlike PROG_USE and DATA_USE, the underscore at the end is significant. Thus,
after entering the above commands

OPEN #3, devl_fl Opens ram]_f1

OPEN #3, dev2_bankmanager Opens flpl_letters_bankmanager
OPEN #3, dev3 fl Opens winl_work_newfl
DELETE dev3 _ junk Deletes winl_work_new_junk

There is a variation on the DEV_USE call which enables the setting up of default chains. If
you put another number at the end of the DEV_USE command it will be taken as the DEV to
try if the open fails. This next DEV can also chain to another DEV. The DEV driver stops
chaining when all DEVs in the chain have been tried.

DEV_USE |,raml_,2 devl_ is equivalent to ram| _

DEV_USE 2,flpl_latest ,3 dev2_is flpl_latest

DEV_USE 3,win!_work 1 dev3_ is equivalent to winl_work_
LOAD devl_Prog_bas Tries ram] Prog then flpl latest Prog bas

then finally winl_work Prog_bas

LOAD dev2_DiskCheck Tries flpl_latest_DiskCheck bas then
winl_work DiskCheck and finally
raml_DiskCheck

DELETE does not chain with DEV.

Examining DEV settings: The command DEV_LIST and two functions
DEV_USES and DEV_NEXTS can be used to examine the DEV allocations.

DEV_LIST Lists current DEVs in #1
DEV_LIST #2 Lists current DEVs in #2

MIRACLE SYSTEMS LTD Gold Card Supplement

PRINT DEV_USES$(3) Prints the usage for dev3_
PRINT DEV_NEXT(I) Prints the next DEV in the chain after devl_

Interaction between DATA USE, PROG USE and DEV: i
you are going to use the DEV defaults, it makes sense to set the DATA_USE and
PROG_USE defaults to use DEV, and when moving from directory to change the DEV
definition rather than the DATA_USE.

DATA_USE devl_ Current directory is devl _

DEV_USE 1,fip2_myprogs_ which is myprogs on drive 2

PROG_USE dev2 _ Programs from dev2 _

DEV_USE 2,flpl_ex_,| which is flpl_ex_ or flp2_myprogs _ CD

Changing the DEV name: The DEV name can be changed by specifying a
three letter name or string. DEV_USE with no parameter resets the name to DEV.

DEV_USE 1,flp2_myprogs_ devl_is myprogs_ on drive 2
DEV_USE 2,flpl_ex_,1 dev2_is flpl_ex_ or flp2_myprogs_
DEV_USE flp flpl_is now really flp2 myprogs_and

flp2_is flpl_ex_etc.
DEV_USE flpl_ is now flpl_again

Using DEV_USE in this way is at best confusing. Take time to experiment with DEVs.
Oanly incorporate it once you fully understand its purpose and operation.

DEV operates by intercepting the QDOS open call and redirecting the open to the appropriate
device driver. It produces very little overhead on an open call and thereafter the real device
driver is accessed directly by QDOS. There are no spurious channels opened. Unlike some
defaulting schemes, it does not prohibit access to directories which are not the default. Thus

it is usable without affecting the computer’s normal operation. (- >
e
RAM SIZE

Some software fails if the QL has too much memory. The QL’s memory can be reduced with
the RES_SIZE command.
RES_SIZE 14*64

will cause the QL to reset to give a capacity of 896K making the system look as though there
is a TRUMP CARD 768K installed. A single reset sequence occurs after this command.
RES_SIZE 128 is identical in operation to RES_128. Resetting to 128K has two other effects;
only double density disks can be accessed and PROT_DATE 1 is executed, explained below.
Oanly allocate memory as RES_SIZE n*64 where n is an integer from 2 to 30,

C

MIRACLE SYSTEMS LTD Gold Card Supplement

Battery Backed Clock: When the GOLD CARD is first installed the clock needs
setting. This must be done using SDATE, not ADATE, which ensures the clock is
configured comrectly. For example:

SDATE 1992,2,24,15,30,0

will set the clock to 24 Feb 1992, 15:30. The time is maintained by the GOLD CARD afier
the power is switched off. Removal of the GOLD CARD from the QL can cause the time to
be lost. All SuperBasic commands and QDOS calls relating to time and date affect the GOLD
CARD clock. The GOLD CARD'’s clock can be protected using the new command,
PROT_DATE, e.g.

PROT _DATE 1

In this protected state all operations using the clock only use the QL’s clock. On power up or
reset, except after RES _SIZE 128 or RES_128, the equivalent of

PROT_DATE 0
is executed which allows the GOLD CARD clock to be modified. The QL clock is only set to

the GOLD CARD time at reset. The battery in the GOLD CARD should keep the time for
about 5 years.

QL HARD DISK EXTENSIONS (for QL Hard Disk users)

All the QL HARD DISK extensions contained in the "WIN_REXT" file except WIN_EXT
have been included in the GOLD CARD ROM so the file "WIN1_WIN_REXT" must not be
loaded when a GOLD CARD is fitted. Instead of loading "WIN_REXT" use TK2 EXT.

Slowing the Gold Card Down: Some programs, mostly games, are rendered
unusable by the speed of the GOLD CARD, even after RES_128.

SLUG 15

will delay all subsequent reads of the keyboard by 15 thousandths of a second (milliseconds)
which is a useful starting value. As you get better at the game, reduce the delay for a more
challenging play!

SLUG works by delaying the QDOS keyboard read routine, As a consequence the program
will speed up when not reading the keyboard. However,the program reads the keyboard
when interacting with the user so this effect shouldn’t be a problem.

We know of only one game that duplicates the keyboard read routine so is not slowed by
SLUG. Nothing can be done, short of a major hardware change, to slow programs of this
type.

MIRACLE SYSTEMS LTD Gold Card Supplement
Extra FILING SYSTEM FACILITIES on the Gold Card

Reading the dates and the version number: Whenever a file which
has been modified is closed the file is marked with the date and time when it was closed.
This is called the update date. It is calculated in seconds from the beginning of 1961. The
extended filing system also maintains a file version number which is incremented when a
modified file is closed. There is also a facility to set a ‘backup’ date in a file header to record
the most recent backup copy of the file.

There are two new functions to compliment the Toolkit Il function FUPDT. All three return
a floating point value. They can be used to find the update date, the backup date and the
version number of a file which has already been opened. If the channel number is not
specified it will default to #3. Also they can be used to open a file, find the date or version
and close the file. In this case, the filename should be specified but preceded with the \
character. The filename can be given as a string or a.name and will default to use the data
default directory. Examples are:

PRINT FUPDT Print update date of file on #3
value=FUPDT (#5) Get file update date for file already open on #5
value=FUPDT (\fred)

or]
value=FUPDT (\"fred") Get file update date for fred in the data default

directory

value=FBKDT (#5) . Get file backup date for file already open on #5
value=FBKDT (\"fred") Get file backup date for fred
value=FVERS (#5) Get version number for file already open on #5
value=FVERS (\"fred") Get version number for fred

Setting the dates and version number: There are three procedures to set
the update date, the backup date and the version number of a file. Like the three functions
for reading the dates and version number, they can be used with either a channel number
(default #3) or a filename, preceded by a \. The file name can be a name or a string and uses
the data default directory.

A date or version number of 0 will have the same effect as omitting it. A date or version
number of -} will have no effect on the file. If the update date has been set it will not be reset
when the file is closed. If the version number has been set it will not be incremented when
the file is closed. Examples of use of SET_FUPDT, SET_FBKDT and SET_VERS:

SET_FUPDT #5 Set update date to now
SET_FUPDT \lp!_fred, DATE-24*60*60 Set update date of 'fred’

on fipl_ to 24 hours ago

SET_FUPDT Mipl_fred Set existing update date to now

O

O

MIRACLE SYSTEMS LTD Gold Card Supplement

SET_FBKDT # channel Set backup date to now
SET_FBKDT \filename
SET_FBKDT #channel,date Set backup date to date

SET_FBKDT \filename,date

Version numbers can be manipulated using:

SET_FVERS #5 Do not increment version number of file open on #5
SET_FVERS #5,1 Set version number of file on #5to 1
SET_FVERS Mip]_fred,2 Force version number to 2

DIRECT SECTOR READ/WRITE: The disk controller on the GOLD
CARD supports high density (HD) and extra high density (ED) disk drives. Consequently,
the software has been extended to support direct sector read/write with these disk densities.

To directly access the sectors on an HD diskette use the file name
FLPn_*D2h where n is the drive number
ED diskettes formatted under QDOS use the file name
FLPn_*D4e
The 4 indicates that the sectors are 2048 bytes long.

If direct sector read/write is performed from SuperBasic the file names above must be
enclosed in quotes. E.g. with Toolkit I enabled and an ED diskette in FLP2_

OPEN #3,"flp2_*d4e"
GET #3\ 14+0%256+0*2"16, Sector$

will read the first sector of side 0, track 0 on the diskette into the variable Sector$. Note that
INPUT #3, Sector$ is unsuitable as there may be CHR$(10)s anywhere in the sector causing
some of the data to be missed. The first four characters of Sector$ should be QL5SB. The
next ten characters are the name of the diskette as shown with DIR FLP2 .

Following the two program lines above with the three below illustrates how to change the
name of a diskette.

Sector$(5 TO 14) ="CustomName" : REM The desired name

PUT #3\ 1+0*256+0%*2"16, Sector$

CLOSE #3

For more about direct sector read/write see the revelent section of the TOOLKIT II manual
that follows this supplement.

O

Miracle Systems Ltd

TOOLKIT II
MANUAL

20 Mow Barton, Yate, Bristol, BS17 SNF, UK
Telephone/Fax: (01454) 883602

|4 S
LR 32

- p.. i

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL
BEGINNERS GUIDE

The extra commands offered by Toolkit II are enabled by entering TK2_EXT after pressing
F1 or F2 after switch-on.

A printer buffer for the serial ports is created by entering PRT_USE SER,SER.

To share one printer between 2 or more networked QLs firstly enable Toolkit II by entering
TK2_EXT, set up the QLs station numbers by entering NET 1 on 1 QL, NET 2 on the next
and so on, enter FSERVE on each QL, then on each remote QL use the device name
N1_SERI assuming the printer is attached to the first QL. For example, after entering
FSERVE, put QUILL in MDV1 on QL 2 and enter LRUN MDVI_BOOT. To print, instead
of using the default "printer” option, type in _N1_SER!. The document will be printed via
SERl1 on QL 1.

For disk sharing the QLs must be set up in a similar manner to printer sharing. If the disk is
attached to QL 3 then the file "fred" would be loaded into QL 2 by entering LOAD
N3_FLP1_FRED on QL 2.

To run programs unable to run on expanded QLs like Psion Chess enter RES_128 after F1 or
F2 after switch on. The QL will now look as though it is unexpanded to the software.

To use QUILL from DISK instead of MICRODRIVE: if you
only have a single disk drive, then use the CONFIG_BAS routine on your QUILL cartridge
so that QUILL will expect SYSTEM, DATA and HELP information from MDVI _.

1. Reset the QL.

2. Press Fl or F2.

3. Type TK2_EXT then press ENTER.

4. Put a blank disk into FLP}_.

5. Type FORMAT FLP!_QUILL then press ENTER.

6. When the disk has formatted put your QUILL cartridge into MDV1 _.

7. Type WCOPY MDV!_ TO FLP1_ then press ENTER.

8. A message saying MDV1_nnn TO FLP!_nna..Y/N/A/Q? will appear. (Where nnn
can be any name eg. BOOT, CLONE, etc.)

9. Press the letter A to copy all the files.

10. When the copying has finished type LOAD FLP1_BOOT then press ENTER.

11, Once the file has loaded type RENUM then press ENTER.

12. Type 90 FLP_USE MDYV then press ENTER.

13. Type SAVE FLPi_BOOT then press ENTER.

14. A message saying FLP1_BOOT EXISTS, OK TO OVERWRITE..Y OR N? will

appear.

15. Press the letter Y to overwrite the file.

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

16. When the light on the disk drive goes out, the disk is ready to use.
17. After RESET, once the disk has loaded in, any reference to MDV will access the
disk instead of microdrive.

18. Use the same procedure to copy your other PSION programs to disk.
19. You can also use the WCOPY command to copy data from microdrive to disk.

DISCLAIMER: ia no circumstances will Miracle Systems, Care Electronics, or
QJUMP be liable for any direct, indirect or consequential damage or loss including but not
limited to loss of use, stored data, profit or contracts which may arise from any error,
defect or failure of the GOLD CARD family’s software.

OBLIGATORY NOTICE: SINCLAIR, QL, QDOS, and QL NET are
Tradcmarks of Sinclair Research Limited. Copyright Tony Tebby 1987. All rights reserved.
No part of this software or documentation may be reproduced in any form. Unauthorized
copying, hiring, lending for sale and repurchase is prohibited.

The Floppy Disk Driver and RAM disk: The QL computer is
delivered with two "mass storage” devices: the Microdrives. These devices have the same
function as the floppy disks on more expensive personal computers, being designed for the
permanent storage of programs and data. Other devices which behave in the same way as
Microdrives (such as floppy or bard disks) may be added to the QL "transparently”. This
means that QDOS will ensure that a program does not need to "know” where its data is
stored. A Microdrive looks, to a program, exactly the same as a floppy disk. This “device
independence” is a built-in characteristic of the QDOS operating system.

The simplest way of using a floppy disk system on the QL is to copy all programs and data
to floppy disks, and cither add the emulation command "FLP_USE MDV" to all BOOT files,
or type this command at the start of a session on the QL. The effect of this command is to
make the floppy disks pretend to be rather large and fast Microdrives.

For example, a modified BOOT file for executing the PSION program Quill could look like:

9 FLP_USE mdv :REMark - emulate microdrives
100 CLOSE #1: CLOSE #2
110 EXEC_W mdvl_quill

On the other hand, it is just as easy to use the floppy disks without changing the name. All
the filing system commands described in the "Microdrives" section of the QL Concept
Reference Guide will work with floppy disks, provided the filenames start with “"FLP"
instead of "MDV":

O

O

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

FORMAT flpl_test formats a new floppy disk in drive 1

DIR flpt _ directory listing of floppy disk 1

SAVE flpl_myprog save the current SuperBASIC program as "myprog" in
floppy disk |

OPEN_NEW #3, flp2_data creates and opens a new file "data” in floppy disk 2

COPY mdvl_x TO raml_x copies file x from Microdrive 1 to floppy disk 1

The term "RAM disk" is a misnomer. It is used to denote a "virtual” device (one that only
exists in the fertile imagination of the QL) that looks and behaves like a very fast disk device.
Itis so fast because being virtual, there is virtually nothing to move to get information in and
out. It is, in fact, no more than a reserved area of the QL’s main memory (its RAM -
Random Access Memory). This means, of course, that any space taken by a RAM disk is
not available to programs executing in the QL. Eurthermore, any data stored in a RAM disk
will be lost when the QL is turned off or reset!

RAM disks in the QL may be of any size, subject to there being enough memory. The normal
usage of a RAM disk would be to copy all working files from Microdrive (or floppy disk) into
a RAM disk; rename the RAM device to be MDV (to pretend that the data is really on the
Microdrives); execute the programs (e.g. QUILL, Archive etc.); and, at the end of the
session, rename the RAM device to be RAM before copying the data files back to
Microdrive.

On the other hand, it is just as easy to use a RAM disk without changing the name. All the
filing system commands described in the "Microdrives” section of the QL Concept Reference
Guide will work with RAM disks, provided the filenames start with "RAM" instead of MDV.

FORMAT ram2_200 creates a new RAM disk 2, see below

DIR ram] _ directory listing of RAM disk 1

SAVE ram!_myprog save the current SuperBASIC program as "myprog" in
RAM disk 1

OPEN_NEW /3, flp2 data creates and opens a new file "data” in RAM disk 2

COPY mdvl_x TO raml_x copies file x from MDV 1 to RAM disk 1

RAM Disk Creation: A dynamic RAM Disk is created just by accessing it with
any normal operation (e.g. DIR). This type of RAM Disk takes memory as required, and
releases any memory as files are deleted or truncated. A fixed RAM disk is created by
formatting it: the size, in sectors, is given in place of the usual medium name. This
pre-allocates all the space that will be available in the RAM disk.
FORMAT ram2_80
Removes the old RAM disk number 2, and sets up a new RAM disk of 80 sectors. A RAM
disk may be removed by giving either a null name or zero sectors,
FORMAT ram]_ or FORMAT raml_0

MIRACLE SYSTEMS LTD TOOLKIT 1l MANUAL

The RAM disk number should be between 1 and 8, inclusive, while the number of sectors
(512 bytes) is only limited by the memory available. A RAM disk can be formatted from
the FILES menu of QRAM.

Heap Fragmentation: The primary storage mechanism in the QL for permanent
or semi-permanent memory allocations is a "heap”. Allocating space in a heap, and then
re-allocating this space as a different size, inevitably causes holes to be left within the heap.
This reduces the amount of memory available to either SuperBASIC or executable programs.

This RAM disk driver has precautions to reduce the possibility of heap fragmeantation, but it
is preferable to consider any fixed RAM disk to be a permanent feature until the QL. is reset.

Using a fixed RAM Disk not only reduces the danger of heap fragmentation, but also
provides higher access speeds during file creation. Since it always occupies the maximum
space you ever wish to use, it is much less flexible.

Microdrive Imaging: Microdrive imaging is a very fast method of loading files
from a Microdrive cartridge. To produce a Microdrive image, a RAM Disk is formatted with
the name of the Microdrive required:

FORMAT raml_mdv2 loads an image of mdv2 into RAM Disk 1

The RAM Disk can even load a Microdrive with a damaged directory. It cannot, however,
load a Microdrive with a damaged map. The RAM Disk will try up to 3 times to read a faulty
sector, If it fails, the nomber of good sectors returned from the format will be fewer than
the total number. Any file with bad sectors will be marked with an"*" in the RAM Disk
directory.

Floppy and RAM Disk Compatibility

The QJUMP Floppy Disk and RAM Disk drivers not only provide all the built-in Microdrive
filing system operations, but include the extended filing system operations provided in the
Sinclair QL Toolkit and QJUMP Super Toolkit Il for Microdrives. This allows all the
SuperBASIC extensions provided in the Toolkits (e.g. FOP_OVER, RENAME eic.) to be
used with the floppy disks

OPEN OVERWRITE Trap #2, DO=1, D3=3

This variant of the OPEN call opens a file for write/read whether it exists or not. The file is
truncated to zero length before use.

RENAME Trap #3, DO=4A, Al points to new name

O

S

MIRACLE SYSTEMS LTD TOOLKIT I MANUAL

This call renames a file. The name should include the drive name e.g. FLP1 NEW_NAME.
TRUNCATE Trap #3, D0=4B
This call truncates a file to the current byte position.

In addition the FS.FLUSH call for a file, not only flushes all the file buffers, but, unlike
the Microdrive driver, updates the map and the directory. This means that a new file can be
created, and if it is flushed, then in the event of the QL being turned off or reset before the
file is closed, then all of the file (up to the point where it was last flushed), is readable. In
effect a FLUSH call is just the same as a CLOSE call, except that the file remains open and
the file pointer remains unchanged.

Auto-boot: If there is a disk in drive 1 when the QL is turned on (this may be risky
with some makes of floppy disk drive, particularily those with permanently loaded heads)
or reset (this should be safe with all drives), then the QL will boot from the disk in drive 1,
otherwise the QL will boot from Microdrive 1 as usual. There is no direct control over the
disk drive motor, the motor is turned off by the hardware in the interface after 10 disk
rotations. To stop the motor, insert a disk into drive 1.

When a "directory device”, such as a floppy disk, is accessed for the first time, QDOS will
allocate a block of memory for the device. In the case of a floppy disk, the Sinclair standard
format requires a block of memory about 1.6 kilobytes long. This is rather larger than the

. Microdrive block which is only about 0.6 kilobytes long. The auto-boot procedure used

ensures that if there is no disk in drive 1 when the QL is reset, then the 1.6 kilobyte block
for disk drive 1 will not be allocated. Programs that are too large to execute when floppy
disks are being used, should still execute from microdrives.

Microdrive Emulation: The standard drivers also include the SuperBASIC
procedures FLP_USE and RAM_USE to change the name of the floppy disk and RAM
disk drivers.

FLP _USE mdv or FLP_USE 'mdv’

reset the name of the floppy disk driver to "mdv", so that all subsequent open calls for
Microdrives will use the floppy disks instead. While

RAM_USE mdv or RAM_USE ’'mdv’
will do the same for the RAM disks. For Example

FLP_USE mdv

OPEN #3,mdv]_myfile

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

will actually open the file "myfile” on floppy disk 1, rather than trying to open a file on
Microdrive 1.

Any three letters may be used as a new device name, in particular

FLP_USE flp and RAM_USE ram
will reset the drivers to their normal state.
Floppy Disk OptiOllS: There are three parameters of the floppy disk system
which are available as user options. The security level is selectable to allow a user to choose
higher speed of access at cost of reduced immunity to erroneous disk swapping. There are

three levels of security, the fowest level still being at least as secure as common disk based
operating systems (e.g. MSDOS and CPM).

A user may specify the time taken for the disk drive motor to get the disk speed to within the
specification. A user may specify the number of tracks to be formatted on a disk. The
parameters are specified by three commands:

FLP_SEC security level
FLP_START start up time (in 50ths of a second)
FLP_TRACK number of tracks

Securigy: The Microdrive filing system is unusual in that, although the data is stored in
"sectors” in just the same way as on a floppy disk, each sector holds information which
identifies the cartridge. When a cartridge is changed the filing system will recognise the
change the next time any access is made to Microdrive. Standard floppy disk formats do not
allow this type of security, so the format used for QL floppy disks includes identifying
information in Track 0 Sector 1 of the disk. Clearly if this were checked every time any
access were made to the disk, then the floppy disk system would be very slow indeed.
Security, in the context of this user option, is the extent to which the floppy disk system may
be abused by changing disks, while they are in use, without destroying data stored on the
disks.

There are four operations which affect the security: the first is the operation to check if the
disk has been changed, the second is the operation to flush the slave blocks, the third is the
operation to update the map and the fourth is the operation to update the directory.

In these definitions, the term "the drive has stopped” is usually taken to mean that the motors
have stopped and no drive select light is visible.

Security Level 0: The disk is only checked when a file is opened and the drive has
stopped since the last time it was checked and there are no files already open on the drive,
The map is only updated after a file is closed (or flushed) when half a second has elapsed
without any other disk operation,

—

O

O

C

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

At this lowest level of security, confusion or loss of data can be expected if a disk is changed
while there are still files open or the motor is running.

Security Level 1: The disk is checked when a file is opened, or data or the map is
to be written, and the drive has stopped since the last time it was checked. The map is only
updated after a file is closed (or flushed) when half a second has elapsed since the previous
disk operation.

At this level of security, disks should only be changed while the motor is stopped (all
select lights off). If a disk is changed while there are files open, then read operations will be
confused but any write operations will be aborted. This should maintain the integrity of the
data on the disk.

SCCI.Il'ity L.evel 2: The disk is checked whenever a file is opened or whenever the
map or data is to be read from or written to the disk and the drive has stopped since the last
time the disk was checked.

The map and directory are updated and the buffers are flushed immediately after a file is
closed, or after an FS.FLUSH call.

This is the default security level and data should be quite secure unless a disk is changed
while the motors are running.

,Security System EITOrS: There are two error messages which may be written to

the screen by the floppy disk filing system. These are in the form of the disk name followed
by the message itself. The first message indicates that an attempt to read or write a sector on
the disk has failed:

disk name read/write failed
The second message indicates that a disk has been changed while it is still in use:
disk name files still open

If the floppy disk system attempts to write to a disk which has been changed, then you may
get both messages indicating that the attempt to write the data has been aborted, and that files
were still open when the disk was changed.

Start Up Time: The floppy disk system will always try to read data from a disk as
soon as it can. However, to preserve the data integrity of the disk, write operations are held
up until the disk has been "run up” for long enough for the speed to be stable. As a default
this is set to .6 second which is more than enough for most modern drives. The start_up_time
parameter is in 20 millisecond units, so the default value is 30. A value of 13 (260
milliseconds) is adequate for the most recent direct drive 3.5 inch drives, while some older
drives may require a value of about 60 (1.2 seconds).

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Number Of Tracks: The QL format for disks allows the number of tracks on a
disk to be read from the disk itself. However, the number of tracks must be determined
when a disk is to be formatted. Normally the disk system will do this itself by checking if
there are at least 55 tracks on a disk. If there are, then there are assumed to be 80 tracks,
otherwise it is assumed that there are 40 tracks. This internal check may be overridden,
allowing 37 track and 75 track drives to be formatted as well as saving possible wear or
damage to a 40 track drive when seeking track 55 (somewhere in the middle of the jacket).

Direct Sector Read/Write: The sofiware includes provision for reading sectors
of a disk using direct addressing. To do this a special file is opened on the disk. The name is:

FLPn_*Dsd where s is the sector length 0=128 bytes
1=256 bytes
2=512 bytes
3=:1024 bytes

and d is the density D=double (MFM)

When opening a disk for direct sector read/write from SuperBASIC, the name should be
enclosed in quotes (or apostrophes).

OPEN #3,'lpl_*d2d’

When this file is open, no other file may be open on the drive. The only 10 calls supported
for this type of file are 10.FSTRG, [0.SSTRG, 10.POSAB and 10.POSRE, to read or write
complete sectors or to set the position. The parameter (D1) to the POSRE call is ignored,
but the current position is returned. Reading or writing a sector does not change the file
position. The position is a composite of the required sector, side and track:

sector number + side * 256 + track * 65536

To ensure compatibility with string IO the length specified in the SSTRG and FSTRG calls
may be one of three values:

sector length the complete sector is read or written

2 returns the sector length (10.FSTRG) ignored
(I0.SSTRG)

2 + sector length returns the sector length followed by the sector
(10.FSTRG) skips the first two bytes, and writes the rest
to the sector (I0.SSTRG)

This variety enables sectors to be read and written in SuperBASIC using the normal string
10 in the Super Toolkit I, as well as by assembler programs. For example, sector 1 of side
1 on track 2 may be read into the string A$ using the following command:

O

O

O

MIRACLE SYSTEMS LTD TOOLKIT I MANUAL

GET #n\1 +256+2*65536, a$

When using the direct sector read/write calls for a 40 track disc in an 80 track drive, the
track number should be doubled. Seek errors will not be detected. If a read/write error is
returned from a direct sector read/write call, then it will be safest to make another call to read
from track zero. Calls to read from or write to track zero will cause a "restore” rather than a
seek, and will thus reset the drive to a known state.

Disk Drive Specifications: It is a requirement that disk drives used with this
version of the disk driver should be set to have the motor on When provided with a "motor

on" signal and there is a disk in the drive. Drives which turn the motor off when the drive is
not selected will not give reliable service.

The disk driver will automatically adjust itself to use any mixture of disk drives, 40 or 80
track, single or double sided. In addition it will adjust itself to use slow step rate drives.
Disks need not have been formatted and written on the same specification drive as a drive
being used to read them.

Disk format -> 40T SS 40T DS 80T SS 80T DS
Drive

40T SS OK ? X X
40T DS OK oK X X
80T SS RO ? oK ?
80T DS RO RO OK OK

OK = compatible RO = read only ? = incompatible but may not be detected on some
drives,

The format procedure automatically checks the drive specification and will format the drive
in an appropriate manner. Note that 40 track drives which do not have an end stop, or which
would suffer damage when stepped beyond the 40th track (to track 55) should not be
formatted unless the number of tracks has been specified in an FLP_TRACK command. It is
possible to force the disk driver to format a disk as single sided on a double sided drive by
making the 1th character (it is invisible) of the medium name an asterisk:e.g.

FORMAT 'FLP1_DISK_NAME *’

Qynamic Printer Buffer: The Printer Buffer has two names: the "usage” and
the "device”. The default usage name is PRT and the default device is SER. The printer
buffer works by intercepting any OPEN call to a device whose name starts with its usage
name, [t substitutes the device name for the usage, and tries to open the device. If it
succeeds, then all the output is buffered within the QLs main memory. If the device is in use,
then the output is also buffered until the device is available. There is no limit to the number of
buffered output files open at one time. If an error occurs during output, the buffer contents
are thrown away. The current printed output may also be thrown away by the command:
PRT_ABT

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

This will ABORT the file with the message "****%* ABORTED #*#*##+"

Using the default usage and device all references to a device called PRT will use the serial
driver SER. Any parameters appenaed to the PRT name will be transferred to the SER name:

OPEN #3, prt will open SER with a buffer
COPY flpl_fred, prt2c will copy to SER2C with a buffer

The usage and device can be changed by using the command
PRT_USE usage, device

Two cases are particularly useful. In the first, the usage and device names are the same. This
has the effect of introducing a buffer transparently into a device. In the second, the device
name is of zero length. This means that the usage name may be followed by any device name.

PRT_USE ser,ser buffer all output to SER1 and SER2
PRT_USEb_," b_serl is buffered SERI, b_par is buffered PAR etc,

Screen Dumps: ‘The screen dump facilities are available in three ways. Screen
dumps may be invoked at any time with a user definable hotkey, screen dumps may be
invoked using a SuperBASIC command or screen dumps may be made lhrough the IO system
from programs written in any language.

SuperBASlC Commands: There are four SuperBASIC commands for screen
dumps. The principal command is SDUMP. This has three formats, which are self
explanatory:

SDUMP dump whole screen

SDUMP #channel : dump SuperBASIC
window

SDUMP width, height, x origin, y origin dump specified pixel
area

SDUMP address of flag dump save area

SDUMP address, width, height, x origin, y origin dump window within

- save area

The last two forms are to dump all or part of a window save area as saved by the QJUMP
pointer interface command PSAVE.

The other three commands control the dump facilities. SDP_KEY sets the single key dump
facility. When activated, pressing ALT and the specified key will invoke the "hotkey"™ dump
routines.

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

SDP_KEY p select key "p” for hotkey dump
SDP_KEY 'p’ ... the same
SDP_KEY inhibit hotkey dump

SDP_DEV sets the screen dump device. The default is "SER", this may be changed to any
QDOS device or file name.

SDP_DEV ’ser2’ dump to SER2
SDP_DEV n2_par dump to PAR on network node 2
SDP_DEV f{lp2_dumpl dump to DUMP! on FLP2

SDP_SET sets the printer type, scaling, and print method. You may give between one and
four parameters for this command.

SDP_SET printer number, scale, inverse, random

The printer numbers and scales are given in the following table. The "inverse" and "random”
parameters are either true or false (non-zero or zero). An "inverse” dump prints black for
white and vice versa. A random dump provides some impression of grey scales even at one
dot per pixel. If a parameter is not given, the setting remains unchanged.

SDP_SET 2,3,0 select Epson FX80, scale 3, not inverse (random unchanged)
SDP_SET 1,1,1,0 select Epson MX80, scale 1, inverse, not random (this is the
default)

10 Device SDUMP: The SuperBASIC commands all access the screen dump

software through the 10 device SDUMP.

The screen dump parameters may be set by sending bytes to the device SDUMP using the
I0.SBYTE or 10.SSTRG 10 calls. A dump is invoked by defining a window using the
SD.WDEF call. In the following examples, SuperBASIC is used for simplicity, Similar calls
may be made from any language.

To set the various parameters of the screen dump routines, a code byte is sent to the device
followed by the parameter.

Code Parameter

0 character sets the screen dump hotkey
0 0 suppresses the screen dump hotkey
1 byte sets printer number

2 byte . sets scale

3 byte sets inverse flag

4 byte sets random flag

8 standard string sets device name

9 byte length string sets device name

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

Note that the streams of bytes 8,0,3,65,66,67 and 9,3,65,66,67 both set the dump device
name to "ABC". The bytes may be sent one at a time (YO.SBYTE) or many at a time, using
the send multiple bytes (}0.SSTRG) operation.

‘To dump an area of the screen, a call is made to set the "window" area using SD.WDEF. To
dump from the screen, the border width (D2) should be specified as zero.

OPEN #4,’sdump’ open dump device

BPUT #4,1,2,2,3 set printer 2, scale 3

BPUT #4,8 set dump device ...

PUT #4,'n2_ser’ ... to "N2_SER"

WINDOW #4,256,202,256,0 dump window (mode 4 SuperBASIC #1)
CLOSE #4 done

The parameters which have been set remain set until reset by further calls. Closing the
SDUMP channel has no effect other than to keep the QL tidy.

The parameter setting calls will always complete immediately, the window definition call wiil
complete when the dump is finished. If zero timeout is specified, then the dump will continue
after the window definition call has returned not complete.

From assembly language, D2 is a key defining the area of memory to be dumped. If D2 is 0,
the dump will be from the screen memory. If D2 is set to 1, then the partial save area pointed
to by A2 will be dumped. If D2 is 2, then a window (defined by (Al)) within the partial
save area will be dumped. If D2 is non-zero, A2 must be set.

Screen Dump Formats

Printer scale dots lines dots max ratio dots max ratio
fin fin 512 width 256 width
1 Epson MX80 1 120 72 Ix1 512 1.23
or similar 1 60 72 Ix1 256 1.23
2 60 72 1x2 480 1.23 2x2 240 1.23
3 120 72 2x2 480 1.23 4x2 240 1.23
2 Epson FX80 1 90 n I1x1 512 0.92
additional 1 60 72 Ix1 256 1.23
formats 2 90 7 1xl1 512 0.92 2x1 256 0.92
3 90 72 2x2 360 0.92 4x2 180 0.92
3 Epson FX100 1 90 72 Ix1 512 0.92
wide 1 60 72 Ix1 256 1.23
carriage 2 90 7 Ix1 512 0.92 2x1 256 0.92
3 90 72 2x2 512 0.92 4x2 256 0.92
4 Epson JX80 1 90 72 Ix1 512 0.92
1 60 72 Ixl1 256 1.23
2 9 n Ix] 512 0.92 2x]1 256 0.92 -
3 9 72 2x2 360 0.92 4x2 180 0.92

O

()
_/

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Screen Dump Formats - (cont’d)

5 Epson 1 80 60 1x1 512 0.9
LQ2500 1 60 60 1x1 256 1.48
8 pin 2 120 60 2x1 512 0.74
2 80 60 2x1 256 0.9
3 80 60 2x2 512 099 4x2 256 0.99
6 Epson i 120 180 1x2 512 0.99 1x1 256 0.99
LQ2500 2 180 180 2x3 512 1.11 3x2 256 0.99
24 pin 3 180 180 3x4 512 0.9 6x4 256 0.99
7 Epson 1 80 60 Ix1 512 0.99
LQ2500 1 60 60 1x1 256 1.48
8 pin 2 120 60 2x1 512 0.74
colour 2 80 60 2x1 256 0.99
3 80 60 2x2 512 0.99 4x2 256 0.99
8 Epson 1 120 180 1x2 512 0.99 1x1 256 0.9
LQ2500 2 180 180 2x3 512 1.11 3x2 256 0.99
colour 3 180 180 3x4 512 0.99 6x4 256 0.99
9 Brother HR4 1 120 72 Ix1 512 1.23
: 1 60 72 1x1 256 1.23
2 60 72 1x2 480 1.23 2x2 240 1.23
3 120 72 2x2 480 1.23 4x2 240 1.23
10 Olivetti 1 110 72 Ix1 512 1.13
JP101 1 110 108 1x1 256 0.75
2 110 108 1x1 512 0.75 3x2 256 1.00
3 110 72 2x2 440 1.13 4x2 220 1.13
11 Seikosha 1 60 63 1x1 480 0.70 I1x1 256 1.41
GP-100A 23 60 63 1x2 480 1.41 2x2 240 1.41
12 Seikosha 1 60 () Ix1 480 0.61 Ixl 256 1.23
GP_250X 2,3 60 72 1x2 480 1.23 2x2 240 1.23
13 Seikosha 1 80 80 IxI1 512 0.74 I1x]1 256 1.48
GP-700A 2 80 80 1x2 512 148 2x2 256 1.48
3 80 80 1x2 5121 3x2 212 0.99
14 Canon 1 80 80 1x1 512 0.74 1x1 256 1.48
PJ1080A 2 80 80 1x2 512 1.48 2x2 256 1.48
3 80 80 Ix2 5121 3x2 212 0.99
15 Centronics 1 75 72 Ix1 512 0.77 Ix] 256 1.42
739 2 75 72 1x1 512 0.77 2x1 256 0.77

3 75 72 2x2 300 077 3x2 200 1.03

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

Screen Dump Formats - (cont’d)

16 C.Itoh 1 120 72 i1x1 512 1.23
7500 1 160 72 1x1 256 1.23
2 160 72 2x1 512 0.82
2 120 72 2x1 256 1.23
3 120 72 2x2 480 1.23 4x2 240 1.23
17 Toshiba 1 180 180 1x2 512 1.48 2x2 256 1.48
TH 2100H 2 180 180 2x3 512 1.11 3x2 256 0.99
24 pin 3 180 180 3x4 512 0.99 6x4 256 0.99
18 Brother 1 70 i/ 1x1 512 0.72 Ix1 256 1.44
8056 2 70 72 1x1 512 0.72 2x1 256 0.72
3 70 72 2x2 280 0.72 3x2 186 0.96
19 EpsonMX100 1 120 72 Ix1 512 1.23
or similar 1 60 72 Ix1 256 1.23
2 60 72 1x2 512 1.23 2x2 256 1.23
3 120 72 2x2 512 1.23 4x2 256 1.23
20 Tandy 1 100 72 Ix1 512 1.03
DMP 105 1 60 72 Ix1 256 1.23
2 60 iy 1x2 512 1.23
2 100 72 2x1 256 1.03
3 100 yi 2x2 400 1.03 4x2 200 1.03
21 OKI 1 100 66 Ix1 512 1.12
Microline 1 60 66 ix1 256 1.35
82/84 2 100 66 Ix1 512 1.12 2x1 256 1.12
OK Writer 3 100 66 2x2 400 1.12 4x2 200 1.12
22 Fastext 80 1 72 72 ix1 512 0.74
1 60 72 1x1 256 1.23
2 60 ys 1x2 480 1.23 2x2 240 1.23
3 72 72 2x3 288 1.11 3x2 192 0.99
23 MT-80 1 85 82 Ix1 512 0.77 1x1 256 1.53
2 170 82 2x1 512 0.77 3x1 256 1.02
3 170 82 3x2 425 1.02 6x2 212 1.02
Preface

The original QL Toolkit was produced in something of a rush to provide useful facilities
which, arguably, should have been built into the QL to start with. Since its appearance, |
have been subjected to continuous pressure to modify certain facilities and extend the range of
facilities provided.

QL Toolkit I is, therefore, a revised (to the extent of being almost completely rewritten) and
much enlarged version of the original QL Toolkit. Old facilities now work faster and are
more compact, so that there is room in the ROM cartridge for over 100 operations.

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

The fact that QL Toolkit II ever saw the light of day is due to prompting from a number of
quarters. Many people have contacted me complaining that they have been unable to lay
their hands on the original QLToolkit, and this eventually convinced me that there was a
market for a second version. Repeated criticism of the original facilities made at great length
(and with justification) by Chas Dillon have provided the basis for many of the modifications
to the old routines. Ed Bruley has provided invaluable practical support in putting the product
on the market, and Cambridge Systems Technology allowed me to use one of their
Winchester disc systems to test the network server,

Even so, QLToolkit II might not have been completed without the uarelenting encouragement
from Hellmuth Stuven of QSOFT, Denmark, whose indomitable faith in the technical merit
of this product has kept me on my toes. My thanks to you all, TT.

QJUMP Toolkit 11 for the QL

Version II of the QJUMP Toolkit for the QL is an extended and improved version of the
original QL Toolkit. This new version is largely rewritten to provide more facilities and to
make the existing facilities of the QL and the QL Toolkit more powerful. Since many of
these improvements are to correct defects in the ROMs supplied with the QL, it would be
better to supply an upgrade to the QL by replacing the Sinclair ROMs. Given the hostile
attitude of Sinclair Research Limited towards such an upgrade, this Toolkit II is supplied as
the next best thing.

1 Introduction: The Toolkit I attempls to put a large number of facilities into a
consistent form. A little preamble is worthwhile to explain some of the principles.

This manual uses the following simple convention when describing commands and function
calls:

CAPITAL LETTERS are used for parts typed as is
bold letters are used descriptively
lower case letters are used as examples
Thus
VIEW name is a description
VIEW fred is an example

1.1 COMMANDS PROCEDURES FUNCTIONS

The extensions to SuperBASIC appear as extra commands, procedures and functions. The
distinction between a command and a procedure is very slight and the two terms tend to be
used interchangeably: the command is what a user types, the procedure is what does the
work. In some cases a command is used to invoke a procedure which in turn sets up and
initiates a Job (e.g. SPL starts the resident spooler). A function is something that has a value
and the name of a function cannot be used as a command: the value may be PRINTED, used
in an expression or assigned to a variable.

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL
1.2 Y/N/A/Q?

Y/N/A/Q? is a concise, if initially confusing, prompt that Toolkit Il is bound to throw at the
unsuspecting user from time to time. It is no more than a request for the user to press one of
the keys Y (for yes), N (for no), A (for all) or Q (for Oh! Brother, I give up). What will
actually happen when you press one of these keys, will depend on what you are trying to do
at the time, There is a short form which only allows Y (for yes) and N (for no).

Before the reply to the Y/N/A/Q? (or Y or N?) prompt is read, any characters which have
been typed ahead are discarded. Typing BREAK (CTRL + space) or ESC will have the same
effect as a 'Q’ (or 'N’) keypress.

1.3 Overwriting

In some cases a command is given to create a new file with the same name as a file which
already exists. In general this will result not in an error message, but a prompt requesting
permission to overwrite the file. There are two (deliberate) exceptions to this rule:
OPEN_NEW will return an error, while the procedures COPY_O, SAVE O, SBYTES O
and SEXEC_O and the spooler will happily overwrite their destination files without so much
as a by your leave’.

1.4 #channel

All input and output from SuperBASIC is through ’'channels’. Some of these channels are
implicit and are never seen (e.g. the command 'SAVE SER’ opens a channel to SER, lists
the program to the channel, and closes the channel). Others are identified by a channel
number which is a small, positive, integer preceded by a ’#’ (e.g. #2). Many commands
either allow or require a channel to be specified for input or output. This should be a
SuperBASIC channel number:

#0 is the command channel (at the bottom of the screen),
#1 is the normal output channel and
#2 is the program listing channel.

Other channels (e.g. for communication with a file) may be opened using the SuperBASIC
OPEN commands (see section 10). For interactive commands the default channel is #0, for
most other commands the default channel is #1, for LIST and ED the default channel is #2,
while for file access commands the default is #3.

For many of the commands it is possible to specify an implicit channel, This is in the form of
'\’ followed by a file or device name. The effect of this is to open an implicit channel to the
file or device, do the required operation and close the channel again.

E.g. DIR list current directory to #1
DIR #2 list current directory to #2
DIR\files list current directory to file ‘files’

MIRACLE SYSTEMS LTD TOOLKIT I MANUAL

this last example should be distinguished from
DIR files list directory entries starting with files to #1

1.5 File and Device Names

In general it is possible to specify file or device names as either a normal SuperBASIC name
or as a string. The syntax of SuperBASIC names limits the characters used in a name to
letters digits and the underscore. There is no such limitation on characters used in a string.
On a standard QL, a filename has to be given in full, but using the Toolkit I, the directory
part of the name can be defaulted and just the filename used.

E.g. OPEN #3,fred open file fred in the current directory

This gives rise to one problem: the SuperBASIC interpreter has the unfortunate characteristic
of trying to evaluate all the parameters of a command as expressions; in this example ’fred’
will probably be an undefined variable which should not give rise to any problems. However,
the command:

OPEN #3,list

will give an ’error in expression’ error as it is not possible for *LIST’, which is a command,
to have a value. There are two ways around this problem: either avoid filenames which are
the same as commands (procedures), functions or SuperBASIC keywords (e.g. FOR, END,
IF etc.), or put the name within quotes as a string:

OPEN #3,’list’ or OPEN #3,"list"

1.6 CTRL F5

The CTRL F5 keystroke (press CTRL and while holding it down press F5) is used to freeze
the QL screen. Many commands in Toolkit I check their output window and, when it is full,
internally generate a CTRL FS keystroke to hold the display until the user presses a key. (F5
will usually be the best key to press.)

2 Contents of Toolkit YX: SuperBASIS is used as a command language on the
QL as well as a programming language. Extensions are provided to improve the facilities of

SuperBASIC in both these areas as well as providing program developement facilities.

The following list gives a comprehensive form of each command or function. There are
often default values of the parameters to simplify the use of the procedures.

2.1 Development Facilities

Section 3 File editing

Toolkit Il provides an editor and a command for viewing the contents of text files. ED is a

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Commands
ED #channel, line number edit SuperBASIC program
VIEW #channel, name view contents of a file

2.2 Command Language

The command language facilities of Toolkit 11 are intended to provide the QL with the control
facilities to unlock the potential of the QDOS operating system. Most of these are ‘direct’
commands: they are typed in and acted on immediately. This does not mean that they may
not be used in programs, but some care should be taken when doing this.

Section 4 Directory Control: QDOs does have a tree directory ~structure
filing system! The Toolkit II provides a comprehensive set of facilities for controlling

access to directories within this tree.

Commands
DATA_USE name set the default directory for data files
PROG_USE name set the default director for executable programs
DEST_USE name set the default destination directory (COPY, WCOPY)
SPL_USE name set the default destination device (SPL)
DDOWN name move to a sub-directory
bup move up through the tree
DNEXT name move to another directory at the same level
DLIST #channel lists the defaults

Functions
DATADS function to find current data directory
PROGD$ function to find current program directory
DESTD$ function to find current default destination

Section 5 File Maintenance: Ali the filing system maintenance commands
use the default (usually 'data’) directories. Some of the commands are interactive and thus not

suitable for use in SuperBASIC programs: these are marked with an asterisk in this list. In
these cases there are also simpler commands which may be used in programs. Depending on
the command, the name given may be a generic (or 'wildcard’) name referring to more than
one file. With the exception of DIR (an extended version of the standard QL command DIR),
all of these 'wildcard’ commands have names starting with "W’,

O

O

MIRACLE SYSTEM LTD TOOLKIT II MANUAL

Commands
DIR #channel, name drive statistics and list of files
WDIR #channel, name list of files
STAT #channel, name drive statistics
WSTAT #channel, name list of files and their statistics
DELETE name delete a file
*WDEL #channel, name delete files
COPY name TO name copy a file
COPY_O name TO pame copy a file (overwriting)
COPY_N name TO name copy a file (without header)
COPY_H name TO name copy a file (with header)
*WCOPY #channel, name To name copy files
SPL name TO name spool a file
SPLF name TO name spool a file, <FF> at end
RENAME pame TO name rename a file
*WREN #channel, name TO name rename files

Section 6 SuperBASIC Programs: Toolkit Il redefines and extends the
file loading and saving operations of the QL. All the commands use the default directories.
Additionally, the execution control commands have been extended to cater for the error
handling functions of the *JS’ and "MG’ ROMs.

Commands
DO pame do commands in file
LOAD name load a SuperBASIC program
LRUN name load and run a SuperBASIC program
MERGE name merge a SuperBASIC program
MRUN name merge and run a SuperBASIC program
SAVE name, ranges save a SuperBASIC program
SAVE_O name, ranges as SAVE but overwrites file if it exists
RUN line number start a SuperBASIC program
STOP stop a SuperBASIC program
NEW reset SuperBASIC
CLEAR clear SuperBASIC variables

Section 7 Load and Save: The binary load and save operations of the QL are
extended to use the default directories.

Commands

LRESPR name load a file into resident procedure area
and CALL

LBYTES name, address load a file into memory at specified
address

CALL address, parameters CALL machine code with parameters

SBYTES name, address, size save an area of memory

SBYTES_O name,address,size as SBYTES but overwrites file if it
exists

SEXEC name,address,size,data save an area of memory as an

executable file
SEXEC_O name, address, as SEXEC but overwrites file if it exists

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Section 8 Pr ogram Execution: Program execution is, Anne Boleyn would
be relieved to know, the opposite of program (ex)termination. The EXEC and EXEC_ W
commands in the standard QL are replaced by EX and EW in the QL Toolkit. Toolkit I
redefines EXEC and EXEC W to be the same as EX and EW. ET is for debuggers (no
offence meant) only.

Commands

EXEC/EX program specifications load and set up one or more executable

files

EXEC_W/EW program specifications
ET program specifications

Section 9 Job Control: The mulitasking facilities of QDOS are made accessible
by the job control commands and functions of Toolkit If.

Commands
JOBS #channel list current jobs
RIOB id or name, error code remove a job
SPJOB id or name, priority set job priority
AJOB id or name, priority activate a job
Functions
PJOB (id or name) find priority of job
0JO0B (id or name) find owner of job
JOBS (id or name) find job name!
NXJOB (id or name,id) find next job in tree

2.3 SuperBASIC programming

Toolkit I has extensions to SuperBASIC to assist in writing more powerful and flexible
programs. The major improvements are in file handling and formatting.

Section 10 Open and CloSe: The standard QL. channel OPEN commands are
redefined by Toolkit II to use the data directory. In addition, Toolkit Il provides a set of
functions for opening files either using a specified channel number (as in the standard QL
commands), or they will find and return a vacant channel number. The functions also allow
filing system errors to be intercepted and processed by SuperBASIC programs.
Commands

OPEN #channel, name open a file for read/write

OPEN_IN #channel, name open a file for input only

OPEN_NEW #channel, name open a new file

OPEN_OVER #channel, name open a new file, if it exists it is overwritten
OPEN_DIR #channel, name open a directory '

CLOSE #channels close channels

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL
Functions
FTEST (name) test status of file

FOPEN (#channel, name)
FOP_IN (#channel, name)
FOP_NEW (#channel, name)

open a file for read/write
open a file for input only
open a new file

open a new file, if it exists it is overwritten
open a directory

FOP _OVER (#channel, name)
FOP_DIR (#channel, name)

Section 11 File Information: Toolkit I has a set of functions to read
information from the header of a file.

FLEN (#channel) find file length
FTYP (#channel) find file type
FDAT (#channel) find file data space
FXTRA (#channel) find file extra info
FNAMES (#channel) find filename
FUPDT (#channel) find file update date

Section 12 Direct Access Files: Toolkit I has a set of commands for
transferring data to and from any part of a file. The commands themselves read or write
'raw’ data, either in the form of individual bytes, or in SuperBASIC internal format (integer,
floating point or string).

Commands

BGET #channel\position, items
BPUT #channel\position, items
GET #channel\position, items
PUT #channel\position, items

get bytes from a file

put bytes on to a file

get internal format data from a file
put internal format data onto a file

TRUNCATE #channel\position truncate file
FLUSH #channel flush file buffers
Functions

FPOS (#channel) find file position

Section 13 Format Conversions: Toolkit II provides a number of facilities
for fixed format I/O. These include binary and hexadecimal conversions as well as fixed

format decimal.
Commands

PRINT_USING #channel, format, fixed format output

list of items to print

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

Functions

FDECS (value, field, ndp) fixed format decimal
IDECS (value, field, ndp) scaled fixed format
CDECS (value, field, ndp) decimal

FEXPS (value, field, ndp) fixed exponent format
HEXS (value, number of bits) convert to hexadecimal
BINS (value, number of bits) convert to binary

HEX (hexadecimal string) hexadecimal to value
BIN (binary string) binary to value

Section 14 Displgy Control: Toolkit 11 provides commands for enabling
and disabling the cursor as well as setting the character font and sizes or restoring the
windows to their turn on state.

Commands

CURSEN #channel enable the cursor

CURDIS #channe! ' disable the cursor

CHAR_USE Fchannel, addrl, addr2 set or reset the character font
CHAR_INC #channel, x inc, y inc set the character x and y increments
WMON mode reset to "Monitor’

WTV mode reset to "TV’ windows

Section 15 Memory Management:

Toolkit II has a set of commands and functions to provide memory management facilities
within the 'common heap’ area of the QL.

Functions

FREE MEM find the amount of free memory

ALCHP (number of bytes) allocates space in common heap (returns
the base address of the space)

Commands

RECHP base address return space to common heap

CLCHP clear out all allocations in the common heap

DEL_DEFB delete file definition blocks from common heap

Section 16 Procedure Parameters: Four functions are provided by
Toolkit II to improve the handling of procedure (and function) parameters. Using these it is
possible to detcrmine the type (integer, floating point or string) and usage (single value or
array) of the calling parameter as well as the 'name’.

PARTYP (name) find type of parameter

PARUSE (name) find usage of parameter

PARNAMS (parameter number) find name of parameter

PARSTRS (name, parameter number) if parameter 'name’ is a string, find

the value, else find the name,

O

o

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

Section 17 Error Handling; These facilities are provided for error processing
in versions JS and MG of SuperBASIC.

ERR_DF true if drive full error has occured
REPORT #channel, error number report an error
CONTINUE line number continue or retry from a specified line

Section 18 Time-keeping: Two clocks are provided in Toolkit H, one

configurable digital clock, and an alarm clock.

CLOCK #channel, format variable format clock
ALARM hours, minutes alarm clock

Section 19 Extras

EXTRAS lists the extra facilities linked into SuperBASIC
TK2_EXT enforces the Toolkit 11 definitions of common commands and functions

2.4 Extensions to Devices

In addition to extending the SuperBASIC interpreter, Toolkit 1l has important extensions to
the console, Microdrive and Network device drivers.

Section 20 Console Driver: Toolkit Il provides last line recall for the
command channel #0 as well as allowing strings of characters to be assigned to "ALT’ key
strokes received on this channel,

Commands
<ALT> <ENTER> keystroke recovers last line typed
ALTKEY character, string assign a string to <ALT > character keystroke

Section 21 Microdrive Driver: Toolkit I extends the microdrive driver to
provide OPEN file with overwrite, as well as TRUNCATE and RENAME of files. These
facilities are supported at QDOS level (Traps #2 and #3) as well as from SuperBASIC. The
FLUSH operation is respecified to set the file header as well as flush the buffers.

Section 22 Network Driver: The network driver is enhanced to provide a
primitive form of broadcast communication as well as providing a comprehensive file server
program which allow many QLs to share a disk system or printer.

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

Commands
FSERVE invokes the ‘file server’
NFS_USE name,network names sets the network fileserver name

Device names

Nstation number_IO device the name of a remote 10 device (e.g. N2_FLP]_
is floppy lon network station 2)

3 File Editing
3.1 ED - SuperBASIC Editor

ED is a small editor for SuperBASIC programs which are already loaded into the QL. If the
facilities look rather simple and limited, please remember that the main design requirement of
ED is the small size to leave room for other facilities.

ED is invoked by typing:
ED
or ED line number
or ED #channel number
or ED #channel number, line number

If no line number is given, the first part of the program is listed, otherwise the listing in the
window will start at or after the given line number. If no channel number is given, the listing
will appear in the normal SuperBASIC edit window #2. If a window is given, then it must be
a CONsole window, otherwise a ’bad parameter’ error will be returned. The editor will use
the current ink and paper colours for normal listing, while using white ink on black paper (or
vice versa if the paper is already black or blue) for *highlighting’. Please avoid using window
#0 for the ED.

The editor makes full use of its window. Within its window, it attempts to display complete
lines. If these lines are too Iong to fit within the width of the window, they are 'wrapped
around’ to the next row in the window: these extra rows are indented to make this 'wrap
around’ clear. For ease of use, however, the widest possible window should be used.

ED must not be called from within a SuperBASIC program.
The ESC key is used to return to the SuperBASIC command mode.

After ED is invoked, the cursor in the edit window may be moved using the arrow keys to
select the line to be changed. In addition the up and down keys may be used with the ALT
key (press the ALT key and while holding it down, press the up or down key) to scroll the
window while keeping the cursor in the same place, and the up and down keys may be used
with the SHIFT key to scroll through the program a ’page’ at a time,

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL
The editor has two modes of operation: insert and overwrite. To change between the two
modes use 'SHIFT F4’ (press SHIFT and while holding it down press F4). There is no
difference between the modes when adding characters to or deleting characters from the end
of a line. Within a line, however, insert mode implies that the right hand end of a line will be
moved to the right when a character is inserted, and to the left when a character is deleted.
No part of the line is moved in overwrite mode. Trailing spaces at the end of a line are

removed automatically.

To insert a new line anywhere in the program, press ENTER. If there is no room between the
line the cursor is on and the next line in the program (e.g. the cursor is on line 100 and the
next line is 101) then the ENTER key will be ignored, otherwise a space is opened up below
the current line, and a new line number is generated. If there is a difference of 20 or more
between the current line number and the next line number, the new line number will be 10 on
from the current line number, otherwise, the new line number will be half way between them.

If a change is made to a line, the line is highlighted: this indicates that the line has been
extracted from the program. The editor will only replace the line in the program when
ENTRER is pressed, the cursor is moved away from the line, or the window is scrolled. If the
line is acceptable to SuperBASIC, it is rewritten without highlighting. If, however, there are
syntax errors, the message 'bad line’ is sent to window #0, and the line remains highlighted.

While a line is highlighted, ESC may be used to restore the original copy of the line, ignoring
all changes made to that line. If a line number is changed, the old line remains and the new
line is inserted in the correct place in the program, This can be used to copy single lines from
one part of the program to another.

If all the visible characters in a line are deleted, or if all but the line number is deleted, then
the line will be deleted from the program. An easier way to delete a line is to press CTRL and
ALT and then the left arrow as well. The length of lines is limited to about 32766 bytes.
Any attempt to edit longer lines may cause undesirable side effects. If the length of a line is
increased when it is changed, there may be a brief pause while SuperBASIC moves its
working space,

3.2 Summary of Edit Operations: The general usage of the keys follows
the Concepts section of the QL User Guide first, and then the business programs usage.

TAB tab right (columns of 8)

SHIFT TAB tab left (columns of 8)

ENTER accept line and create a new line

ESC escape - undo changes or return to SuperBASIC
up arrow move cursor up a line

down arrorw move cursor down a line

ALT up arrow scroll up a line (the screen moves down!)

ALT down arrorw scroll down a line (the screen moves up!)
SHIFT up arrow scroll up one page

SHIFT down arrow scroll down one page

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

feft arrow move cursor left one character

right arrow move cursor right one character

CTRL left arrow delete character to left of cursor

CTRL right arrow delete chasacter under cursor

CTRL ALT left arrow delete line

SHIFT F4 change between overwrite and insert mode

3.3 Viewing a file

VIEW is procedure intended to allow a file to be examined in a window on the QL display.
The default window is #1. View is invoked by typing:

VIEW pame View file 'name’ in window #1 O
VIEW #channel, name View file ‘name’ in given window
VIEW\namel, name2 Send file ’name2’ to 'namel’

VIEW truncates lines to fit the width of the window. When the window is full, CTRL F5 is
generated. If the output device (or file) is not a console, then lines are truncated to 80
characters.

4 Directory Control

4.1 Directory Structures

In QDOS terminology, a 'directory’ is where the system expects to find a file. This can be as
simple as the name of a device (c.g. MDV2_ the name of the Microdrive number 2) or be
much more complex forming part of a 'directory tree’ (directories grow on trees - honestly,
they do). For example: the directory MDV2_ could include directories JOHN_ and OLD_
(note: all directory names end with an ’_'), and JOHN_ could include files DATA! and

TEST),
1 MDV2_ C)

JOHN OLD_

I 1
DATAL TEST

This shows another characteristic of the ‘directory tree’: it grows downwards. The
complete QDOS filename for DATAL in this example is MDV1_JOHN_DATAL. (You may
have come across the terms 'pathname’ or 'treename’: these refer to the same thing as a
QDOS filename.)

One unusual characteristic of the QDOS directory structure is the absence of a formal file
name 'extension’, This is not strictly necessary as "extensions’ (e.g. _aba for ABACUS files,
_asm for assembler source files eic.) are treated as files witliin a directory.

MIRACLE SYSTEMS LTD TOOLKXIT I MANUAL
This can be illustrated with the case of an assembler program TEST, processed using the
GST macro assembler and linkage editor. The assembler source file (TEST_ASM), the listing
output from the assembler (TEST_LIST), the relocatable output from the assembler
(TEST_REL), the linker control file (TEST_LINK). the linker listing output (TEST_MAP)
and the executable program produced by the linker (TEST_BIN) are all treated as files within
the directory TEST .

MDV2_

I I I I I I
ASM LIST REL LINK MAP BIN

This Toolkit provides facilities to set default directories. The defaults are available for all
filing system operations. A default may be set to any level of complexity and gives a starting
point for finding a file in the tree structure. Thus, in this example, if the default is MDV2_,
then JOHN_TEST ASM will find the assembler source. If the default is MDV2_JOHN _, then
TEST_ASM will find it, while the full filename MDV2 JOHN _TEST_ASM will find the file
regardless of the default.

4.2 Setting Defaults - Unusually, the Toolkit extensions to QDOS support three
distinct defaults for the directory structure. This is because QDOS is an intrinsically
multi-drive operating system. It is expected that executable programs will be in a different
directory, and probably on a different drive, from any data files being manipulated.
Furthermore, the copying procedures are more likely to be used to copy from one directory
to another, or from the filing system to a printer or other output device, than they are to be
used to copy files within a directory. There are three commands for setting the three defaults:

DATA_USE directory name set data default
PROG_USE directory name set program default
DEST _USE directory name set destination default

If the directory name supplied does not end with * ’,’ ’ will be appended to the directory
name.

The DATA_USE default is used for most filing system commands in the Toolkit. The
PROG_USE default is used only for finding the program files for the EX/EXEC commands,
while the DEST_USE default is used to find the destination filename when the file copying
and renaming commands (SPL, COPY, RENAME etc.) are used with only one filename,

There is a special form of the DEST_USE command which does not append ’_’ to the name
given. Notionally this provides the default destination device for the spooler:

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

SPL_USE device name

This sets the destination default, but, if there is no ’_’ at the end, it is not treated as a
directory and so, if a destination filename is required, the default will be used unmodified.
E.g.

DEST_USE flp2_old (default is FLP2 OLD)
SPL fred

or SPL_USE flp2 old_ (default is FLP2_ OLD)
SPL fred

Both of these examples will spool FRED to FLP2 OLD_FRED. Whereas if SPL_USE is used

with a name without a trailing ’_’ (i.e. not a directory name) as follows
SPL_USE ser (default is SER)
SPL fred

then FRED will be spooled to SER (not SER_FRED). Note that SPL_USE overwrites the
DEST_USE default and vice versa.

4.3 Directory Navigation

Three commands are provided to move through a directory tree.

DDOWN name move down (append 'name’ to the default)
DuUp move up (strip off the last level of the directory)
DNEXT name move up and then down a different branch of the tree

It is not possible to move up beyond the drive name using the DUP command. At no time is
the default name length allowed to exceed 32 characters. These commands operate on the data
default directory. Under certain conditions they may operate on the other defaults as well.

If the program default is the same as the data default, then the two defaults are linked and
these commands will operate on the PROG_USE default as well. If the destination defauit
ends with *_* (i.e. it is a default directory rather than a default device), then these commands
will operate on the destination default. These rules are best seen in action:

data program destination
initial values mdv2_ mdvi_ ser
DDOWN john mdv2_john_ mdvi_ : ser
DNEXT fred ' mdv2_fred_ mdvi_ ser

PROG_USE mdv2_fred mdv2 fred_ mdv2_fred_ ser

MIRACLE SYSTEMS LTD TOOLKIT I1 MANUAL

DNEXT john mdv2_john mdv2_john_ ser

DUP mdv2_ mdv2_ ser
DEST_USE mdvl mdv2_ mdv2_ mdvl_
DDOWN john mdv2_john_ mdv2_john _ mdvl_john_
SPL_USE serlc mdv2_john _ mdv2_john_ serle

4.4 Taking Bearings

Should you wonder where you are in the directory tree, there is a command to list three
defaults:

DLIST list data, program and destination defaults
or DLIST #channel
or DLIST \name

If an output channel is not given, the defaults are listed in window #1.

To find the defaults from within a SuperBASIC program there are three functions:

DATADS find the data default
PROGDS find the program default
DESTDS$ find the destination default

The functions to find the individual defaults should be used without any parameters. E.g.
IF DATAD$ < >PROGDS: PRINT ’Separate directories’

DEST$=DESTD$
IF DESTS (LEN (DESTS$))="_": PRINT ’Destination’! DEST$

Facilities to enable executable programs to find the default directories were provided in the
oniginal Sinclair QL Toolkit, and the same facilities are provided in this Toolkit. These
facilities are not widely used in commercial software for the QL. The real solution of
providing the default directories at QDOS trap level can only be attained using additional
hardware in the expansion slot or by replacement operating system ROMs. You will
probably find, therefore, that much commercially written software will not recognise the
defaults you have set. There is an example of overcoming this problem in the example

program appendix.

5 VFile Maintenance: The standard file maintenance procedures of the QL
(COPY, DELETE and DIR) are filled out into a comprehensive set in Toolkit II. All of the
commands, both standard and new, use the directory defaults; in addition, many of the
commands use wild card names to refer to groups of similarly named files.

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL
5.1 Wild Card Names

A wild card name is a special type of filename where part of the name is treated as a 'wild
card’ which can be substituted by any string of characters. If, for convenience, the wild card
name is to be a normal SuperBASIC name, then special characters cannot be used for the
wild card (e.g. myfiles * asm would be treated by SuperBASIC as an arithmetic expression
and SuperBASIC would attempt to multiply myfiles by _asm), For this reason a simpler
scheme is adopted: any missing section of a file name is treated as a wild card. The end of a
wild card name is implicitly missing.

If the wild card name is not a full file name, the default directory is added to the start of the
name. In the following example, the default directory is assumed to be FLP2_.

Wild card name Full wild card name Typica! matching files

fred flp2_fred flp2_fred
flp2_freda list

_fred flp2__fred flp2_fred
flp2_freda_list
flp2_old_fred

flp2_old_freda_list

flpl old _list flp!_old_list flpl_old _jo_list
flpl_old_freda_list
5.2 Directory Listing

There are two forms of directory listing: the first lists just the filenames, the second lists the
filenames together with file size and update date. All the commands use wild card names and
the data default directory. The output from these commands will be sent to channel #1 by
default; but a channel or implicit channel may be specified: if the output channel istoa
window the listing is halted (CTRL F5) when the window is full.

DIR #channel, name drive statistics and list of files
WDIR #channel, name list of files
WSTAT #channel, name list of files and their siatistics

In all cases the channel specification and the name are optional. The possible forms of (for
example) WDIR are

WDIR list current directory to #
or WDIR #channel list current directory to #channel
or WDIR \name list current directory to 'name’
or WDIR name list directory 'name’ to #1
or WDIR #channel, name list directory ‘name’ to #channel

or WDIR \namel, name2 list directory ‘name2’ to ‘namel’

@,

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

E.g.
WDIR\ser,asm list all_asm files in current directory to SER
WDIR flp]_ list all files on FLP1_ in window #1
WDIR #3 list all files in current directory to channel #3

DIR is provided for compatibility only: before listing the files, the drive statistics (medium
name, number of vacant sectors/number of good sectors) are written out.

5.3 Drive Statistics

There is one command to print the statistics for the drive holding a specified directory, or the
data default directory.
STAT #channel, name
or STAT \namel, name2

Both the channel and the name are optional.

5.4 File Deletion

The standard procedure DELETE has been modified to use the data default directory unless a
full file name is supplied. No error is generated if the file is not found. There are also two
interactive commands to delete many files using wild card names.

DELETE name qlelete one file
WDEL #channel, name delete files

For WDEL both the channel and the name are optional. E.g.

WDEL delete files from current directory
WDEL _list delete all _list files from current directory

Unless a channel is specified, the wild card deletion procedures use the command window #0
to request confirmation of deletion. There are four possible replies:

(yes) delete this file

(no) do not delete this file

(all) delete this and all the next matching files
(quit) do not delete this or any of the next files

o> 2z <

5.5 File Copying

The two forms of the COPY command provided with the QL are changed to use default
filenames, and also to provide more flexibility. A number of other commands are added.

Files in QDOS have headers which provide useful information about the file that follows. It
depends on the circumstances whether it is a good idea to copy the header of a file when the
file is copied. It is a good idea to copy the header when:

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

a) copying an executable program file so that the additional file information is preserved,
b) copying a file over a pure byte serial link so that the communications software will know in
advance the length of the file.

It is a bad idea to copy the header when:

c) copying a text file to a printer because the header will be likely to have control codes and
spurious or unprintable characters.

The general rules used by the COPY procedures in Toolkit [I, are that the header is only
copied if there is additional information in the header. This caters for cases (a) and (c) above.
A COPY_N command is included for compatibility with the standard QL COPY_N: this
never copies the header. A COPY_H command is included to copy a file with the header to
cater for case (b) above. (Note that the standard QL. command COPY always copies the
header.) Neither COPY_N nor COPY_H need ever be used for file to file copying.

A second general rule used by the COPY (as well as by the WREN) procedures is that if the
destination file already exists, then the user will be asked to confirm that overwriting the old
file is acceptable. The COPY_O (copy overwrite) and the spooler procedures do not extend
this courtesy to the user, If the commands are given with two filenames then the data default
directory is used for both files. If, however, only one filename (or, in the case of the wild
card procedures, no name at all) is given then the destination will be derived from the
destination default:

a) if the destination default is a directory (ending with * ’, set by DEST_USE) then the
destination file is the destination default followed by the name,

b) if the destination default is a device (not ending with ’_’, set by SPI, USE) then the
destination is the destination default unmodified.

5.5.1 Single File Copies

COPY name TO name copy a file

COPY_O name TO name copy a file (overwriting)
COPY_N name TO name copy a file (without header)
COPY_H name TO name copy a file (with header)

These commands can be given with one or two names. The separator "TO’ is used for clarity,
you may use a comma instead. To illustrate the use of the copy command, assume that the
data default is-MDV2_ and the destination default is MDV1_.

COPY fred TO old_fred copies mdv2_fred to mdv2 _old fred
COPY fred, ser copies mdv2_fred to ser

COPY fred copies mdv2_fred to mdvl_fred
SPL,_USE ser

COPY fred copiés mdv2 fred to ser

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL
5.5.2 Wild Card Copies

The interactive copying procedure WCOPY is used for copying all or selected parts of
directories. The command may be given with both source and destination wild card names,
with one wild card name or with no wild card names at all. Giving the command with no wild
card names has the same effect as giving one null name:

"WCOPY and WCOPY ”’ are the same.

If you get confused by the following rules about the derivation of the copy destination, just
use WCOPY intuitively and look carefully at the prompts.

If the destination is not the destination default device, then the actual destination file name for
each copy operation is made up from the actual source file name and the destination wild
name. If a missing section of the source wild name is matched by a missing section of the
destination wild name, then that part of the actual source file name will be used as the
corresponding part of the actual destination name. Otherwise the actual destination file name
is taken from the destination wild name. If there are more sections in the destination wild
name than in the source wild name, then these extra sections will be inserted after the drive
name, and vice versa. The full form of the command is:

WCOPY #channel, name TO name copy files
The seperator TO is used for clarity, you may use a comma instead.

If the channel is not given (i.e. most of the time), then the requests for confirmation will be
sent to the command channel #0. Otherwise confirmation will be sent to the chosen channel,
and the user is requested to press one of:

(yes) copy this file

(no) do not copy this file

(all) copy this and all the next matching files.
(quit) do not copy this or any other files

L » Z=<

If the destination file already exists, the user is requested to press one of:

(yes) copy this file, overwriting the old file

(no) do not copy this file

(all) overwrite the old file, and overwrite any other files requested to be copied.
(quit) do not copy this or any other files

L » Z<

For example, if the default data directory is flp2_, and the default destination is flpl _

WCOPY would copy all files on flp2_ to flp)_
WCOPY fipl_ flp2_ would copy all files on flpl_ to flp2_

1

MIRACLE SYSTEMS LTD

TOOLKIT 11 MANUAL

WCOPY fred
fip2_fred
flp2_freda_list

would copy
1o fipl_fred
to flpl_freda_list

WCOPY fred,mog would copy
fip2_fred to flp2_mog
flp2_freda_list to flp2_moga_list
WCOPY _fred,_mog would copy
flp2_fred to flp2_mog
flp2_freda_list to flp2_moga_list
flp2_old_fred to flp2_old_mog

flp2_old_freda_list to fip2_old_moga list

WCOPY _list, old_ would copy
flp2_jo_list to flp2_old jo_list
flp2_freda_list to flp2_old_freda_list

WCOPY old__ list,flpl_ _ would copy
flp2_old jo_list to flpl_jo_list
flp2_old_freda_list to flpl_freda list

5.5.3 Background Copying - A vackground file spooler is provided which
copies files in the same way as COPY_O (Section 5.5.1), but is primarily intended for
copying files to a printer. As an option, a form feed (ASCH <FF>) can be sent to the
printer at the end of a file.

SPL name TO name spool.a file
SPLF name TO name spool a file, <FF> at end

The separator TO is used for clarity, you may use a comma instead. The normal use of this
commaund is with one name only:

SPL_USE ser set spooler default

SPLF fred spool fred to ser, adding a form feed to the file

When used in this way, if the default device is in use, the Job will be suspended until the
device is available. This means that many files can be spooled to a printer at once. A variation
on the SPL and SPLF commands is to use SuperBASIC channels in place of the filenames.
These channelsvshould be opened before the spooler is invoked:

SPL #channel3 TO #channel2

where channel 3 must have been opened for input and channel2 must have been opened for
output,

O

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

5.5.4 Renaming Files - Renaming a file is a process similar to COPYing a file,
but the file itself is neither moved nor duplicated, only the directory name is changed. The
commands, however, are exactly the same in use as the equivalent COPY commands.

RENAME name TO name see COPY
WREN #channel, name TO name see WCOPY

6 SUDCI’BASIC Program: All the commands for loading, saving and running
SuperBASIC programs have been redefined in Toolkit Il. The differences are in the areas of:

a) default filenames,
b) WHEN ERROR (JS and MG ROMs only),
c) common heap handling.

6.1 DO - There is one additional procedure, DO, to execute SuperBASIC commands
from a file.
DO name do commands in file

The commands should be ’direct’: any lines with line numbers will be merged into the current
SuperBASIC program. The file should not contain any of the commands listed in this section
(e.g- RUN, LOAD etc.), CONTINUE, RETRY or GOTO. It appears that a DO file can
invoke SuperBASIC procedures without harmful effect.

A DO file can contain in line clauses: FOR i=1 to 20: PRINT °This is a DO file’

If you try to RUN a BASIC program from a DO file, then the file will be left open. Likewise,
if you put direct commands in a file that is MERGED, then the file will be left open.

6.2 Default Directories

Most of the commands use the data default directory. In addition, the program LOADing
commands will try the program default directory if a file cannot be found in the data default
directory.

6.3 WHEN ERROR Problems

There is a problem in the JS and MG ROM error handling code, in that WHEN ERROR
processing, once set, is never reset, even if the WHEN ERROR clause is removed by a NEW
or a LOAD! All of the commands in this section clear the WHEN ERROR processing flag,
and all but STOP also clear the pointer to the current WHEN ERROR clause.

6.4 Common Heap

Toolkit I1 contains facilities for allocating space in the common heap. This space is cleared
by the commands that clear the SuperBASIC variables: LOAD, LRUN, NEW and CLEAR.

MIRACLE SYSTEMS LTD

TOOLKIT 11 MANUAL

6.5 Summary of Commands

DO name

LOAD name

LRUN name
MERGE name
MRUN name
SAVE name, ranges
SAVE_O name, ranges
RUN line number
sTOP

NEW

CLEAR

do commands in file

load a SuperBasic program

load and run a SuperBASIC program
merge a SuperBASIC program

merge and run a SuperBASIC program
save a SuperBASIC program

as SAVE but overwrites file if it exists
start a SuperBASIC program

stop a SuperBASIC program

reset SuperBASIC

clear SuperBASIC variables O

7 Load and Save: Toolkit I provides the same binary file load and save operations
as the standard QL. The differences are that the save operations will request permission to
overwrite if the file already exists, and all the commands use default directories. There are

also two *overwrite’ variants for the save operations, and one new command: LRESPR.

LRESPR opens the load file and finds the length of the file, then reserves space for the file in
the resident procedure area before loading the file. Finally a CALL is made to the start of the

file.

The CALL procedure itself bas been rewritten to avoid the problems that occur in AH and JM
ROMs when a CALL is made from a large (> 32kbytes) program

LRESPR name

LBYTES name, address

CALL address, parameters
SBYTES name, address, size
SBYTES_O name, address, size

SEXEC name, address, size, data

SEXEC_O name, address, size, data

load a file into resident procedure area and CALL
load a file into memory at specified address
CALL machine code with parameters

save an area of memory
as SBYTES but overwrites file if it C)
exists

save an area of memory as an

executable file
as SEXEC but overwrites

For SEXEC and SEXEC_O the ’data’ parameter is the default data space required by the

program.

If there are any Jobs in the QL (apart from Job O the SuperBASIC interpreter) then LRESPR
will fail with the error message 'not complete’. If this happens, use RIOB to remove all the

other Jobs.

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

8 Program Execution: There is one procedure for initiating the execution of
compiled (executable) programs. This procedure is invoked by five commands: EX, EXEC
(which are synonymous) EW, EXEC W. (which are synonymous) and ET. The differences
are very small: when EX is complete, it returns to SuperBASIC; when EW is complete it
waits until the programs initiated have finished before returning to SuperBASIC; while ET
sets up the programs, but returns to SuperBASIC so that a debugger can be called to trace the
execution. EX will be used to describe all the commands.

8.1 Single Program Execution

In its simplest form EX can be used to initiate a single program: EX name. The program in
the file 'name’ is loaded into the transient program area of the QL and execution is initiated.
If the file does not contain an executable program, a 'bad parameter’ error is returned. It is
also possible to pass parameters to a program in the form of a string:

EX name; parameter string

In this case the program in the file 'name’ is loaded into the transient program area, the
string is pushed onto its stack and execution is initiated.

Finally it is possible for EX to open input and output files for 2 program as well as (or instead
of) passing it parameters. 1If preferred, a SuperBASIC channel number may be used instead
of a filename. A channel used in this way must already be open.

EX program name, file names or #channels; parameter string
Taking as an example the program UC which converts a text file to upper case, the command:
EX uc, fred, #1

will Ioad and initiate the program UC, with fred as its input file and the output being sent to
window #1.

8.2 Filters

EX is designed to set up filters for processing streams of data. Within the QL it is possible
to have a chain of cooperating jobs engaged in processing the same data in a form of
production line. When using a production line of this type, each job performs a well-defined
part of the total process. The first job takes the original data and does its past of the process;
the partially processed data is then passed on to the next job which carries out its own part
of the process; and so the data gradually passes through all the processes. The data is passed
from one Job to the next through a ’pipe’. The data itself is termed a 'stream’ and the Jobs
processing the data are termed filters’.

Using the symbols [] to represent a single optional item
() to represent a repeated optional item

MIRACLE SYSTEMS LTD TOOLKIT I MANUAL

the complete form of the EX command is

EX [#channel TO] prog_spec (TO prog_spec) [T 0 #channel]
where prog_spec is
program name (.file name or #channel) [;parameter string]

Each TO separator creates a pipe between Jobs.

All the names and the parameter siring may be names, strings or string expressions. The
significance of the filenames is, to some extent, program dependent; but there are two
general rules which should be used by all filters:

1)} the primary input of a filter is the pipe from the previous Job in the chain (if it
exists), or else the first data file,

2) the primary output of a filter is the pipe to the next job in the chain (if it exists) or
else the last data file.

Many filters will have only two /O channels: the primary input and the primary output.

If the parameters of EX start with '#channel TO' then the corresponding SuperBASIC
channel will be closed (if it was already open) and a new channel opened as a pipe to the first
program. Any data sent to this channel (e.g. by PRINTing to it) will be processed by the
chain of Jobs. When the channel is CLOSEd, the chain of Jobs will be removed from the
QL.

If the parameters of EX end with 'TO f#channel’, then the corresponding SuperBASIC
channel will be closed (if it was already open) and a new channe] opened as a pipe from the
last program. Any data passing through the chain of Jobs will arrive in this channel and may
be read (e.g. by INPUTing from it). When all the data has passed, the Jobs will remove
themselves and any further attempt to take input from this channel will get an 'end of file’
error. The EOF function may be used to test for this.

8.3 Example of Filter Processing - As an example of filter processing,
the programs UC to convert a file to upper case, LNO to line number a file, and PAGE to
split a file onto pages with an optional heading are all chained to process a single file:

EX uc, fred TO Ino TO page,ser; ’File fred at *&date$

The filter UC takes the file 'fred’ and after converting it to upper case, passes through a pipe
to LNO. LNO adds line numbers to each line and passes the file down a pipe to PAGE. In its
tura, PAGE splits the file onto pages with the heading (including in this case the date) at the
top of each page, before sending the file to the SER port, Note that the file fred itself is not
modified; the modified versions are purely transient.

O

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

9 Job Control: as QDOS is a multitasking operating system, it is possible to have a
number of competing or co-operating Jobs in the QL at any one time. Jobs compete for
resources in line with their priority, and they may co-operate using pipes or shared memory to
communicate. The basic attributes of a Job are its priority and its position within the tree of
Jobs (ownership). A Job is identified by two numbers: one is the Job number which is an
index into the table of Jobs, and the other is a tag which is used to identify a particular Job so
that it cannot be confused with a previous Job occupying the same position in the Job table.
Within QDOS the two numbers are combined into the Job ID which is Job number +
tag*65536. For these Job control routines, where Job_id is a parameter of one of the Job
contro] routines, it may be given as either a single number (the Job ID, as returned from
OJob or NXJob of Toolkit I) or as a pair of numbers (Job number,Job tag). Thus the single
parameter 65538 (2+ 1*65536) is equivalent to the two parameters 2,1,

9.1 Job Control Commands

JOBS is a command to list all the Jobs running in the QL at the time, If there are more Jobs in
the machine than can be listed in the output window, the procedure will freeze the screen
(CTRL F5) when it is full. The procedure may fail if Jobs are removed from the QL while the
procedure is listing them. The following information is given for each Job:

the Job number
the Job tag
the Job’s owner Job number
a flag 'S’ if the Job is suspended
the Job priority
the Job (or program) name.
The command is:

JOBS list current Jobs to #1
JOBS #channel list current Jobs
JOBS\name list Jobs to 'name’

There are three procedures for controlling Jobs in the QL:

RJOB id or name, error code remove a Job
SPJOB id or name, priority set Job priority
AJOB id or name, priority activate a Job

If a name is given rather than a Job ID, then the procedure will search for the first Job it can
find with the given name.

If there is a Job waiting for the completion of a Job removed by Rlob, it will be released with
DO set to the error code.

E.g. RJOB 3,8,-1 remove Job 3, tag 8 with error -1
SPJOB demon, 1 set the priority of the Job called *demon’ to 1

‘MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

9.2 Job Status Functions

The Job status functions are provided to enable a SuperBASIC program to scan the Job tree
and carry out complex Job contro! procedures.

PJOB (id or name) find priority of Job
OJOB (id or pame) find owner of Job
JOBS (id or name) find Job name
NXIJOB (id or name, top Job id) find next Job in tree

NXIJOB is a rather complex function. The first parameter is the id of the Job currently being
examined, the second is the id of the Job at the top of the tree. If the first id passed to NXJOB
is the last Job owned, directly or indirectly, by the 'top Job’, then NXJOB will return the
value O, otherwise it will return the id of the next Job in the tree.

Job O always exists and owns directly or indirectly all other Jobs in the QL. Thus a scan
starting with id = O and top Job id = O will scan all Jgbs in the QL. It is possible that,
during a scan of the iree, a Job may terminate. As a precaution against this happening, the
Job status functions return the following values if called with an invalid Job id.

PIOB=0 0JOB=0 JOB$=" " NXJOB=-1

10 Open and Close: Al of the OPEN and CLOSE commands and functions avoid
the problem that occurs using the standard QL facilities when more than 32768 files have
been opened in one session.

10.1 Open Commands

The OPEN commands of the standard QL have been modified to use the data default
directory. Two commands have been added to open a new file overwriting the old file if it
already exists, and to open a directory.

OPEN #channel, name open a file for read/write

OPEN_IN #channel, name open a file for input only

OPEN_NEW #channel, name open a new file

OPEN_OVER #channel,name open a new file, if it exists it is overwritten
OPEN_DIR #channel, name open a directory

10.2 File Status

The function FTEST is used to determine the status of a file or device. It opens a file for
input only and immediately closes it. If the file exists it will either return the value O or -9 (
in use error code), if it does not exist, it will return -7 (not found error code). Other possible
returns are -11 (bad name), -15 (bad parameter), -3 (out of memory) or -6 (no room in the
channel table).

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

FTEST (name) test status of file
The function can be used to check that a file does not exist;
IF FTEST (file$) < > -7: PRINT ’File ’; file$; ’exists’

10.3 File Open Functions

This is a set of functions for opening files. These functions differ from the OPEN procedures
in two ways. Firstly, if a file system error occurs (e.g. 'not found’ or ’already exists’) these
functions return the error code and continue. Secondly the functions may be used to find a
vacant hole in the channel table: if successful they return the channel number,

FOPEN (#channel, name) open a file for read/write

FOP_IN (#channel, name) open a file for input only

FOP_NEW (#channel, name) open a new file

FOP_OVER (#channel, name) open a new file, if it exists it is overwritten
FOP_DIR (#channel, name) open a directory

When called with two parameters, these functions return the value zero for successful
completion, or a negative error code. A file may be opened for read only with an optional
extension using the following code:

ferr=FOP_IN (#3,name$&’_ASM’: REMark try to open _ASM file
IF ferr=-7:ferr + FOP_IN(#3,NAMES$): REMark ERR.NF, try no_ASM

The #channel parameter is optional: if it is not given, the functions will search the channel
table for a vacant entry, and, if the open is successful, the channel number will be returned.
Note that error codes are always negative, and channel numbers are positive. In this example:

ouch = FOP_NEW (fred) : REMark open fred
if ouch < 0: REPORT ouch:STOP: REMark ... oops
PRINT #ouch, 'This is file Fred’

CLOSE #ouch

there is no need to ever know the actual channel number.
10.4 CLOSE

The CLOSE command has been extended to take multiple parameters. ln addition, if called
with no parameters it will close all channel numbers #3 and above. It will not report an error
if a channel is not open.
CLOSE #channels close channels
E.g. CLOSE #3, #4, #7 close #3, #4, and #7

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

11 File Information: There are six functions to extract information from the
hender of a file.

If a file is being extended, the file length can be found by using the FPOS function to find
the current file position. (If necessary the file pointer can be set to the end of file by the
command GET #n\999999.)

FLEN (#channel) find file length
FTYP (#channel) find file type
FDAT (#channel) find file data space
FXTRA (#channel) find file extra info
FNAMES (#channel) find filename
FUPDT (#channel) find file update date
The file type 0 for ordinary files

1 for executable program
2 for relocatable machine code

The file information functions can also be used with implicit éhannels. E.g.

PRINT FLEN (#3) print the length of the file open on channel #3
PRINT FLEN (\fred) print the length of file fred

12 Direct Access Files: in QDOS, files appear as a continuous stream of bytes.
On directory devices (Microdrives, hard disks etc.) the file pointer can be set to any position
in a file. This provides ’direct access’ to any data stored in the file. Access implies both
read access and, if the file is not open for read only (OPEN_IN from SuperBASIC,
10.SHARE in QDOS), write access. Parts of a file as small as a byte may be read from, or
written to any position within a file. QDOS does not impose any fixed record structures upon
files: applications may provide these if they wish,

Procedures are provided for accessing single bytes, integers, floating point numbers and
strings. There is also a function for finding the current file position. To keep files tidy there
is a command to truncate a file (when information at the end of a file is no longer required),
and a command to flush the file buffers. A direct access input or output (/O) command
specifies the 1/0 channel, a pointer to the position in the file for the /O operalion. to start and
a list of items to be input or output.

command #channel\position, items -

It is usual (although not essential - the default is #3) to give a channel number for the direct
/O commands. If no pointer is given, the routines will read or write from the current
position, otherwise the file position is set before processing the list of /O items; if the pointer
is a floating point variable rather than an expression, then, when all items have been read
from or written to the file, the pointer is updated to the new current file position. If no items
are given then nothing is written to or read from the file. This can be used to position a file
for use by other commands-(e.g. INPUT for formattéd input).

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

12.1 Byte 1/0

BGET #channel\position, item get bytes from a file
BPUT #channel\position, item put bytes onto a file

BGET gets 0 or more bytes from the channel. BPUT puts 0 or more bytes into the channel.
For BGET, each item must be a floating point or integer variable; for each variable, a byte is
fetched from the channel. For BPUT, each item must evaluate to an integer between O and
255; for each item a byte is sent to the output channel. For example the statements:

abcd=2.6
72% =243
BPUT #3,abcd+1,’12",22%

will put the byte values 4, 12 and 243 after the current file position on the file open on #3.

Provided no attempt is made to set a file position, the direct I/O routines can be used to send
unformatted data to devices which are not part of the file system. If, for example, a channel
is opened to an Epson compatible printer (channel #3) then the printer may be put into
condensed vnderline mode by either

BPUT #3,15,27,45,1
or PRINT #3,chr$(15);chr$(27);’-";chr$(1);
which is easier?

12.2 Unformatted 1/0 -t is possible to put or get values in their internal form.
The PRINT and INPUT commands of SuperBASIC handle formatted 10, whereas the direct
/O routines GET and PUT handle unformatted I/O. For example, if the value 1.5 is
PRINTed the byte values 49 (’1’), 46 (*.") and 53 (’5") are sent to the output channel.
Internally, however, the number 1.5 is represented by 6 bytes (as are all other floating point
numbers). These six bytes have the value 08 01 60 00 00 00 (in hexadecimal). If the value
is PUT, these 6 bytes are sent to the output channel.

The internal form of an integer is 2 bytes (most significant byte first). The internal form of a
floating point number is a 2 byte exponent to base 2 (offset by hex 81F), followed by a 4
byte mantissa, normalised so that the most significant bits (bits 31 and 30) are different, The
internal form of a string is a 2 byte positive integer, holding the number of characters in the
string, followed by the characters.

GET #channel\position, items get internal format data from a file
PUT #channel\position, items put internal format data onto a file

GET gets data in internal format from the channel. PUT puts data in internal format into the
channel. For GET, each item must be an integer, floating point, or string variable. Each
item should match the type of the next data item from the channel. For PUT, the type of data
put into the channel, is the type of the item in the parameter list. The commands

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

fpoint=54

wally % =42: salary =78000: name$="Smith’
PUT #3\fpoint, wally%, salary, name$

will position the file, open on #3, to the 54th byte, and put 2 bytes (integer 42), 6 bytes
(floating point 78000), 2 bytes (intcger 5) and the 5 characters 'Smith’. Fpoint will be sct to
69 (54+2+6+2+5). For variables or array elements the type is self evident, while for
expressions there are some tricks which can be used to force the type:

.. +0 will force floating point type;
veer &7 will force string type;

Iy will force integer type. Q
xyz$="ab258.2’
PUT #3\37,xyz$(3 10 5)| |0

will position the file opened on channel #3 to the 37th byte and then will put the integer 258
on the file in the form of 2 bytes (value 1 and 2, i.e. 1*256+2).

12.3 Truncate file

TRUNCATE #channel\position truncate file

If the position is not given, the file will be truncated to the current position

TRUNCATE #dbchan truncate the file open on channel dbchan
12.4 Flush Buffers
FLUSH #channel flush file buffers O

QDOS directory device drivers maintain as much of a file in RAM as possible. A power
failure or other accident could result in a file being left in an incomplete state. The FLUSH
proceduse will ensure that a file is updated without closing it. Closing a file will always cause
the file to be flushed. Toolkit II includes an upgrade to the microdrive routines to perform a
complete flush, FLUSH will not work with Micro Peripherals disc systems,

12.5 File Position

There is one function to assist in direct access /O: FPOS returns the current file position for a
channel. The symtax is:
FPOS (#channel) find file position

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

For example:
PUT #4\102,valuel ,value2
ptr = FPOS (#4)

will set 'ptr’ to 114 (=102+6+6).

The file pointer can be set by the commands BGET, BPUT, GET or PUT with no items to be
got or put. If an attempt is made to put the file pointer beyond the end of file, the file pointer
will be set to the end of file and no error will be returned. Note that setting the file pointer
does not mean that the required part of the file is actually in a buffer, but that the required
part of the file is being fetched. In this way, it is possible for an application to control prefetch
of parts of a file where the device driver is capable of prefetching.

13 Format Conversions: Toolkit II provides a number of facilities for fixed

format 1/0. These include binary and hexadecimal conversions as well as fixed format
decimal. Most of these are in the form of functions but one new command is included.

13.1 PRINT USING

PRINT_USING is a fixed format version of the PRINT command:
PRINT_USING #channel, format, list of items to print

The ’format’ is a string or string expression containing a template or ’image’ of the required
output. Within the format string the characters +-#*,.!\’ "$ and @ all have special meaning.
When called, the procedure scans the format string, writing out the characters of the string,
until a special character is found.

If the @ character is found, then the next character is written out, even if it is a special
character.

If the character is a " or °’, then all the following characters are written out until the next "

’

or’.
If the \ character is found, then a newline is written out.

All the other special characters appear in format ’fields’. For each field an item is taken from
the list, and formatted according to the form of the field and written out. The field determines
not only the format of the item, but also the width of the item (equal to the width of the field).
The field widths in the examples below are arbitrary.

field format

HitRH if item is string, write string left justified or truncated otherwise write
integer right justified

MIRACLE SYSTEMS LTD TOOLKIT 1l MANUAL

bk write integer right justified empty part of field filled with * (e.g. ***12)
HIHR Y fixed point decimal (e.g. 12.67)

A fixed point decimal, * filled (e.g. **12.67)

HHLRRR Y fixed point decimal, thousands separated

LA by commas (e.g. 1.234.56 or *1,234.56)

-H AR exponent form (e.g. 2.9979E +08) optional sign

+ 4. HHHH exponent form always includes sign

The exponent field must start with a sign, one #, and a decimal point (comma or full stop). I
must end with four !s.

Any decimal field may be prefixed or posifixed with a + or -, or enclosed in parentheses.
If a field is enclosed in parentheses, then negative values will be written out enclosed in
parentheses. If a - is used then the sign is only written out if the value is negative; if a + is
used, then the sign is always written out. If the sign is at the end of the field, then the sign
will follow the value.

Numbers can be written out with either a comma or a full stop as the decimal point, If the
field includes only one comma or full stop, then that is the character used as the decimal
point. If there is more than one in the field, the last decimal point found (comma or full stop)
will be used as the decimal point, the other is used as the thousands separator. Long live
European unity!

If the decimal point comes at the end of the field, then it will not be printed. This allows
currencies to be printed with the thousands separated, but with no decimal point (e.g. 1,234).
Floating currency symbols are inserted into fields using the $ character. The currency
symbols are inserted between the $ and the first # in the field (e.g. $SDm#.##4 . ## or
+$S##,##.#¥). When the value is converted, the currency symbols are ’floated’ to the right
to meet the value, For example

fmt$="@$ Charges *+*+*+ *% ; (SSKek# . HHH.0H) : #H HH4.HH+\
PRINT USING fmt$, 123.45, 123.45, 123.45

PRINT_USING fmt$, -12345.67, -12345.67, -12345.67
PRINT USING *'_#.4##1111V, 1234567

will print
$ Charges ****123.45: SKr123,45 : 123.45+
$ Charges * -12345.67: SKr12.345,67: 12,345.67 -1.235E+06

13.2 Decimal Conversions - These routines convert a value into a decimal
number in a string, The number of decimal places represented is fixed, and the exponent
form of floating point number is not used.

FDECS (value, field, ndp) fixed format decimal
IDECS (value, field, adp) scaled fixed format
CDECS (value, field, ndp) decimal

MIRACLE SYSTEMS LTD TOOLKIT I1 MANUAL

The ’ field * is length of the string returned, 'ndp’ is the number of decimal places. The three
routines are very similar. FDECS converts the value as it is, whereas IDEC$ assumes that
the value given is an integral representation in units of the least significant digit displayed.
CDECS is the currency conversion which is similar to IDECS$, except that there are commas

every 3 digits.
FDECS (1234.56,9,2) returns * 1234.56’
IDECS (123456,9,2) returns ' 1234.56’
CDECS$ (123456,9,2) returns * 1,234.56’

If the number of characters is not large enough to hold the value, the string is filled with '*’.
The value should be between -2°31 and 2°31 (-2,000,000,000 to +2,000,000,000) for
IDECS and CDECS, whereas for FDECS the value multiplied by 10" ndp should be in this
range.

13.3 Exponent Conversion - There is one function to convert a value to a
string representing the value in exponent form.

FEXPS$ (value, field, ndp) fixed exponent format
The form has an optional sign and one digit before the decimal point, and ’ndp’ digits after
the decimal point. The exponent is in the form of *E’ followed by a sign followed by 2 digits.
The field must be at least 7 greater than ndp. E.g.

FEXPS$ (1234.56,12,4) returns ' 1.2346E+03’

13.4 Binary and Hexadecimal

HEXS (value, number of bits) convert to hexadecimal
BINS (value, number of bits) convert to binary

These return a string of sufficient length to represent the value of the specified number of bits
of the least significant end of the value. In the case of HEX$ the number of bits is rounded up
to the nearest multiple of 4.

HEX (hexadecimal string) hexidecimal to value
BIN (binary string) binary to value

These convert the string supplied to a value, For BIN, any character in the string, whose
ASCII value is even, is treated as 0, while any character, whose ASCII value is odd, is treated
as 1. E.g. BIN (C.#.#°) returns the value 5. For HEX the ’digits’ '0’ t0 9’ A’ to 'F’ and 'a’
to 'f* have their conventional meanings. HEX will return an error if it encounters a
non-recognized character.

14 Display Control - There are three separate facilities provided to extend the
display control operations of the QL. They are cursor control, character fount control and
window reset,

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

14.1 Cursor Control - The function INKEYS is designed so that keystrokes may
be read from the keyboard without enabling the cursor. Two procedures are supplied to
enable and disable the cursor. When the cursor is enabled, it will usually appear solid
(inactive). The cursor will start to flash (active) when the keyboard queue has been switched
to the window with the cursor (e.g. by an INKEYS).

CURSEN #channel enable the cursor
CURDIS #channel disable the cursor

Note that while CURSEN and CURDIS default to channel #1, like most 10 commands,
INKEYS$ defaults to channel #0. For example:

CURSEN: in$=INKEYS$ (#1,250): CURDIS

will enable the cursor in window #1, and wait for up to 5 seconds for a character from the
keyboard. If nothing is typed within the 5 seconds, then in$ will be set to a null string ("").

14.2 Character Fount Control - The QL display driver has two character
founts built in. The first provides patterns for the values 32 (space) to 127 (copyright), while
the second provides patterns for the values 127 (undefined) to 191 (down arrow). For each

character the display driver will use the appropriate pattern from the first fount, if there is
one, failing that, it will use the appropiate pattern from the second fount, failing that, it will
use the first defined pattern in the second fount.

Substitute founts need not have the same range of values as the built in founts. A fount could,
for example, be defined to have all values from 128 to 255. The format of a QL fount is:

byte lowest character value in the fount
byte number of valid characters-1

9 bytes of pixels for the lowest character value
9 bytes of pixels for the next character value, etc.

The pixels are stored with the top line in the lowest address byte. For each pixel a bit set to
one indicates INK, a bit set to zero indicates paper. The leftmost pixel is in bit 6 of the byte,

The character ’g’ is stored as: % 00000000
% 00000000
%00111000
%01000100
%01000100
%01000100
%00111100
%00000100
%00111000

O

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

The command CHAR_USE is used to set or reset one or both character founts

CHAR_USE #channel, addrl, addr2 addrl and addr2 both point to
substitute founts

CHAR_USE #channel, 0, addr2 the built in first fount will be vsed,
addr2 points to a substitute second
fount

CHAR_USE 0,0 reset both founts for window #1

The QL display driver assumes that all characters are 5 pixels wide by 9 pixels high. Other
sizes are obtained by doubling the pixels or by adding blank pixels between characters. It is
possible, with Toolkit II, to set any horizontal and vertical spacing. If the increment is set to
less than the current character size (set by CSIZE) then extreme caution is required as it will
be possible for the display driver to write characters (at the right hand side or bottom of the
window) partly outside the window. The windows should not come closer to the bottom or
right hand edges of the screen than the amount by which the increment specified is smaller
than the character spacing set by CSIZE.

CHAR_INC #channel, x inc, y inc set the character x and y increments
The channel is defaulted to #1. The character increments specified are cancelled by a CSIZE

command. For example, if there is a 3x6 character fount in a file called 'f3x6’ (length 875
bytes), then a 127 column by 36 row screen can be set up:

MODE 4

WINDOW 512-2,256-3,0,0 :REMark clear of edges of screen
CSIZE 0,0 :REMark spacing 6x10

CHAR INC 4,7 :REMark spacing 4x7
fount = ALCHP (875) :REMark reserve space for fount
LBYTES f3x6, fount :REMark load fount
CHAR_USE fount,0 :REMark single fount only

14.3 Resetting the WindOwsS - There are two commands for resetting the
windows to the turn-on state:

WMON mode reset to "Monitor’

WTV mode reset to 'TV’ windows

The mode should be 0, 4 or 512 for the 4 colour (512 pixel) mode, or 8 or 256 for the 8
colour (256 pixel) mode. Only the window sizes, positions and borders are reset by these
commands, the paper strip and ink colours remain unchanged.

15 Memory Management - As QDOS is a multitasking operating system, there
may be several jobs running in a QL, and so the amount of free memory may vary
unpredictably, No Job may assume that the amount of free memory is fixed. The function
FREE MEM may be used to guess at the free memory defined as the space available for
filing system slave blocks less the space required for two (c.f. QL Toolkit: one only) slave
blocks. '

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL
‘Temporary space may be allocated in the ’common heap’. This is done with the function
ALCHP which returns the base address of the space allocated. Individual allocations may be
returned to QDOS with the command RECHP, or all space allocated is released by the
commands CLCHP (clear common heap), CLEAR or NEW.

Functions

FREE MEM find the amount of free memory

ALCHP (number of bytes) allocates space in common heap (returns
the base address of the space)

Commands

RECHP base address return space to common heap

CLCHP clear out all allocations in the common heap

Making large allocations in the common heap and then accessing a drive for the first time,
can cause a terrible heap disease called ’large scale fragmentation’ where the drive definition
blocks become widely scattered in the heap leaving large holes that cease to be available
except as heap entries (i.e. you cannot Joad programs into them). A simple but dangerous
cure is to delete the drive definition blocks,

DEL_DEFB delete file definition blocks from common heap

Although there are precautions within the procedure DEL_DEFB to minimise damage, care
should be taken to avoid using this command while any directory device is active.

16 Procedure Parameters: In QL SuperBASIC procedure parameters are
handled by substitution: on calling a procedure (or function), the dummy parameters in the
procedure definition become the actual parameters in the procedure call. The type and usage
of procedure parameters may be found with two functions:

PARTYP (name) find type of parameter
PARUSE (name) find usage of parameter
the type is 0 null the usage is 0 unset

1 string 1 variable

2 floating point 2 array

3 integer

One of the 'tricks’ used by many machine code procedures is to use the ’name’ of an actual
parameter rather than the 'value' (e.g. 'LOAD fred’ to load the file name fred). Given the
name of a dummy parameter of a procedure, it would be possible to find the name of an
actual parameter of a SuperBASIC procedure call, but it would be very slow. It is much
easier to find the name of an actual parameter, if the position in the parameter list is known.

PARNAMS (parameter number) find name of parameter

O

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

For example the program fragment

pname fred, joe, "mary”

DEF PROC pname (nl,n2,n3)
PRINT PARNAMS(1), PARNAMS(2), PARNAMS(3)
END DEF pname

would print 'fred joe ’ (the expression has no name). One further ‘trick’ is to use the value of
the actual argument if it is a string, otherwise use the name. This is possible in SuperBASIC
procedures using the slightly untidy PARSTRS function.

PARSTRS (name, parameter number) if parameter 'name’ is a string,
find the value, else find the
name

For example the program fragment

pstring fred, joe, *mary’
DEF PROC pstring (nl,n2,n3)

PRINT PARSTRS$(nl,1), PARSTRS$(n2,2), PARSTR$(n3,3)
END DEF pstring

would print 'fred joe mary’.

17 Error Handling: The JS and MG QL ROMs contain unfinished code for error
trapping in SuperBASIC: Toolkit II corrects some of the remaining problems.

Error handling is invoked by 2 WHEN ERROR clause. Unlike procedure and function
definitions, these clauses are static. The error handling within a WHEN ERROR clause is set
up when the clause is executed, but is only actioned WHEN an ERROR occurs. This means
that a program may have more than one WHEN ERROR clause. As each one is executed, the
error processing within that clause replaces the previously defined error processing.

The clause is opened with a WHEN ERROR statement, and closed with an END WHEN
statement. Within the clause there may be any normal type of statement. (Although it might be
better to avoid calling SuperBASIC functions or procedures!) A WHEN ERROR clause is
exited by a STOP, CONTINUE, RETRY, RUN, LOAD or LRUN command (if you are
using Toolkit IT). Furthermore the Toolkit I¥ versions of RUN, NEW, CLEAR, LOAD,
LRUN, MERGE and MRUN reset the error processing (an unfortunate omission from the
QL ROMs).

There are some additional facilities intended for use within WHEN ERROR clauses.
ERROR functions - These functions correspond to each of the system error

codes(ERR_NC, ERR_NJ, ERR_OM, ERR OR, ERR_BO, ERR_NO, ERR_NF, ERR_EX,
ERR_IU, ERR_EF, ERR_DF, ERR_BN, ERR_TE, ERR_FF, ERR_BP, ERR_FE, ERR_XP,

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

ERR_OV, ERR_NI, ERR_RO, ERR_BL) and return the value TRUE if the error, which
caused the WHEN ERROR clause to be invoked, is of that type. Do NOT use ERR_DF
without Toolkit II.

ERROR information

ERLIN returns the line number where the error occured
ERNUM returns the error number

ERROR reporting
REPORT #channel reports the last error
REPORT reports the last error to channel #0
REPORT #channel, error number reports the error number given

RETRY and CONTINUE

As the RETRY and CONTINUE exit from an error clause without resetting the WHEN
ERROR, it would be useful if they could also be used to exit to a different part of the
program, In Toolkit II, RETRY and CONTINUE can have a line number.

CONTINUE line number continue or retry from a
RETRY line number specified line
18 Timekeeping

18.1 Resident Digital Clock

CLOCK default clock in its own window
CLOCK #channel : default clock, 2 rows of 10 chars
CLOCK #channel, string user defined clock

CLOCK is a procedure to set up a resident digital clock using the QL’s system clock. If no
window is specified, then a default window is set up in the top RHS of the monitor mode
default channel 0. This window is 60 by 20 pixels and is only suitable for four colour mode.
The clock may be invoked to execute within a window set up by BASIC. In this case the
clock job will be removed when the window is closed.

The string is used to define the characters written to the clock window: any character may be
written except $ or %. If a dollar sign is found in the string then the next character is
checked and

$d or $D will insert the three characters of the day of week,
$m or $M will insert the three characters of the month.

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

If a percentage sign is found then

%y or %Y will insert the two digit year

%d or %D will insert the two digit day of month
%h or %H will insert the two digit hour

%m or %M will insert the two digit minute

%s or %S will insert the two digit second

The default string is '$d %d $m %h/%m/%s ’ a newline should be forced by padding out a
line with spaces until the right hand margin of the window is reached.

To set the clock the SuperBASIC command SDATE is used:

SDATE year,month,day,hour,minute,seconds
Example:

SDATE 1989,6,1,14,45,30

MODE 8

OPEN #6,’scr_156x10a32x16’

INK #6,0: PAPER #6,4

CLOCK #6, QL time %h:%m’

18.2 Alarm Clock

ALARM time set alarm clock to sound at given time

The time should be specified as two numbers: hours (24 hour clock) and minutes:

ALARM 14,30 alarm will sound at half past two
19 Extras
EXTRAS #channel lists the extra facilities linked into SuperBASIC
EXTRAS lists the extras to #1

If the output channel is a window, the screen is frozen (CTRL F5) when the window is full.
With Toolknt Il installed, there are hundreds of extras.

TK2_EXT enforces the Toolkit I definitions of common commands and functions
If, for any reason, some of the Toolkit Il extensions have been re-defined, TK2_EXT (c.f.
FLP_EXT floppy disk extensions, EXP_EXT expansion unit extensions) will reassert the

Toolkit II definitions.

20 Console Driver

20.1 Keyboard Extensions

There are two extensions to the QL keyboard handling. The first provides a last line recall

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

facility, and the second assigns a string of characters to an "ALT' keystroke,
<ALT> <ENTER> keystroke recovers the last line typed

This keystroke recovers (on a per-window basis) the last line typed, provided only that the
keyboard buffer is long enough to hold it.

The ALTKEY command assigns a string to an 'ALT" keystroke (hold the ALT key down and
press another key). The string itself may contain newline characters, or, if more than one
string is given, then there will be an implicit newline between the strings. Thus a null string
may be put at the end to add a newline to the string.

ALTKEY character, strings assign a string to <ALT > character keystroke

For example after the command

ALTKEY 'r’, 'RIOB "SPL" '’ *
or ALTKEY 'r’, "RJIOB "SPL" ' & CHR$(10)

when ALT r is pressed, the command RIOB "SPL"" will be executed.,

ALTKEY 'r’ will cancel the ALTKEY string for 'r’, while
ALTKEY will cancel all ALTKEY strings

21 Microdrive Driver

21.1 Microdrive extensions - There are three extensions to the microdrive
filing system. These are available as operating system entry points, but may also be supported
as calls from SuperBASIC.

OPEN OVERWRITE Trap #2, DO=1, D3=3

This variant of the OPEN call opens a file for write/read whether it exists or not. The file is
truncated to zero length before use.

RENAME Trap #3, D0=4A, Al points to new name

This call renames a file. The name should include the drive name e¢.g. FLPI_NEW_NAME.
TRUNCATE Trap #3, D0O=4B

This call truncates a file to the current byte position.

21.2 Microdrive Improvements - The FS.FLUSH filing system call has

been extended to perform a complete flush including header information. This operation
may be accessed through the FLUSH command.

®

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

22 Network Driver: Attempts have been made in Toolkit 1I to elevate the rather
elementary network facilities of the QL to a useful level. The network performance is
dominated by the exceptionally low capability of the network hardware. (If your QL has a
pre-D14 serial number then it is highly possible that your network hardware does not work at
all, although recent experience has shown that many more pre-D14 QLs have a working
network port than is generally supposed.)

22.1 Network Improvements

Each QL connected to a network should have a unique ’station number’ in the range 1 to 63.
This is set using the NET command.

NET station number

Toolkit II provides a mew protocol for broadcast which includes new provisions for
handshaking. A broadcast is a message sent from one QL 1o all other QLs listening to the
network. The Toolkit I broadcast protocol has a positive NACK (not acknowledged)
handshake as well as provision for detecting BREAK. The device names for the network are:

NETO_station number output to station number

NETO0 0 send broadcast

NETI_station number input from station number

NETI_my station number input from any station

NETI 0 receive a broadcast

NETI_0_buffer size receive a broadcast into specified buffer size

When opening a channel to receive a broadcast, a buffer is opened to allow the entire
transmission to be received uninterrupted. If no buffer size is specified, then all but 2k bytes
of the free memory will be taken. The buffer size should be specified in kbytes. For example:

NETI 0_10 receive a broadcast into 10 kbyte huffer

When a network output channel is closed, then (as with the QL network driver) the network
driver will keep trying to send the last buffer for approximately 20 seconds in case the
receiving station is busy with its Microdrives. With Toolkit II, however, after about 5 seconds
the driver will start checking for a BREAK.

22.2 File Servers

The file server provided in Toolkit II is a program which allows IO resources attached to one
QL to be accessed from another QL. This means that, for example, disk drives attached to
just one QL can be accessed from several different QLs. The file server only needs to be
running on the QL with the shared IO resource. This version of the file server is more general
than the first version in that the 10 resources may be pure serial devices (such as modems or
printers) or windows on the QL display as well as file system devices (such as disk drives).

FSERVE invokes the ’file server’

MIRACLE SYSTEMS LTD TOOLKIT I1 MANUAL
There may be more than one QL on a network with a file server running: the station numbers
for these QLs should be as low as possible, and should not be greater than 8. It is possible
that files opened across the network may be left open. This can occur if a remote QL is
removed from the network, is turned off or is reset. To correct this condition, wait until all
other remote QLs have finished their operations on this QL, then remove the file server and
restart with the commands: RIOB SERVER
FSERVE

22.3 Accessing the File Server - The network file servers are accessed
from remote QLs using a compound device name:

Nstation number 1O device the name of a remote 10 device (e.g.
N2_FLPI1_ is floppy | on network station 2)

For example

LOAD n2 flpl_fred loads file 'fred’ from floppy | on network
station 2

OPEN_IN #3,nl_flp2_myfile opens ’'myfile’ on floppy 2 on network
station |

OPEN #3,nl_con_120x20a0x0 opens a 20 columa 2 row window on net
station 2

The use of directory default names makes this rather simpler. For example

PROG_USE nl_winl_progs by default all programs will be loaded fromm
directory 'progs’ on Winchester disk 1 on network
station 1

SPL,_USE nl_ser set the default spooler destination to SERI on

network station |

It is possible to hide thé network from applications by setting a special name for a network file
server.

NFS_USE name, network names sets the network file server name

The 'network names’ should be complete directory names, and up to eight network names
may be given in the command. Each one of these network names is associated with one of the
eight possible directory devices ("name’l to 'name’8). For example

NFS_USE mdv,n2_flpl_,n2_flp2_ sets the network file server name so
that any reference to 'mdvl’ on this
remote QL, will be taken to be a
reference flpl on net station 2, likewise
’mdv2’ will be taken to be flp2 on net
station 2

OPEN_NEW #3,mdv2_fred now this will open file 'fred’ on floppy 2
on network station 2

O

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

The network names will normally just be a network number followed by a device name as
above and will end with an underscore to indicate that the name is a directory. Indeed if the
network file server name is to be used with the wild card file maintenance commands, this is
the only acceptable form. QUILL, however, tends to open a file with the name DEF_TMP
on mdv2_. Clearly, there will be problems if more than one copy of QUILL is run across the
network at any one time. This can be avoided if the network name for mdv2_ is set to be a
directory:

NFS_USE mdv,nl_fipl_,nl_flp2 fred DEF TMP opened on mdv2_will now appear in
directory 'fred’ on flp2_ on network station 1

FLP_USE FLP is invoked after reset so if FLP is to be used as the device name in the
NFS_USE command remember to include FLP_USE XXX. This will stop the QL from
trying to access its own disk port instead of the network.

FLP_USE xyz set device name for floppies to xyz
NFS_USE flp,nl_flpl_,nl_flp2_ any reference to ’flpl’ on this QL will
access flpl on net station 1, etc.

22.4 Messaging

The Toolkit 1 network facilities may also be used for messaging. A window may be opened,
a message sent, and a reply read using a simple SuperBASIC program. If particularily pretty
messages are required, then the graphics facilities of SuperBASIC may also be used. The only
standard IO facilities not available across the network are SD.EXTOP (extended operations)
and SD.FOUNT (setting the founts). For example

ch = FOPEN (n2_con_150x10a0x0): CLS #ch
INPUT #ch,’Do you want coffee? *;rep$

IF ’y’ INSTR rep$ = : PRINT ’Fred wants coffee’
CLS #ch: CLOSE #ch

23 Writing programs to use with EX: Programs invoked by EX (or EW
or ET) fall into three classifications:

non standard program header is not standard format;
special program header is standard but there is an additional flag;
standard program header is standard.

So far as EX is concerned, the distinction is that a special program must contain the code to
open its own /O channels.

At the start of execution a standard or non-standard program will have the following
information on the stack:

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

word the total number of channels open for this Job

[long the channel 1D of the input pipe, if present]

(fong the channel ID of each filename given in prog_spec)
llong the channel ID of the output pipe, if present]

word the length of the option siring or 0

[bytes the bytes of the option string]

If there is just one channel open for a Job, then it is opened for read/write unless it is a pipe
in which case the direction is implied in the command,

If there is more than one channel open for a Job, then the first channel is the primary input
(opened for read only), and the others are opened OVERWRITE. The last channel is the
primary output.

A Job should not close the channels supplied, but, when complete, it should commit suicide.
Each Job is owned by the next one in the chain, so that when the last job has completed, the
entire chain is removed. Committing suicide in this way will put an end of file in the output.
Thus an end of file from the primary input should, directly or otherwise, indicate to a
program that the data is complete.

23.1 Special Programs - Standard and special programs have the value $4AFB
in bytes 6 and 7. This is followed by a standard string (length in a word followed by the
bytes of the program identification). In the case of a special program header a further value
of $4AFB (aligned on a word boundary) follows the identification. When the program has
been loaded, the option string put on the job’s stack and the input pipe (if it is required)
opened and its ID put on the job’s stack, then EX will make a call to the address after the
second identifying word. Note that the code called will form part of a BASIC procedure, not
part of an executable program. On entry to this code, the following registers will be set:

D4.L 0 or 1 if there is an input pipe; ID is not on stack
DS.L 0 or 1 if there is an output pipe; ID is on stack
D6.L Job ID for this program

D1.L total number of pipes + file names in prog_spec
A0 address of support routines

Al pointer to command string

A3 A6 *pointer to first file name (name table)

Ad pointer to job’s stack

A5,A6 *pointer beyond last file name (name table)

*these are the standard BASIC procedure parameter passing registers.

The file setup procedure should decode the file names, open the files required and put the IDs
on the stack (A4). Register DO should be set to the error code on return. D5 must be
incremented by the number of channel IDs put on the job’s stack. A4 must be maintained as
the job’s stack pointer. Registers D1 to D7, AOto A3 and A5 may be treated as volatile.

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL
The routine (A0) to get a file name should be called with the pointer to the appropriate name
table entry in A3. D0 is returned as the error code, D1 to D3 are smashed. If DO is 0, Al is
returned as the pointer to the name (relative to A6). If DO is positive, AO is returned as the
channel ID of the SuperBASIC channel (if the parameter was #n), all other address registers
are preserved.

The routine 2(A0) to open a channel should be called with the pointer to the file name in Al
(relative to AG6). The file name should not be in the BASIC buffer; D3 should hold the
access code (overwrite is supported) and the job ID (as passed to the initialisation routine)
should be in D6. The error code is returned in DO, while D1 and D2 are smashed, and Al is
returned pointing to the file name used (it may have a default directory in front). If the
open fails, Al will point to the default+given filename. The channel ID is returned in AQ
and all other registers are preserved. In both cases the status register is returned set according
to the value of DO.

Apgendix A - The appendix illustrates the use of Toolkit Il facilities with the GST
assembler and linker. (The version used by QJUMP is supplied by GST with their QC
compiler: QC is well worth buying just to get the assembler and linker!). The programs
accept a wide variety of options on their command line. This command line can be passed to
the programs in the parameter string of the EX command. Unfortunately the programs do not
attempt to find the default data directory, so it is necessary to add this to the file names in
the command line. The assembler is called ASM and the linker LINK. Filenames can be
passed to these procedures as strings or names.

100 REMark assemble a relocatable file

110:

120 DEFine PROCedure asr (file$)

130 EX asm; DATADS & PARSTRS (file$,1) & ’ -errors scr’

140 END DEFine asr

150

160 REMark assemble with listing

170 :

180 DEFine PROCedure asl (file$)

190 EW asm; DATADS & PARSTRS (file$,1) & ’ -list ser -nosym’
200 END DEFine asl

210:

220 REMark link program

230 :

240 DEFine PROCedure 1k (file$)

250 EX link; DATADS & PARSTRS (file$,]) & ’ -with ' & DATADS & 'link-no
260 END DEFine 1k

If the data default directory is 'FLP1_JUNK ’, then the procedure calls ASR ’table’ and LK
master will create the command parameter strings to the assembler and linker

'FLP1_JUNK table -list ser -nosym’ and

"FLP1_JUNK_master -with FLP1_JUNK_link -nolist’

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Appendix B

QL Network Protocols

Standard QL Handshake

The Standard QL handshaking network protocol is compatible with the Sinclair Spectrum
protocol. It comprises 11 phases

sender receiver
A) scout
1) gap waiting for 3ms for activity, if
activity occurs: restart
2) wait waiting for activity (a scout)
3) scout send a scout of duration < 530us, wait for 530us
if contention occurs: restart
B) header
4) hackiv set net active 22us wait for active
5) hbytes for each byte 11.2us start (inactive) for each byte wait for start
. (inactive)
bit, 8*11.2us data bits, 5*11.2us bit, read 8 data bits, if fails :
restart
stop (active) bits
6) hackw wait for 2.5ms for active, if not set net active 22us
active: restart
7) hackbt wait for start bit, read 8 bits, if send 11.2us start bit 8 data bits
efror: restart 00000001
C) data
8) dactiv set net active 22us wait for active
9) dbytes for each byte 11.2us start for each byte wait for start
(inactive) .
(inactive) bit, 8*11.2us data bits bit, read 8 data bits, if fails:
restart
5*11.2us stop (active) bits
10) dackw wait for 2.5ms for active, if not set net active 22us
active; restart
11) dackbt wait for start bit, read 8 data send 11,2us start bit 8 data bits
bits, if error: restart 00000001

The entire protocol is synchronised by a period of inactivity at least 2.8ms long. The header is
eight bytes long in the following format.

MIRACLE SYSTEMS LTD TOOLKIT Il MANUAL

destination station number

sending station number

block number (high byte)

block number(low byte)

block type (0 normal, 1=last block of file)
number of bytes in block (0 to 255)

data checksum

header checksum

If the number of bytes in a block is 0, 256 data bytes are actually sent. The checksums are
formed by simple addition: if there are two single bit errors in the most significant bit (the
most common type of error) within one block, then the errors will pass undetected. If the
block number received in a header is not equal to the block number required, then the
header and data block are acknowledged but ignored.

The protocol is not proof against a failure on the last block transmitted where the receiver has
accepted the block, but the sender has missed the acknowledge. In this case the sender will
keep re-transmitting the block until it times out (about 20s).

Toolkit 1I Broadcast

Toolkit II has a special version of this protocol for network broadcast. This has an extended
scout to allow time for the receiver to interrogate the IPC without missing the scout, and it
has an active acknowledge / not acknowledge. The protocol has been defined in such a way
that future network drivers can be more flexible than the Toolkit I driver.

sender receiver
a) scout
1) gap waiting for 3ms for activity, if
activity occurs: restart
2) wait waiting for activity (a scout) every
20ms check IPC :y
3) scout send a scout of duration <530us, wait for 530us
if contention occurs: restart
4) scext send a scout extension of 5ms active
b) header
5) hbytes for each byte 11.2us start (inactive) for each byte wait for start
(inactive)
bit, 8*11.2us data bits, 5*11.2us bit, read 8 data bits, if fails: nack
stop (active) bits
6) hwait leaving net active, wait 1ms
c) data
7) dbytes for each byte 11.2us start (inactive) for each byte wait for start
(inactive)
bit, 8*11.2us data bits, 5*11.2us bit, read 8 data bits, if fails: nack

stop (active) bits

MIRACLE SYSTEMS LTD

TOOLKIT II MANUAL

8) dack inactive net and wait 1ms for
active: if fails, restart

d) Not acknowledge

9) nack wait for inactive or inactive,

10) nacks wait 500us for active: timeout
is ok, active is fail

within 500us set net active and wait
5ms, do any processing required
and when ready for next packet,
inactivate and restart

wait for 2.8us of active or inactive,
if inactive: restart

wait 200us for active, if active:
restart, if inactive, activate 500us
(nack)

A broadcast acknowledge is Sms active followed by more than 400us inactive. A broadcast

not acknowledge is no response or Sms active followed by 200us to 300us inactive, followed

by more than 200us active.

Toolkit 11 Server Protocol

The Toolkit Il server protocol is physically the same as the Standard QL protocol, but the
header has been slightly changed to improve the checksum, to allow blocks of up to 1000
bytes to be sent and to distingujsh server transactions, A server header cannot be confused

with a standard header.

Appendix C

Toolkit II Code Sizes

Base area and tables

ED

VIEW

Directional control (DATA_USE, DLIST etc.)
File maintenance (COPY, WDEL etc.)

SPL, SPLF

BASIC (LOAD, SAVE, RUN etc.)

Load and save (LBYTES, SBYTES, elc.)
CALL

EX, EW

JOB control procedures

JOB information functions

OPEN and FOPEN

CLOSE

File header information

Direct access files

PRINT_USING

Decimal conversion (required for PRINT_USING)

size nr size/nr
1618 1 1618
2328 1 2328
74 1 74
224 11 20
1356 13 104
212 2 106
308 13 24
182 6 30
30 1 " 30
750 230 375
292 4 73
102 4 25
122 11 11
60 | 60
86 6 14
518 7 4
442 1 442
552 4 138

O

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

Hex and binary conversions 214 4 53
Cursor control 24 2 12
Character setting (CHAR_USE, CHAR_INC) 56 2 28
Window reset (includes 48 bytes in header) 128 2 64
Heap handling 146 4 38
Heap tidy (DEL_DEFB) 62 1 62
BASIC procedure parameter type 136 4 34
ERROR handling 54 2 27
EXTRAS 68 1 68
Microdrive extensions 720 4 180
ALTKEY and last line recall 366 2 183
Network 3064 3 1021
Utility code 1674

The sizes above do not include the table entries for each BASIC extension (=name length +
3 or 4 bytes).

facilities not included in above:

RAM disk appox 1400
Buffered printer extension approx 500
total approx 2400

These can be accomodated by removing about 50 of the less useful facilities.

Appendix D
Toolkit 11 Update Record

v2.01 First full version.

vV2.02 First release version.

vV2.03 Patched to prevent MG initialisation problems.

V2.4 (Jeaggi only) network eof problems fixed.

V2.05 Lost channel on OPEN_NEW (file already exists) fixed. EX EW changed so that
owner is current job,

V2.06 EX EW changed for compiled programs: EX jobs owned by O, EW jobs owned
by current job and now wait!

v2.07 (Sandy only) bad line’ character wrap problem in ED fixed.
vV2.08 Empty line in ED problem (introduced in V2.07) fixed Unset string parameter
collapse in PRINT _USING fixed.

MIRACLE SYSTEMS LTD TOOLKIT 11 MANUAL

v2.09 PUTting randomly positioned bytes over the network should not now shuffle the
contents of a file.

v2.10 RENAME with only one name does not now leave file open. The file system
prompts are now sent to #0 rather than channel 0.

V2.11 Initialisation error causing loss of replacement commands (e.g. OPEN) using
JM/AH ROMs and CST QDisc VI1.17 and V1.18 fixed.

v2.12 Bad error message return from opening a file name that is too long changed to
return "bad name". "Bad parameter” from special job opening a file specified as a
string in an EX command fixed. "Not complete” from SPL fixed. Last line recall
changed to reduce problems due to asynchronous modification of keyboard queue.

v2.13 Error status returned from SAVE and LIST if drive full or bad or changed
medium during output. Network fixed to prevent serial 10 buffer damage when
interleaving serial 10 with window enquiries while reading from a file.

Appendix E
Floppy disk nipdate Record

v1.07 (not released) Write operations held pending (up to 20 sectors). Direct sector 10
added.

v1.08 Microdrive interleave problem with FS.LOAD call (in V1.07 only) fixed.

V1.09 Direct sector open does not now check the drive. On seek, the track register is
set to the actual track number found on the track, seek errors will not be
detected, so any track may be read from any part of the disk.

VI1.10 Direct sector write in FM (*DnS) does not '~ give read/write failed (it did
work before though - just ignore the error ... ""‘;s'a‘g’c). This does not affect those
interfaces which have MFM only.

A fatal LOAD error condition has been removed. This occurred in V1.07 onwards if:

a) a file is LOADed within .5 second of a modification to that file,
b) the file was not closed or flushed in this period
c) the directory entry for the file has become unreadable.

(There is no logical reason for conditions a and b to be met simultaneohslyl)

vi.n Version 1.11 should be functionally identical to Version 1.10, The source code
has been completely reorganized.

V1.12 The step rate detection procedure, which has not functioned well since version
1.09, has been fixed.

@

C

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL
V1.13 The disk present detection routine has been changed to work reliably with index
pulses as short as 10us. (A problem with extreme out-of- spec Mitsubishi 3.5" drives.)

V1.14 The FLP_OPT command or the equivalent set of commands has been added. This
now gives a choice of security versus speed, and extends the range of odd drives which may
be used. The disk change detection has been redesigned and the disk header handling has
been improved.

The FORMAT procedure has been rewritten. It will not now detect step errors, but instead it
formats and checks the disk in 5 revolutions per track (1 second, on double sided drives), or 3
revolutions per track (.6 second, on single sided drives). The check on the 1 1th character of
a medium name (FORMAT) is not now done unless the name is at least 11 characters long.
The error returns from direct sector reads have been tidied up.

The read operations used in direct sector reads now have their own read error recovery. This
should improve the reliability of direct sector reads (see V1.09 above). Direct sector reads
no longer clear the read buffer before attempting to read.

When checking for the presence of a disk, the driver now waits for just over one second
before giving up. If there are repeated seek errors, the step rate is automatically reduced. The
driver can now scatter load zero length files without getting in a knot.

VI1.15 The changes in V1.15 are mainly to accomodate the 1772 control chip. Some of
these may have beneficial side effects when using 1770 or 2793.

1) When first accessing a drive a check is made for 1772 step rates.
2) A compulsory Sms settle is added after any seek: there was a problem at 2ms step rate
with premature termination of a restore command.

3) The unchecked seeks at the start of the format procedure and before a direct sector read /
write are now performed at a slower step rate than the normal seeks. This should reduce the
chances of an undetected seek «

The sector allocation algorithm has been changed so that the first sector of a file may be
allocated in track O when all other tracks are full. The internal messages have been moved to
the base of the ROM.

Foreign language versions can now be made with simple pat.hes. The write track procedure
(for format) has been changed to improve the worst case timing margin.

V1.16 A problem with repeated checks on a changed medivm, when files are still open
on a previous medium, has been fixed. The FLP_EXT command clears the procedure stack.
RAM disk V1.02 incorporated where appropriate.,

V1.17 RAM disk V1.03 incorcorated where appropriate.
V1.18 Verify introduced on restore; additional pauses introduced on seek error recovery.
V1.19 to V1.21 identical to V1.18

MIRACLE SYSTEMS LTD TOOLKIT II MANUAL

Appendix F

Index and List of Differences

This index lists the SuperBASIC extensions in alphabetical order together with the usage
(procedure, funclion or program), the section number describing the facility in detail, the
origin of the facility (whether the facility first appeared in the QL. ROMs or in the Sinclair QL
Toolkit) and principal differences between the facility in the Toolkit Il and earlier versions.

This list only includes the most important differences, in many cases there are other

improvements over earlier versions.

Name Usage Section Origin
AJOB procedure 9 QL Toolkit
ALARM program 18 QL Toolkit
ALCHP function 15 QL Toolkit
ALTKEY procedure 20 new
BGET ocedure 12 QL Toolkit
BIN ction 13 QL Toolkit
BINS function 13 QL Toolkit
BPUT procedure 12 QL Toolkit
CALL ocedure 7 bug fix
CDECS$ ction 13 QL Toolkit
CHAR_USE procedure 14 QL Toolkit
CHAR_INC procedure 14 QL Toolkit
CLCHP procedure 15 QL Toolkit
CLEAR procedure 6 L
program 18 QL Toolkit
CLOSE procedure 10 QL
CONTINUE procedure 17 QL
COPY procedure 5 QL
COPY_O procedure 5 new
COPY_N procedure 5 QL
COPY H procedure 5 new
CURSEN procedure 14 QL Toolkit
CURDIS procedure 14 QL Toolkit
DATA_USE ocedure 4 QL Tookit
DATADS ction 4 new
DDOWN procedure 4 new
DEL_DEFB procedure 15 new
DELETE procedure 5 QL
DEST USE E:cedum 4 new
DESTDS ction 4 new
DIR procedure 5 QL
DLIST procedure 4 gew

Differences

Job name
resident program

clears WHEN ERROR
configurable program
close multiple files
specified line number

uses default directory
uses default destination

ovérwrius file
uses default directory -
uses default destination ¢ >

N

uses default directory
uses default directory

MIRACLE SYSTEMS LTD

TOOLKIT II MANUAL

LRESPR
LRUN

MERGE

NEW
NSF_USE

procedure

procedure

procedure
procedure

proced
procedure

O NG LREEE SN GRSS8SSERELRERRrREgw AL

[- X0

BO\

new
new

new

QL Toolkit
bug fix

QL Toolkit
QL. Toolkit
QL

QL

QL. Toolkit
QL Toolkit
QL. Toolkit
QL Toolkit
new

QL Toolkit
new

new

QL Toolkit

QL Toolkit

QL. Toolkit

QL Toolkit

QL Toolkit

QL Toolkit

QL Toolkit

new

new

QL Toolkit

new

new

QL Toolkit

QL Toolkit

QL Toolkit

QL Toolkit

QL. Toolkit

QL Toolkit

QL

QL

new

QL
QL
QL

QL

new

completely respecified

now the same as EX
now the same as EW

finds vacant channel
finds vacant channel
finds vacant channel
finds vacant channel
finds vacant channel

gives 512 bytes less

uses default directory
uses default dir

clears WHEN ERROR
uses default di '

clears WHEN ERROR

uses default di
clears WHEN ERROR

uses defauit i
clears WHEN ERROR

clears WHEN ERROR

MIRACLE SYSTEMS LTD

TOOLKIT 11 MANUAL

NXJOB function 9
OPEN procedure 10
OPE e
OPEN_DIR - procedure 10
OPEN"wE . proced::rr: :8
OPEN w
OPEN_OVER ocedure 10
PARNAMS ction 16
PARSTRS function 16
PARTYP function 16
PARUSE function 16
PIOB function 9
PRINT_USING procedure 13
PROG USE g:ﬁcedure 3
PROGDS ction 3
PUT procedure 12
RECHP procedure 15
RENAME procedure 5
RETRY procedure 17
RJOB procedure 9
RUN procedure 6
SAVE procedure 6
SAVE O procedure 6
SBYTES procedure 7
SBYTES_O procedure 7
SEXEC procedure 7
SEXEC O procedure 7
SPIOB procedure 9
SPL program 5
SPL_USE procedure 4
SPLF program 5
STAT procedure 5
STOP procedure 6
TK2 EXT procedure 19
TRUNCATE procedure 12
VIEW procedure 3
WCOPY procedure 5
WDEL procedure 5
WDIR ure 5
WMON procedure 14
WREN ure

© WSTAT procedure 5
wTV procedure 14

QL Toolkit
QL Toolkit
QL

QL Toolkit
new

QL Toolkit
new

QL Toolkit
QL Toolkit
QL Toolkit

QL
QL Toolkit
QL
QL

new
QL
new
QL
new
QL Toolkit
QL Toolkit
QL Toolkit

new
QL Toolkit
QL
new
QL Toolkit

QL Toolkit
new

QL Toolkit

QL Toolkit
QL Toolkit
new

QL Toolkit
QL Toolkit

uses default directory
uses default di
uses default directory
uses default di
uses default directory

specified line number
accepts Job name
clears WHEN ERROR
uses default directory
overwrites file

uses default directory
overwrites file

uses default directory
overwriltes file
accepts Job name
simplified destination

adds form feed to file
clears WHEN ERROR
position may be
specified -

defaults to command
window uses default
destination

defaults to command
window

defaults to command
window uses default
destination

()

