Preface

Metacomeo's QL BCPL Development Kit is a powerful package
“incorporating a full screen editor and a BCPL compiler. This book is
intended to be a guide for users of the kit and does not zim to be fully
comprehensive on all related aspects of the QL or BCPL programming.
It assumes that the reader has knowledge of the QDOS cperating system,

If further detailed information is required, a full specification of the
Motorola 68008 microprocessor can be found.in ¥C68000 16/32 Bit
Microprocessor Programmer's Reference Manual {(4th edition,
ISBN 1-356-6795X) published by Prentice-Hall. A full description of
BCPL programming can be found in BCPL, ~ The Language and its
Compiler by Martin Richards and Colin Whitby-Strevens published by
Cambridge University Press. Further information about QDOS can be
found in QL Advanced User Guide by Adrian Dickens {ISBN
0-947929-00-2) published by Adder Publishing.

Copyright (C) 1984 Tenchstar Limited.
Metacomeco is a trading division of Tenchstar Limited.

All rights reserved. No part of this work may be reproduced in any form
or by any means or used to make a derivative work {such as a
translation, transformation or adaptation) without permission in writing
from Tenchstar Limited, 26 Portland Square, Bristol, England.

Although great ccre-has gone into the preparation of this product,
neither Tenchstar nor its distributors make any warranties with respect
tc this product other than to guarante¢ the original microdrive against
faulty materials or workmanship for 90 days after purchase.

QL, QDOS and SuperBa{sic are trademarks of Sinclair Research Limited.

<L BCPL Developiaent Kit

Contents

Chapter 1;

Chepter 2:

Chapter 3:

Appeadix
Appendiz B:
Appendix C:

Index

Screen editor

1.1 Introduction

1.2 Immediate commands
1.3 Extended commands
1.4 Command list

Language Guide

2.1 Introduction

2.2 Data

2.3 Datadeclaration

2.4 Sections

2.6 Procedures

2.6 Blocks

2.7 Expressions and Operators
2.8 Commands

2.9 Running the compiler
2.10 Running a program

BCPL Library

3.1 Introduction

3.2 Global routines
3.3 Global variables
[nstallaiio:y

Assembler linking conventions

Example programs

NV,

|

¢ L BCPL Development Kit Screen Editer

] Y

Cliapter 1:'The Screen Editor
1.1 Introduction

‘The screen editor ED may be used to create a new file or to alter an
existing one. The text is displayed on the screen. and can be scrolled
vertically or horizontally as required. The size of the program is about
20K bytes and it requires a minimum workspace of 8K bytes.

The editor is invoked using EXEC or EXEC__W as follows
EXEC_W mdvl_ed

The difference between invoking a program with EXEC or EXEC__Wis
as follows, Using EXEC_W means that the editor is loaded and
SuperBasic waits until the editing is complete. Anything typed while the
editor is running is directed to the editor. When the editor finishes,
keyboard input is directed at SuperBasic once more.

Using EXEC is slightly more complicated but is more flexible. In this
case the editor is loaded inte memory and is started, but SuperBasie
carries on running. Anything typed at the keyboard is directed to
SuperBasic unless the current window is changed. This is performed by
typing CTRL-C, which switches to another window. If just one copyof ED
is running then CTRL-C will switch to the editor window, and characters
typed at the keyboard will be directed to the editor. A subsequent
CTRL-C switches back to SuperBasic. When the editor is terminated a
CTRL-C will be needed to switch back to SuperBasic once more. More
than one version of the editor can be run concurr:ntly {subject to
available memory) if EXEC is used. In this case CTRL-C switches
between SuperBasic and the two versiens of the editor in turn.

Once the program is loaded it will ask for a filename which should
conform to the standard QDOS filename syntax. No check is made on the
name used, but if it is invalid a message will be issued when an attempt
is made to write the file out, and a different file name may be specified
then if required. All subsequent questions have defaults which are
obtained by just pressing ENTER.

.1-

QL BCPL Dev:lopraen’ it Screen Biditor

The ne:: nuestion »cks for the workspace required. EI) works by
loading the file to be .dited into me:aory and sufficient wouispac: is
needed to hold all the file plus a small overhead. The default is 12 bytes pig
which is sufficient for small files. The amount can be specified as a
number or in units of 1024 bytes if the number is terminated by the
character K. If you ask for more memory than is available then the [l
question is asked again. The minimum is 8K bytes. S

You are next asked if you wish to alter the window used by ED. The
default window is normally the same as the window used in the b
initialisation of ED although this may be altered if required. See [
Appendix A for details of how to do this. If you type N or just press &
ENTER then the default winc:.»w is used. If you type Y then you are given
a chance to alter the window. The current window is displayed on the ¥oN
screen and the cursor keys can be used to move the window around. The
combination ALT and the cursor keys will alter the size of the- window jud

_although there is a minimum size which may be used. Within this
constraint you can specify a window anywhere on the screen, so that you
can edit a file and do something else such as run a SuperBasic program §

_press ENTER.

Next, an attempt is made to open the file specified, and if this g
succeeds then the file is read into storage and the first few lines ik
displayed on the screen. Otherwise a blank screen is provided, ready for MK
the addition of new data. The message "File too big" indicates that more
workspace should be specified. o

L

When the editor is running the bottom line of the screen is used as a L §®
message area and Tommand line. Any error messages are displayed ?x
there, and remain displayed until another editor command is given. oS

Editor commands {all into two categories - immediate commands and %
extended commands. Immediate commands are those which are executedd
immediately, and are cpecified by a single key or control keyy
combination. Extended commands are typed in onto the command line ™
and are not executed unti! the command line is finished. A number of 3¢
extended commands may be typed on a single command line, and anyjy
commands may be grouped together and groups repeated automatically

Most immediate commands have a matching extended version,

1

QL BCPL Development Kit Ser~en Edito

fn}med_late Fommands use the function keys apd cursor keys on th
QL in conjunction wita the special heys SHIFT, CTRL and ALT. Fo
example. delet: line is requested by holding down the CTRL ar;d ‘AL'
keys and then pressing the left arrow key. This is described in thi:

g:):ument as CTRL-ALT-LEFT. Function keys are described as F1, F

) The ;d_itor attempts to lfegp the screen up to date, but if a furthe;
command is entered while it is attempting to redraw the display, the
command is executed at once and the display will be updated later, \:fher

there is time. The current line is al i i
pere 1S ine ts always displayed first, and is always ug

(L BCPL Development ¥i: Soreen Fuitor

T e —
ES TR N A

.2 iImmeaiate cornmands

Cursor control

'
i

‘The cursor is moved one position in either direction by the cursor control F
keys LEFT, RIGHT, UP an DOWN. If the cursor is on the edge of the J
screen the text is scrolled to make the rest of the text visible. Vertical pd
scroil is carried out a line at a time, while horizontal scroll is carried out ;’J

ten characters at a time. The cursor cannot be moved off the top or
boitom of the file, or off the left hand edge of the text.

The ALT-RIGHT combination will take the cursor to the right hand {
edge of the current line, while ALT-LEFT moves it to the left hand edge
of the line. The text will be scrolled horizontally if required. In a similar |
fashion SHIFT-UP places the cursor at the start of the first line on the [
screen, and SHIFT-DOWN places it at the end of the last line on thef '

screen.

The combinations SHIFT-RIGHT and SHIFT-LEFT take the cursork
to the start of the next word or to the space following the previgus wordg’
respectively. The text will be scrolled vertically or horizontaily asig
required. The TAB key can also be used. If the cursor position is beyond ‘g
the end of the current line then TAB moves the cursor to the next tab '
position, which is a multiple of the tab setting {initially 3}. If the cursor isf.
over some text then sufficient spaces are inserted to align the cursor withg
the next tab position, with any characters to the right of the cursor beinggs

shuffled to the right.

Inserting text

Any letter typed will be added to the texi in the position indicated by theld
cursor, unless the line is too long (there s a maximum of 235 characters
in a line). Any characters to the right of the text will be shuffled up Lof
make room. If the line exceeds the size of the screen the end of the linel
will disappear and will be redisplayed when the text is scrolledfs
horizontally. If the curser has been placed beyond the end of the line, forf§
example by means of the TAB or cursor control keys, then spaces arc
inserted between the end of the line and any inserted character. B
Although the QL keyboard generates a different code {or SHIFT-SPACEg

-4.

QL BCEL Develonment Kit Screen Editar

and §HIFT-ENTER these zie mappad to normal space and ENTER
T b

catvacters e ennvenience,

. .An ENTER key causes the current line to be splii at the pozition
mdxcated.by the cursor, and a new line generated. If the cursor is ;t the
end of a line the effect is simply to create a new, empty blank line aft

the current one. Alternatively CTRL-DOWN may be used to generat a
blan!{ line after the current, with no split of the current line taking la‘f: y
l[n :eather case the cursor is placed on the new line at the ogit' e-
indicated by the left margin (initially column one}. posthien

- A right margin may be set up so that EN ic:

inserted before the preceding wofd when the ;I;ngha;f? t?:;t{l)inzzzt;)c‘%“y
typed ejxceeds that margin, In detail, if a character is typed ande:t}tg
cursor is at the end of the line and at the right margin position th .
automatic newline is generated. Unless the character typed was a e,
the half completed word at the end of the line is moved down to the spatle.
g;;era;ii lim?. Lnitialiy there is a right mdrgin set up at the rightnkf:ng

e of the window used i i i
means of the EX cc:n"nmandl.’(}s{.ei':]IJal't:‘rl;‘.a rieht margin may be disabled by

Deleting text

The CTRL-LEFT key combination deletes the character to the left of th
cursor and moves the cursor left one position. If the cursor is at the st E:
of a line then the newline between the current line and the previousaf
de[et.ed (unless you are on the very first line). The text will be serolled l?‘
req}n_red. CTRL-RIGHT deletes the character at the current 1
pos1t1.or.: without moving the cursor. As with all deletes r:harcuisor
remaining on the line are shuffled down, and text which v.:as invaic'ETs
beyond the right hand edge of the screen may nov: become visible e

The combination SHIFT-CTRL-RIGHT may be used to delete a word
or a number of spaces. The action of this depends on the character at (tjh
cursor. If this character is a space then all spaces up to the p i
non-spacs character on the line are deleted. Otherwise éharacter -ex
deleted {rom the cursor, and text shuffted left, until a space is founds'f‘l;e
g}TRL-;\Lf"I‘-RlG.HT command deletes all characters from the curs.or tz
Cuf;rzr:‘t l?n:-he line. The CTRL-ALT-LEFT command deletes the entire

QL BCPi: Development Kit Screen Editor

Serolling

Besides the vertical scroll of one line obtained by moving ihe curser to
the edge of the screen, the text may be scrolled 12 lines vertically by

means of the commands ALT-UP and ALT-DOWN. ALT-UP moves to }

previous lines, moving the text window up, ALT-DOWXN moves the text
window down moving to lines further on in the file. The F4 key rewrites
the entire screen, which is useful If the screen is altered by another
program besides the editor. Remember that vou cun switch out of the
editor window and into some other joh by typing CTRL-C at any point,
assuming that there is another job with un sutstanding input request.
SuperBasic will be available only if you entered the editor using EXEC

rather than EXEC__ W, If there is enough room in memory you can run),

two versions of ED at the same time if you wish.

Repeating commands

The editor remembers any extended command line typed, and this setof {

extended commands may be executed again at any time by simply
pressing F2. Thus a search command could be set up as the extended

command, and executad in the normal way. If the first occurrence found | 1
was not the one required, typing F2 will cause the search to be executed }
again. As most immediate commands have an extended version, complex f .
sets of editing commands can be set up and executed many times, Note [J
that if the extended command line contains repetition ¢counts then the s
relevant commands in that group will be executed many times each time g

the F2 key is pressed.

QL BCPL Development Kit Screen Editor

1.3'.Extended comniands

- Extended command mode is entered by pressing the F3 key.
Subsequent input will appear on the command line at the bottom of the
screen. Mistakes may be corrected by means of CTRL-LEFT and
CTRL-RIGHT in the normal way, while LEFT and RIGHT moave the
cursor ovar the command line. The command line is terminated by
pressing ENTER. After the extended command has been executed the
editor reverts to immediate mode. Note that many extended commands
can be given on a single command line, but the maximum length of the
command line is 255 characters. An empty command line is allowed, so
Just typing ENTER after typing F3 will return to immediate mode.

Extended commands consist of one or two letters, with upper and
lower case regarded as the same. Multiple commands on the same
comrpand line are separated from each other by a semicolon. Commands
are sometimes followed by an argument, such as a number or a string, A
string is a sequence of letters introduced and terminated by a delimiter,
which is any character besides letters, numbers, space, semicolon or
brackets. Thus valid strings might be

/happy/ 123 feeti :Hellol: "i/2v

Most immediate commands have a corresponding extended version.

See the table of commands for full details (section 1.4).

Program control

The command X causes the editor to exit. The text held in storage is
written out te file, and the editor then terminates. The editor may fail to
write the file out either because the filename specified when editing
started was invalid, or because the microdrive becomes full. In either
case the editor remains running, and a new destination should be
specified by means of the SA command described below. Alternatively
the Q command terminates immediately without writing the buffer:
confirmation is requested in this case if any changes have been made to
the file. A further command allows a "snapshot’ copy of the file to be made
without coming out of ED. This is the BA command. SA saves the text to
a named file or, in the absence of a named file, to the current file. For

.

QL BCPL Development Kit Sereen Editor

|

|

examplz: l
A lp = F'i"

|

*SA /mdv2_savedtext/
or '

*SA

This command is particularly useful in areas subject to power failure or
surge. [t should be noted that SA followed by Q is equivalent to the X
command. Any alterations made between the SA and the Q will cause ED 3y,
to request confirmation again; if no alterations have been made the
program will be quitted immediately with the file saved in that state. SA
is also useful because it allows the user to specify a filename other than |

the current one. It is therefore possible to make copies at different stages
and place them in different files.

The SA command is also useful in conjunction with the R command.
Typing R followed by a filename causes the editor to be re-entered M
editing the new file. The old file will be lost when this happens, so t
confirmation is requested (as with the Q command) if any changes to the Jd
current file have been made. The normal action is therefore to save the |
current file with SA, and then start editing a new file with R. This saves } ¥
having to load the editor into memory again, and means that once the
editor is loaded the microdrive containing it can be replaced by another. }

The U command “undoes” any alterations made to the current line if§
possible. When the curser is moved from one line to another, the editor i
takes a copy of the new line before making any changes to it. The U S
command causes the copy to be restored. However the old copy is|ig
discarded and a new, one made in a number of circumstances. These are}%g
when the cursor is moved off the current line, or when scrolling in a8
horizental or vertical direction is performed, or when any extendedjg}
command which alters the current line is used. Thus U will not "undo™ ap 4
delete line or insert line command, because the cursor hac been moved
off the current line.

The SH command shows the current state of the editor. [nformationf
such as the value of tab stops, current margins, block marks and thef .
nam.e of the file being edited is displayed. Tabs are initially set at every -
three columns; this can be changed by the command ST, followed by :

-8-

QL BCPL Development Kit Screen Editor

indicating the coiumn pesition. The left margin should not be set beyond
the width of the screen. The EX command 'may be uced ‘o extend
n}ﬁrgins; once this comimand is given no account will be taken of the
right margin on the current line. Once the cursor is moved off the current
tine, margins are enabled once more.

iZlock control

A block of text can be identified by means of the BS {block start) and BE
(block end) commands. The cursor should be moved to the first line
required in a block, and the BS command given. The cursor can then be
moved to the last line wanted in the block, by cursor contral commands
or in any other way, such as searching. The BE command is then used to
mark the end of the block. Note, however, that if any change is mude to
the text the block start and block end become undefined once more. The
start of the block must be on the same line, or a line previous to, the line
which marks the end of the block. A block always contains all of the
line(s) within it.

Once a block has been identified, a copy of it may be moved into
another part of the file by means of the IB (insert block) command. The
previously identified block is replicated immediately after the current
line. Alternatively a block may be deleted by means of the DB command,
after which the block start and end values are undefined. It is not
possible to insert a block within itself,

Black marks may also be used to remember a place in a file. The SB
{show block) command resets the screen window on the file so that the
first line in the block is at the top of the screen.

A block may also be written to a file by means of the WB command.
The command is followed by a string which represents a file nama. The
file is create., possibly destroying the previous contents, and the Luffer
written to it. A file may be inserted by the IF command. The filename
given as the argument string is read into storage immediately following
the current line,

* Movement

QL 3CPL Development Kit _Screen Editor

The comma.id T moves the screen to the top of the file, so that the firs.
{ine in the file is the first line on the screen. The B command moves the
screen to the bottom of the file, so that the last line in the file is the
bottom line on the screen if possible.

and previous line respectively. The command.s CL ar}d CR move the
cursor one place to the left or one place to the rlgh_t. while CE places the
cursor at the end of the current line, and CS places it at the start.

It is common for programé such as compilers and assemblers to give
line numbers to indicate where an error has been detected. For this
reason the command M is provided, which is followed by a nurnber
representing the line number which is to be locate'd. The cursor will be
placed on the line number in question. Thus ML is the same as ifhe T
command. If the line number specified is too large the cursor will be
placed at the end of the file.

Searching and Exchanging

Alternatively the screen window may be moved to a particular context.
The command F is followed by a string which represents the text too.be »
located. The search starts at one place beyond the current cursor position e
and continues forwards through the file. If found, the cursor is placed at J
_the start of the located string. To search backwards through tl'.le text use I
the command BF (backwards find) in the same way as F. BF will find the |
last occurrence of the string before the current cursor position. To find
‘he earliest occurer.cé use T followed by F; to find the last, use B fol]ov:red ..
ay BF. The siring after F and BF can be omitted; in this case the siring by
specified in the last F, BF or E cominand is used, Thus

*F /wombat/
*BF

wiil search for *wombat' in a forwards direction and then in a reversef
direction.

-10G-

G BCPL Development Kit Secreen Editor

Tne E (exchange) command takes a string followed by further text
and a furiher delimiter character, and causes tive first string to be
exchanged to the last. So for example '

E /wombat/zebra/

would cause the letters 'wombat’ to be changed to "zebra’. The editor will
start searching for the first string at the current cursor position, and
continues through the file. After the exchange is done the cursor is
moved to after the exchanged text. An empty string is allowed as the
search string, specified by two delimiters with nothing between them. [n
this case the second string is inserted at the current cursor position. No
account is taken of margin settings while exchanging text.

A variant on the E command is the EQ command. This queries the
user whether the exchange should take place before it happens. If the
response is N then the cursor is moved past the search string. If the
response is Y or ENTER then the change takes place; any other response
(except F2) will cause the command to be abandoned. This command is
normally only useful in repeated groups; a response such as Q can be
used to exit from an infinite repetition.

All of these commands normally perform the search making a
distinction beiween upper and lower case. The command UC may be
given which causes all subsequent searches to be made with cases
equated. Once this command has been given then the search string
"wombat"” will match *“Wombat”, "WOMBAT", "WoMbAL" and so on. The
distinction can be enabled again by the command LC,

Altering text

The E command cannct be used toinsert a newline into the text, but the |
and A commands may be used instead. The [command is followed by a
string which is inserted as a complete line before the current line. The A
command is also followed by a string, which is inserted after the current
line. It is possible to add control characters into a file in this way.

The 5 command splits the current line at the cursor position, and acts

just as though an ENTER had been typed in immediate mode. The J
command joins the next line onto the end of the current one.

-11-

i 4

™
QL BCPL Development Kit Screen Editor ‘i':.

The D command deletes the current line in the same way as the' F
CTRL-ALT-LEFT command in immediate mode, while the DC command
deletes the enaracter at the cursor i3 the same way as CTRL-RIGHT.

Repeating commands

Any command may be repeated by preceding it with a number. For Y
example,

4 L /slithy/brillig/

wiil change the next four occurrences of 'slithy’ to ‘brillig". The screen is g
verified after each cominand. The RP (repeat) command can be vsed to 2
repeat a command until an error is reported, such as reaching the end of %
the file. For example, ;

#

A

RP E /slithy/brilllg/
will change all occurrences of 'slithy' to ‘brillig’".
command groups executed repeatedly. Command groups may contain §
further nested command groups. For example.

RP - { F /bandersnatch/; 3 (IB: M)}

will insert three copies of the current block whenever the string
‘bandersnatch’ is located.

Note that some vommands are possible, but silly. For examyle,

RP SR 60
will set the right margin to 60 ad infinitum. However, any sequence of 4
extended commands, and particularly repeated ones, can be interruptedp:

by typing any character while they are taking place. Command{
sequences are also abandoned if an error occurs. ;

-12-

.Ql, BCPL Development Kit

1.4 Cor~-mand list

In the extended command list, /s/ indicates a string, /s/t/ indicates

two exchange strings and n indicates a number, -

foamediate commands

F2

F3

F4

LEFT
SHIFT-LEFT
ALT-LEFT
CTRL-LEFT
CTRL-ALT-LEFT
RIGHT
SHIFT-RIGHT
ALT-RIGHT
CTRL-RIGHT
CTRL-ALT-RIGHT
SHIFT-CTRL-RIGHT
Up

SHIFT-UP
ALT-UP

DOWN
SHIFT-DOWN
ALT-DOWN
CTRL-DOWN

Repeat last extended command
Enter extended mode

Redraw screen

Move cursor left

Move cursor to previous word
Move cursor to start of line
Delete left one character
Delete line

Move cursor right

Move cursor to start of next word
Move cursor to end of line
Delete right one character
Delete to end of line

Delete word to right

Move cursor up

Cursor to top of screen

Scroll up

Move cursor down

Cursor to bottom of sereen
Scroll down !
Insert blank line

13-

Screen Fditor

QL BCPL Development Kit Sereen Bditor | s

Extended Commands

Aist Inseri line after current
B Move to bottom of file
BE Block end at cursor
BF Backwards find
BS Block start at cursor
CE Move cursor to end of line
CL Move cursor one position left
CR Maove cursor ane position right
CS Move cursor to start of line
D Deiete current line
DB Delete block
oC Delete character at cursor
E /sit/ Exchange sintot
EQ/sit! Exchange but query first
EX Extend right margin
F sl Find strings
[/st Insert line before current
IB Insert copy of block
IF/s/ ' . Insert files
dJd Join current line with next
LC Distinguish between upper and
lower case in searches
Mn Move tolinen
N Move cursor to start of next line
P Move cursor to start of previous line
Q Quit without saving text
R/s/ Re-enter editor with file s
RP Repeat until error
S “ Split line at cursor
SA /sf ‘ Save textto file
sB Show block on sereer:
SH Show infermation
SLn Set left margin
SRn Set right margin
STn Set tab distance
T Move to top of file
U Undo changes on current line
uc [Lquate U/C and V¢ i searches
WB/s/ Writeblock to file s
X Exit, writing text back
-14-

CL BCPL Development Kit BCPL Lanquage

+]

Chapter 2: BCPL Lang"uage

2.1 Introduction

A good introduction to BCPL can be found in “BCPL for the BBC
Microcomputer® by Chris Jobson and John Richards, published by
Acornsoft, while "BCPL - the language and its compiler” by
Martin Richards and Colin Whitby-Strevens. pubiished by the
Cambridge University Press, gives a full description of the language.
The BCPL Standards Committee alsa provides a formal definition of the
language.

BCPL provides a general structured way of expressing the logic of a
program, and declaring the data required. Only a basic set of features is
provided (a deliberate decision), the intention being that these basic
features should be further enhanced by the definition of procedures as
required. As a result the language is simple, compact, flexible, and
efficient to implement by avoiding unnecessary overheads.

The language has been implemented on a wide range of machines
ranging from large mainframes to hame micros. It has been used to write
compilers, assemblers, editors, database systems, applications
programs, turnkey systems and games.

The first part of this chapter provides a brief description of the

language as supported on the QL. The final sections describe how o run
the compiler and linker. The BCPL library is described in chapter 3.

-15-

QL BCPL Development Kit ECPL Language '

2.2 Data

Data is held in words which in this implementation are 32 bits long

{four bytes). Unlike languages such as Pascal, a word does not have a

type associated with it. The same cell can contain a pointer. an integer,
packed characters, a boolean value, indeed any bit pattern. BCPL makes
no checks whatsoever on the operations performed on this word, and as a
result it is possible to write programs which crash the computer. On the

other hand it is also possible to do anything in BCPL where in other M
languages one might have te resort to assembler; for example reading Kl

memory mapped IO ports and so on.

Data can be specified in a number of ways. A decimal number is ¥

represented by a simple set of digits, if prefaced by #X then the number
is in hexadecimal and if prefaced by #0 or just # then the number is in

octal. A character value is initialised by enclosing the character in single gi
quotes (); this will set the bottom eight bits only and clear the high order P

three bytes. The keywords TRUE and FALSE will set the entire word to
the boolean value.

A striag is a pointer to an area of memory initialised with a byte f ™"
containing the length and the bytes packed in byte by byte after that; a |
string is represented by enclosing a set of characters in double quotes ("). §g
A newline character is not allowed within a string, but the same effect &

can be obtained by the character combination *N which represents the

single character newline (hex 0A). The asterisk (*) is a general escape [l

character within strings or character values; in order to enter a real *

use **. Other useful escapes are *S for space, *' and *" for ' and ", *P for g3
forin feed and *Xnn-for the byte containing hex nn. Notice that ‘A’ is a
cell containing the character A in the bottom eight bits while "A" is a |_j
pointer to two bytes, the first containing 1 and the second the cl.aracter }; §

A. Note also that the expression "A" ="A" will never be true because the

two strings will be two different pointers to the same set of characters. «
The library routine COMPSTRING can be used to determine if two §

strings are the same.

A word can be a pointer to a sequence of other words {a vectar) which
is available for use, such an object is similar to an array. This is spemﬁed

by the command VEC which is followed by a constant expression i.-

indicating the size. A vector declared by VEC n will allocate n+1 words
from 0 to n. Space is allocated for the vector within the current stack

AR

2L BCPL Development Kit BCPL Lanruage

frame, so ihat when the routine in which the vector is allocated returns
to the calling routine the space is no longer availabls or valid. Dynamic
vectors which exist for the duration of the program can be obtained from
the library routine GETVEC and returned if required by FREEVEC.

A word can also be set to an initialised vector (a table) by means of
the TABLE declaration. The keyword TABLE is followed by any number
of constants separated by commas which are initialised into a vector of
the required length,

-17-

T '?‘;'"”"?‘?"?EH:’_P{'E-' T

OL BCPL Development Kit BCPL L.unguage

2.3 Daia deciaration

All variables must be declared before they are used. There are four
ways in which they may be declared: manifest, local, static and global.
The same name may be declared several different ways, the most recent
declaration which is still in scope is the one which is used. A variable
name must start with a letter, and can contain letters, digits and periods
(.}; the name can be up to 30 characters long. Variable names must be
distinet from keywords and upper and lower case are equated.

L.anifest

Manifest values are not associated with a word at runtime, and are
merely a convenient way of naming constants at compile time. They are
declared within a block enclosed by block markers $(and $) and preceded
by the keyword MANIFEST. The scope extends over the entire program.
For example,

MANIFEST S${ vecsize = 20 3)

Focal

Local variables only exist within the block or procedure in which §
they are declared. A word on the stack is allocated for each local §

variable, plus any extra space required if the local is declared as & vector

by VEC. The local goes out of scope when control passes out of the block

in which it was declared, either by dropping or jumping out of the block
or by calling another procedure. The local remains in scope if another &
block is entered Which is enclosed within the current block; if another [

variable with the same name is declared the old version will b
unostainable until the new version goes out of scope. When 2 block os
procedure is terminated the space allocated to the local is reused and the
variable will be re-initialised if the block is entered again.

A local is declared by LET followed by one or more variable names, ! g
followed by an equals sign (=), followed by a matching number of |

expressions with which the variables are to be initialised. The list either
side of the equals is separated by commas. The value ? means that the
variable is not to be initialised. For example,

18R

QL BCPL Development Kit - BC2L Langua

$({ LET a, b = 1, {number.of.pleces * 4;
T g = ? o
LET v = VEC 10
LET x, y = z, £{)

. The order in which the evaluation of expressions on the right ha
§1de of an declaration is performed is not defined. In the example abos
if z was ceclared global and the routine { altered z then the Iz
declaration should be broken into two,

Statie

Static data remains available throughout a program. The scope o
static is the block in which it is defincd, but it is possible to decls
statics at the outermost level before any procedures are declared a
thus ensure that the scope of a static is the entire program. Each sta
declaration allocates a word from within the code space initialised to t
specified constant value. A table is a vector of statics. [t is go
prqgramming practice to use static values as read only. If statics a
written to then the resulting code is not shareable (pure) and will not r
in Read Only Memory (ROM). A procedure name which is not declared
global (sez below) will be a static. Statics are declared within a blo
preceded by the keyword STATIC in the same format as MANIFEST.

STATIC 5{ overhead = 27 $)

Global

Clobal variables are allocated words from a special vector (the glot
vector; which is available all the time that a BCPL program is runnir
E;ach global must bz allocated a unique offset in the global vector. T
library reutines use globals in the range 0 to 149, so user prog;-a:
shculd normally start allocating globals at 150. The BCPL syste
head_er file which declares all the library plobals also declares t
manifest name ug which should be used to allocate globals slots v
ug+ 1 and so on, The size of the global vector is determined when a BCI
program is loaded and sufficent space allocated for that many globals.
a program intends to load a code overlay whilst it is running which us
higher globals it must make a dummy reference to a high global in ord
to ensure that the global vector is allocated sufficient space. Globals a
declared wit'hin a block preceded by the keyword GLOBAL. Each name

.19-

L BC L Development Kit

FE

! Tld
BCFIL Lancuagd

illowed by a colon (:) and a unique global number.

GLOBAL S(
number .of .pieces: ug
initialise: ug + 1
$)

-20-

e
5

. &:%‘

QL BCPL Development Kit BCPL Languaye

2.4 Seciions

BCPL programs m:iy be compiled as a number of sections, and the
sections linked together before they are run. A section can optionally
start with the SECTION directive, which is followed by & string which
names the section. A section continues until the end of the file, or until a
section terminator (a iine containing just a period €.) at the start of the
line) is encountered. In the latter case, the rest of the file up to the end of
tile, or another section terminator, is treated as a new section, but all the
sections are automatically linked together by the compiler. If different
sections are held in different files then each section must be linked
together before the program is run.

The only communication between sections is by means of the global
vector. Variables which are to be used in different sections must be
declared global or passed as parameters. Procedures in one section which
are to be called from another must also be declared global by specifying
the procedure name in the global declaration list. Unless this is done
procedures are defined to be static and only available within the current
section,

SECTION "Partlw
(code of section partl)

SECTION "Part2"
(code of section partz)
(end of file)

The directive GET can be used to include part of one file within
another. The most common use is to include a standard file which
contains GLOBAL and MAIVIFEST declarations. Tha standard header
file LIBHDR inciudes declarations for all the library procedures and a
rumber of useful manifest constants. In addition a private header file
can be inclv led via GET which would normally include the declarations
for globals and manifests used by different sections of a multi-section
program.

Comments in BCPL code are introduced by the symbol // or ||.
Anything to the right of these symbols up to the end of the line are
treated as a comment. A comment which extends over many lines is
enclosed by the symbols /* and */.

.21-

Fi

QL BCPL Development Kit BCP:, Language E

The laysut of 2 BCPL program is not important as far as the corfi.piier ;
is concarned. Sym'ols should be separaied by whlte space (spros ‘or 3
tabs). Newlines can be used as white space but the I'ollowu.mg r‘u[es appiy.
If the compiler is expecting an expression, and the expression is complete g
by the time a newline is reached, then the expression is f-egarded as |
complete. This means that lines do not have to be terminated by a}
statement terminator semicolon (;) although multiple statements on the
same line must be separated in this way. If it is wished to extend anf
expression over several lines then the expr.?ssion mu'st be mz?de
incomplete at the line end. This is normally achlevgd_ by either placingQ
the entire expression in brackets, or by leaving a trailing operator at the
line end. For example, :

LET a = (number.of.pieces
* 4)

LET b = number.of.pieces *
4

would both be correct program segments, but

LET a = number.of.pleces
LA |

would generate a syntax error as the first line appears complete.

{

QL BCPL Development Kit BCPL Language

2.5 Precedures I

BCPL programs are constructed from one or more procedures, The
user must define a procedure called START which is called when BCPL
execution begins. This may call other procedures until it wishes to
terminate. This is done by calling the procedure STOP with a return
code; this is normally zero if all went well and an operating system error
code otherwise. The BCPL command FINISH is equivalent to calling
STOP{0) and if START ever returns on implicit FINISH is executed.

Procedures can be declared by using LET or AND. Procedures
declared using LET are only avaiiable to be called by procedures
appearing textually later in the program unless they are declared global
by having a matching name in the global declaration. The LET is
followed by the name, an opening bracket, zero or more parameters
separated by commas followed by a closing bracket. A routine is declared
by following this by the keyword BE, while functions use = instead.

LET f{a) BE
$(
. contents of routine £, cannot call g

$)

LET g{) BE

s

... contents of routine g, which can call £
§)

If the first procedure is declared using LET a second procedure can
be declared in exactly the same way, replacing LET with AND. In this
case the two procedures may call each other. Thus in the example above,
if the routine g was declared with AND instead of LET the routine f
would be able to call it.

Routines declared with BE return by means of the command
RETURN or by dropping out of the bottom of the routine. A function is
either a simple statement, for example

LET f(x,y) = x+15 * y

or a VALOF block which will contain one or more RESULTIS commands.
This is described in more detail below.

.23.

f

BCPI. Lanquagef

QL BCPL Development Kit

A procedure is cailed by specifying the name, an opening bracket,!
zero ¢. maore parameters and a closing bracket. F:nctions ceturn a resulit!

and routines do not, although tha result of a function can be ignored if
tiis is required. Parameters are passed by value, which means that thek

value of a parameter is copied before it is passed to a procedure. Unlike
languages such as FORTRAN, a procedure which alters its arguments

does not alter the values of the parameters in the caller. Variables
declared within the caller can be modified if required by passing the 8§

addresses of those variables as parameters.

.24.

Bea _ ste (uoapd

QL BCPL Development Kit BCPL Laiiguage

2.C Blocks

The body of a procedure consists of either a simple command such as
RETURN or an assignment statement or a block, A block is enclosed by
block markers $(and $) and may start with a number of locai variable
declarations. It will then contain a number of commands. An entire block
may be used wherever a simple command is required; if the block does
not contain any declarations then it sometimes known as a compound
command, Thus a procedure normally consists of one or more blocks. For
example,

LET £(x,vy) BE // Routine declaration of f

S{ LET a = y*3 // Local variable a declared
IF a=x THEN /7 IF command
${ glay // Compound command
niy) // «. 1s this block
S) // Znd of IF command block
S} /7 End of routine block

-25.

BCPL Language il BCPL Development Kit BCPL Language

' QL BCPL Development Kit

Conditional cperators

~.7 Expressions and Operators o
; = or EQ Equal :
An expression consists of variables, constants, VALOF blocks and "= or \= or E Not equal
functions connected by a number of operators. These uperators are Pf > or GT Greater than
described in this section. 14 >= or GE Greater than or equal
< or LT Less than
Arithmetic operators _ <= or LE Less than or equal
3
&; The first set of operators refer to integer arithmetic and are as Conditional operator
follows.
"There is one operator called the conditional aperator which may be
* Multiply used to select one of two alternative expressions. The syntax is
/ Division
- REM Remainder <¢onditional expression> -> <exprl> , <expr2>
+ Plus

where if the <conditional expression> evaluates to true then value is
<exprl>, and if false then the value is <expr2>. This can be used
anywhere in an expression, for example

- Minus
ABS Absolute value

Logical operators

Logical operators can be used as bit by bit operators or within
boolean expressions. £

LET a = 15 * ((b=2) -> ¢+l, d-1)

which will set a te 15%c+1)if b=2 and to 15*(d-1) otherwise. The use of
brackets when using this operator is encouraged both for clarity and
because of odd effects due to different operator precedence.

& or /\ or LOGAND Logical AND
| or \/ or LOGOR Logical OR

EQV Logical egquivalence Addressing
NEQV Not equivalent (exclusive OR)
<< Shift left _ BCPL provides a flexible way of handling pointers. These are used to
>> Shift right implement features such as arrays and data structures found in other |
NOT or = or=} Logical NOT languages. A variable can be set toa pointer in a number of ways. It may

)

be: initialised as a vector with VEC or a table with TABLE or a strin
with "™ It can also be set ‘o point to the location at which a variable ig
stor_ed. This is handled by the @ operator (LV is a synonym). If a is a
va_rlable, then @a is the address of that variable: in other words it is a
pointer to where the variable a is stored

If these opzrators are to be used as bit operaters within a booleanr ay
sxpression then they should be bracketed. For example the first two lines +4
below are equivalent, and test for a=true and b zero. The third line t2stsg 2
for a ANDed with b being zero (for example a=3, b=8 would yield true). |

Pointers are used by the two operators ! (exclamation mark) and %
{pgrcent}‘ If p is a pointer then !p is the value of the word which is being
pointed at. [[p were set to @a as above, then !p would be the value ofa. If
p were initialised to a table as in .

IFassb-=20
IF a & (b = 0)
IF (a & b) = 0

-26- . ’ -27-

T

CL BCPL Development Kjt BCPL Lancuage r "

LET p = TABLE i, 2, 4, 8, 16
L..2n Ip would be the first ele.aent of the table, i.e. the value I.

The ! operator (often called the indirection operator) can also be used |3l
as a dyadic operator - taking two values. In fact 'p is a shorthand form for .aN
p!0, and we can refer to p!1, p!2 and so on meaning the elements at offset
1, 2 etc. In our example above, p!l has the value 2,p!2is 4 and so on. We
can thus use ! with a vector much as one would use a single dimension b,
array. If p is a vector then we can access what other languages might ¢all
p(0) by pl0. and p(17) by p!17.

The indirection operater can also be used on the left hand side of an k&
assignment statement in order to place values into the word being | o
pointed at. For example,

p!l? := 25

will set the word at offset 17 from our pointer p to have the value 17,)
Beware of the lack of data types here. BCPL does not know whether a .
word is a valid pointer or not. If we had set P to the value 3 and then - !
executed the above instruction we would have altered the value at
(3+17); which could wel] crash the computer, 3

If you are used to tanguages such as BASIC then you will recognise ¢ -
that lis both PEEK and POKE depending on which side of an assignment | g
it is used. However it is not quite the same, as BCPL uses a private
addressing scheme where the value stored in a BCPL pointer is the |
actual address divided by four. Thus if we had set p to 3 as described
above, the actual value we would have altered would be (3-- 17)*4 =
bytes 80to 83, -

There are cases where we do not wish to access 2 whole word from
memory, merely a byte. In this case the aperator % can b2 used. This is »
used in conjunction with a pointer, but takes an offset in bytes and } &
returns only a byte. It is especially useful when the pointer was intialised
to a string. If we set

LET p = "Hello"

then p%0 will be the length of the string (5), p%1 will be "H', p%2 will be
‘e'and so on. The byte operator can also be used on the left hand side of an 'g)

.08-

BCPL Language

QL BCPL Development Kit

C.pression, so for example

would change the string stored at pto "Hallo".

[t is worth noting that although PIN is the same as NIP this is not
true where the % operator is concerned, i.e. P%N is not the same as
N%P.

Floating point

Floating point operations are not provided in BCPL as explieit
operators. This is because the representation used for a fleating point
value is two BCPL words, and is represented by a pointer to a vector
(declared as VEC 1). Once suitabie vectors have been constructed
floating point operations can be performed on them by means of a set of
library routines as follows.

FABS Absolute wvalye
FDIV Division
FMINUS Subtraction
FMULT Multiplication
FNEG Negation

FPLUS aAddition
FPOWER Powers

These routines take real numbers in vectors and pack the result into a
result vector which must also be passed as an argument. For convenience
the address of the result vector is passed back as the resuit, enabling
expressions such as

d 1= fplus({ a, fminus¢{ b, c, 4 Y.od)

to be used. The values are copied before they are used, so that the same
vectors can be used for each argument If required. This is useful when
incrementing a real variable, for example:

fplus(a, inc, a)

Comparisons may be made on floating point numbers using the routine
FCOMP which returns an integer indicating the resultofa floating point

-29.

QL BCPL Development Kit

coraparison. Floating point constanis may be cepied by copying realiOf’
and real!l. They may be initializsed by either calling the library roriine),
FLOAT to convert an integer into a floating point number, or by the};
routine FLIT which takes a string representing a floating point value};

and converts that into the internal representation used. Finally real

numbers can be read and written from a program using the routinesM

READFP and WRITEFP.

The floating point representation used is identical to that used in
SuperBasic, and the same operating system routines are used to

manipulate the values. Thus floating point calculations will have thet

same precision and rounding errors in either BCPL or SuperBasie.

Crperator precedence

ji
Unless otherwise altered by the use of brackets (which should always

be used if you are unsure) operators bind in the following order o
precedence. Operators of the same precedence evaluate from left to right.

!

e

%

* / DEM ABS

b -

= NE « <= > »=
<L >

NOT

&

|

EQV NEQV

.30-

BCPL Lantuageps

QL BCPL Developmen: Kit BCPL Language

2.8 Commands

Commands are specified one to a line, or on the same line separated
by semicolons {;). Commands must come after any declarations within
the current block.

Assignments

An assignment statement assigns new values to one or more
variables. The variables are placed in a list separated by commas, then

the assignment symbol : =, then a matching number of expressions. For
example

a := a+l

a, b = £(), 2z

The multiple assignment is exactly the same as the equivalent
individual assignments,

Conditionals

The commands [F and UNLESS test a condition and execute the
compound command foliowing if the value was true or false respectively.
The command TEST is followed by a condition, a compound command,
the keyword ELSE and another compound command. If the condition is
true the first compound command is executed, otherwise the second one
is used, The condition is an expression which should evaluate to true or
false, and is followed by the keyword THEN, DO is a synonym for THEN
and OR is a synonym for ELSE. For example,

I¥ a=b THEN

5{ a := b-1 _
TEST x>16 THEN a := a-t
ELSE §{ b := Q; a 1= 25 §)

S)

For more complex cases, the SWITCHON command can be used. The
syntax is

-31-

L BCFL Development Kit BCPL Language|y d

SWITCHON <expression» T'ITC
$. CASE n:
... Code for <expression>=n
ENDCASE
CASE m:
... Code for <expression>=m
ENDCASE
DEFAULT:
«+. Ccde for any other value
3)

The SWITCHON command evaiuates the expression following it and
matches against any values specified in the list of CASE statements
(there may be one or more of these). Each CASE keyword is foilowed by a
constant expression. [f the constant matches the SWITCHON expression
then control jumps to the code following the CASE. If the command|
ENDCASE is encountered then control jumps to the end of the block
containing the CASE statements. If no ENDCASE is used then code for
the next CASE will be entered. The code following DEFAULT is used i
there is no match. If no DEFAULT is specified and there is no match then
the effect is that of executing ENDCASE.)

Flow of cont: ol

Flow of control can be aitered using a large range of commands. For
those whose old habits die hard, GOTO is followed by a label. A label isj
defined by specifying a name followed by a colon. The label will be staticf
unless a matching global declaration exists, in which case it will be
global.

Simple repetition is handled by the FOR statement. The syntax is

FOR <var> = <starct expr> TO <stop expr> [BY <incr>]
DO <command>

[f the BY <incr> is omitted it defaults to 1. The value of <incr> must!
be a constant. The <var> is automatically declared, and has the scope of}
the following command block. Initially <var> is set to <start expr>f;
and the iteration test performed. If <incr> is positive then this test b"
satisfied if <var> is not greater than <stop expr>; if <incr> is§
negative then it is satisfied if <var> is not less than <stop exopr>. The
<command> {which may be a block) is executed repeatedly while the

.32

QL BCPL Development Kic BCPL Languag

test is satisfied; after each itera.ion the value of ;Cincr‘:*- is added t
‘_“: Var:)- ' .

More generalised repetition is handled by

WHILE <condition> DO <command>
UNTIL <condition> DO <command>
<command> REPEATWHILE <condition>
<command> REPEATUNTIL <condition>

where the first forms will execute the command zero or more times, anc
the second forms execute it one or more times.

Any repetitive compound command may contain’ the commands
BREAK or LOOP. LOOP jumps to just before the test of the immediatels
enclosing toop while BREAK jumps out of the loop. They are of particula
use in conjunction with the command

<command> REPEAT

which executes <command> for ever unless BREAK, RETURN
RESULTIS or GOTO is used to exit from the loap.

VALOF blocks

A block can be made to return a result, which can be used as part ol
an expression. In particular, a function normally consists of a block
which returns a value in this way. The block is preceded by the keyword
VALQF, and it should contain one or more RESULTIS commands.
RESULTIS is followed by an expression, which is the value of the block,
and exits from the block. If an exit is made from a block without using
RESULTIS the value is undefined. A simple example of a function might
be

LET f({a) VALOF
${ LET b a-1
IF a=0 THEN RESULTIS §
RESULTIS b+number.of.pieces
$)

VALOF is often used in conjunction with SWITCHON. In the following
example the VALOF block returns a string which is used as an argument

.33-

f

QI, BCPL Development Kit BCPL Languagel f GLBCPL Development Kit BCPL Lanzuage

to WRITES. The actual string used depends on the value of the voriablep€

err.message. 2.9 Runring thz compilar C o
writes ("Brror: ™)
writes { VALOF SWITCHON err.message INTO
$(CASE -3: RESULTIS "No store”
CASE -1: RESULTIS "Not complete"
DEFAULT: RESULTIS “"System error"

$)

The compiler is run using EXEC or EXEC__'W to load it into
memory. [f EXEC is used then the cursor must be attached to the new job
by typing CTRL/C; in this case other commands could run at the same
time (if there is sufficient memery). Using EXEC__W connects the
keyboard o the new job automatically until the compiler has finished
running. The compiler expects to be on drive mdv1 and it is called BCPL,
so a suitable call would be

EXEC_W mdvl_bcpl

The compiler is averiaid, which means that the microdrive on whici
it resides must remain in place whilst the program is compiling. The
compiler will normally require most of the available memory on an
unexpanded QL. If a space is taken up with a SuperBasic program in
memory then, although the first part of the corupiler will be loaded, there
may not be room for the later overlays which are larger.

The compiler asks for the source file name which must be provided.
This file should contain a valid BCPL program. It next asks for a binary
filename, which is where the compiled program will be placed. If just
ENTER is pressed in response to this no output will be produced and the
source will just be checked for syntax errors, The next question concerns
the verification output. This will contain any errors detected by the
compiler. If just ENTER is pressed then the screen is used, otherwise a
file or a device such as serl can be specified. Finally any options needed
are requested. The defauit is normally sufficient for cormpiling normal
sized programs and this is assumed if just ENTER is pressed. The
following are valid options.

Lin Set first pass workspace to n longwords. Default 10000.
Dn Set declaration workspace to n longwords. Default 1800,
Wn Set code generator workspace to n longwords. Default 5000.

Enter these options sequentially on one line and then press ENTER., For
example

L10050 D200QC W5200

Ifan invalid option is detected the question is asked again.

-34- -35.

Q1. BCPL Development Kit BCPL Language

The next question concerns whether the window used »y the compiler
is to be aitered. The default window will be used if the response is N or

just ENTER. This is set to be the same as the initiai window when the i
program is delivered, but it can be aitered if required. See Appendix A |

for details of how to do this. If the response to this question is Y then the
window is displayed on the screen. It can be moved by using the cursor

keys and the size can be changed by using ALT and the cursor keys. |

When you are happy with the window position press ENTER and the
compiler will start running.

Any errors detected will be displayed on the screen; if it is a syntax
error then the section of program at fault will also be printed. When the f*

compiler encounters the GET directive, a filename is constructed as

b o

5

follows. Firstly the string is used directly as a filename, so that if you B -

have typed

GET “mdv2_myhdr*

then the correct file will be obtained. If a filename cannot be found, the

characters "mdvl__" are placed at the start and another attempt is p |

made. Thus a command of the form

GET "libhdr"

will read in the standard library header from mdvl. (See further in '

Appendix A.)

During the compilation process a work file called mdv2__bepl__work
is created and deleted. You should avoid using this filename yourself,

.;i._;'ﬁ
t

and should ensure that there is sufficent space on the microdrive in mdvZ§'y

for both the source file and this temporary file. The temporary file is not¥

much larger than the binary fle produced and is deleted before thep,

binary is written, so if there is room for your output there is normaliypa

room for this work file. If there are no syntax errors the output will
contain a binary version of your program which you can now goon to run,
after it has been linked.

-36-

f

=3

QL BCPL Development Kit BCPL Language

2.10 Running a program

A simple BCPL program will consist of a single section, including a
definition for the routine START. This program must be linked with the
BCPL runtime system in order to produce a program which can be run
using EXEC or EXEC__W. This is performed by the program BLINK.
This is run by the command

EXEC W mdvl_blink

and once loaded it will request the name of a binary file. This should be
the output [rom a previous run of the compiler. Once satisfied on the first
input name it will ask for a further binary file input. In the simple case of
a single segment program you should now press ENTER. You will then
be asked for an output file name, which is where the linked program will
be placed. This output will contain your program and the complete BCPL
runtime system, and will be a code file which is directly runnable using
EXECor EXEC_ W,

If you are still developing a program, the next step after creating a
code file with BLINK would be to run it, and so BLINK allows a short cut
here, If you simply press ENTER in response to the raquest for the code
file, BLINK will load your program and then execute it immediately.
Before it starts your program the window will be cleared, and you can
start testing, There is a restriction on this use, which is that the stack
space used will not be alterable and that more space than is needed will
be taken up because both BLINK and your program are in store
simultaneously,

if you want to make a code file then enter a suitable file name. You
will next be asked for the stack size to be used. The stack is used for all
locat declarations and vectors, and the defauit is 800 longwords.
Therefore if your program has declared a vector of 1000 you will need to
increase the stack space. In general, it is better to use the default value
obtained by pressing ENTER and write your program se that large
vectors are obtained from the pool of available {ree space by means of
calls to the library routine GETVEC.

if you have written a program in several sections then you should
enter the filename of the first section as the first input file, and then
instead of immediately pressing ENTER when asked for a further input

-

-37-

QL BCPL Development Kit BCPL Langgaggr

7 P, [L
file you should provide the next file name and so on. A v¢ponse ot just,

ENTER terminates the list. The sections will normally be the output},

from the compiler, but it is also possible to include sections of program
written using the assembler provided in Metacomco's Assembler
Development Kit. See Appendix B for fuller details.

|
|

——

AR T

YL BCPI Development iTit BCPL Librar

Chapter 3: BCPL Library

3.1 Introduction

This section describes the library routines available under QDOS,
and then details the global variables which are set to useful values.

The procedures are listed in alphabetical order with a brief
description. Following this a fuller description of each routine is given,
again in alphabetical order.

Most routines can return a negative error code besides the expected
result, and results returned should therefore always be tested before
they are used. For example, the routine FINDINPUT returns either a
stream control block if a file can be opened, or a negative code if the open
fails. The result should always be checked before starting to read from
the stream via functions such as RDCH. The negative error codes are the
standard QDOS errors as described in the Of. User Cuide.

Input and Qutput

All /O is performed in BCPL by viewing data as a stream of
characters. A stream is created by means of a call to FINDINPUT,
FINDOUTPUT or FINDTERMINAL., For more complex use, the routine
OPEN is also provided.

A stream is selected for input by means of SELECTINPUT;
characters are reaa one at a time by RDCH until the special character
ENDSTREAMCH is returned which signals the end of the data. The last
character read can be pushed back into the input stream by means of a
call to UNRDCH although this is only guaranteed to work once without
an intervening call to RDCH. An input stream may be closed when it is
finished with by calling ENDREAD.

A stream is selected for output by means of SELECTOUTPUT;
characters are written out to the stream by WRCH until it is closed by
calling ENDWRITE. The value ENDSTREAMCH returned by RDCH
should not normally be written out - it merely serves as an indicator and
is not actually a character within a fila.

QL BCPL D. velopment [lit BCPL Library

wMore eficient routines are available for transferring larger amounts
of data with one call. READBYTES and WRITEBYTES copy to and from
a vector of characters to a stream while READFILE and WRITEFILE
can be used to transfer an entire file to and from memory.

Input may be buffered or unbuffered. The routine FINDINPUT
returns an unbuffered stream and FINDTERMINAL returns a buffered
stream, The function OPEN can return buffered or unbuffered streams
as required. The difference is important in two ways, Firstly a buffered
stream reading from the keyboard will be accepted only when ENTER is

pressed. This allows the user to correct the line using the normal QL
controls. and also provides an automatic refiection of characters typed.
This should be compared with an unbuffered stream where characters]
are received as soon as they are typed and are not reflected; this is
required when writing an application such as a screen editor, for
example.

Secondly the buffering of a stream alters the behaviour of certain
streams which can be both read and written. Other BCPL
implementations will normally insist that the argument to
SELECTINPUT must be the result of calling FINDINPUT and the
argument to SELECTQUTPUT the result of FINDOUTPUT. On the QL
this is not so. A stream opened by FINDOUTPUT to the device CON can
be used for input, and the stream is a valid argument to both
SELECTINPUT and SELECTOUTPUT. Other streams are not valid for
this two way process (it depends on the device connected to the stream)
and so SELECTINPUT and SELECTOUTPUT can be used to detect if.
the selection is valid. If either of the routines are passed an argument for

which the directionqr_equired is not valid, they will return zero and set the
current stream as unset. A subsequent attempt to read or write to an'
unset strear will result in a fatal error, but the result from the celection
routines can be tested to determine if all was well in order to avolid this.

A stream to a device such as SER1 can be used for both input and
output, and BCPL allows it to be used in this way. If the routine
FINDINPUT (or FINDOUTPUT) is used to open the stream then the
stream will be unbuffered, which means that data can be transmitted,
back down the serial line as soon as a character is received. If a buffe red|
stream were used the characters would not be made available to the
calling program until a newline was received or the buffer filled up.
However there may be cases where the user wishes to decide whether the
stream is buffered or not, and hence the routine OPEN is provided which

A0

QL BCPL Devel: xmeat Kit BC?2I, Library

.

aIlovfrs more control cvar this area. The routine READLINE is also
prpwded which always uses buffered input, this can be useful when a
mixture of buffered and unbuffered is required.

Random access to file can be achieved by the routines NOTE and
POINT. The first routine can be used to remember a place in a file; it
returrls.the current byte position in the file, The routine POINT is us:ed
to p051t1‘0.n the current reading or writing ‘cursor' to a given byte offset
The_ position might be computed as the record number times record size-
for instance, or it could be the result of a previous cali to NOTE. Once.
positioned suitably the stream may be read or written as required;
streams associated with files are always read/write. Information about z;

file can be extracted by the routines READFILEHEA
SETFILEHEADER, HEADER and

' The initial selection of streams is that input and output are both
directed at the screen {the CON device). When the current output stream
refers to‘ the screen complete control of the display is available through
the routines WINDOW and SCREEN. In addition the window can be
recologred using RECOLOUR and character founts changed by FOUNT
Gr_a_phlcs are available through the PLOT routine which takes f‘loating-
point numbers as arguments. These are represented by a vector to two
BCPL words (eight bytes) and are manipulated by the library routines
FABS, FCOMP, FDIV, FIX, FLOAT, FLIT, FMATHS, FMINUS
FMULT, FNEG, FPLUS and FPOWER. Floating peint values can be;
read and written using READFP and WRITEFP.

. L ECFL Developr »nt Kit

BCPL, Library

3.2 Global routines

ABORT

AFTOVEC

CAPITALCH

CLOSE

COMPCH
COMPSTRING
DATE
DELETE

ENDREAD

ENDTOINPUT

ENDWRITE

FABS

FCOMP

FOIV

ahorts the run with diagnostic output

allocates a variable amount of memeory from
the stack

- converts a character to upper case

closes a QDOS channel (see ENDREAD,
ENDWRITE, OPEN)

compares two characters irrespective of case
lexically compares two strings

obtains the date as a string

deletes a file

currently selected input stream is closed {see
FINDINPUT, SELECTINPUT)

Pﬁlﬂ;hf‘ﬂ 2%
B YT LAALALE KEiE WS

[14
utpu
reselects the stream fo

nut gtream to the beginning and
r

input

currently selected output stream is closed {see
FINDOUTPUT,SELECTOUTPUT)

floating point ahsolute value {see FCOMP,
FDIV, FLIT, FMATHS, FMINUS, FMULT,
FNEG, FPLUS, FPOWER)

floating point comparison {see FABS, FDIV,
FLIT, FMATHS, FMINUS, FMULT, FNEG.
FPLUS, FPOWER)

floating point division {see FABS, FCOMP,
FLIT. FMATHS, FMINUS, FMULT, FNEG,
FPLUS, FPOWER)

N Wb T~

"l

QL BCPL Develooment Kit -

CCPL Library

FINDINPUT

FINDOUTPUT

FINDTERMINAL

FIX

FLIT

FLOAT

FMATHS

" FMINUS

FMULT

FNEG

FOUNT

FPLUS

FPQWER

finds and opens an input stream (see
SELECTINPUT, ENDWRITE)

finds and opens an o{;tput stream {see
SELECTOUTPUT. ENDWRITE)

opens a two way stream to a console device

converts a real number to an integer (see
FLOAT .

set floating point literal (see FABS, FCOMP,
FDIV, FMATHS, FMINUS, FMULT, FNEG,
FPLUS, FPOWER)

converts an integer to a real number (see FIX)

floating point maths functions (see FARBS,
FCOMP, FDIV, FLIT, FMINUS, FMULT,
FNEG, FPLUS, FPOWER)

floating point subtraction (see FABS, FCOMP,
FDIV, FLIT, FMATHS, FMULT, FNEG,
FPLUS, FPOWER)

floating point multiplication (see FABS,
FCOMP, FDIV, FLIT, FMATHS, FMINUS,
FNEG, FPLUS, FPOWER)

floating point negate (see FABS, FCOMP,
FDIV, FLIT, FMATHS, FMINUS, FMULT,
FPLUS, FFOWER)

reset character fount

floating point addition (see FABS, FCOMP,
FDIV, FLIT, FMATHS, FMINUS, FMULT,
FNEG, FPOWER)

raise floating point to a power

QL. BCPL Dovelopment Kit

BCPL Library

FREEVEC

GBYTES

GET2BYTES

GETBYTE

GETVEC

INKEY

INPUT

LEVEL

LONGJUMP

MULDIV

HEWLINE

NOTE

OPEN

OUTPUT

PACKSTRING

returns a vector aliocated by GETVEC to the
free pool

accesses bytes from memory {see
GET2BYTES, GETBYTE, PBYTES)

accesses a 2 byte vailue from memory (see
GBYTES, GETBYTE, PUT2BYTES)

extracts a byte from memory (see GBYTES.
GET2BYTES, PUTBYTE)

aliocates a vector from the free store area (see

FREEVEC)

returns a character if typed within a timeout
period

determines the currently selected input [§

stream

returns a value for use with LONGJUMP (see
LONGJUMP)

executes a non local jump {see LEVEL)

evaluates (A * B)/C with a 64 bit intermediate

result

writes a newline to the current outpat stream

returns a marker to the current position ¥

reached in a file (see POINT)
opens a QDOS channel

identifies the currently selected output stream
(see FINDOUTPUT, SELECTOUTPUT

packs the characters in a vector into a string
{see UNPACKSTRING)

Py

i L b -

_QL BCPL Development 1yit

BCPL Library

PLOT

POINT

PRYTES

PUT2BYTES

PUTBYTR

RANDOM

RDCH

READBYTES

READFILE

READFILEHEADER

READFP

RIEADLINE

READN

RECOLOUR

REWIND

screen graphics operation

resets the logicai position within a file (see
NOTE)

updates bytes in memory (see GBYTES,
PUT2BYTES, PLTBYTE)

updates a 2 bytes value in memory (see
GET2BYTES, PBYTES, PUTBYTE)

updates a byte in memory (see GETBYTE,
PBYTES, PUT2BYTES)

provides a pseudo random number

reads the next character from the currently
selected input stream (see UNRDCH)

reads a block of data from a file (see
READFILE, WRITEBYTES)

reads an entire file into memory (see
READBYTES, SAVEFILE)

reads a file header

reads a floating point number from the current
input stream (see READN, WRITEFP)

reads a iine of data from the current input
stream {see RDCH, READBYTES,
READFILE)}

reads an integer number from the current
input stream (see RDCH, UNRDCH)

recolour a window (see SCREEN, WINDOW)

rewinds an input stream to the beginning

i A

L BCPL Development Kit

BCPI, Library

SAVEFILE
SCREEN
SELECTINPUT
SELECTOUTPUT

SETFILEHEADER

SETGLOBALS

TIME
TIMEOFDAY

UNPACKSTRING

UNRDCH

UNSETGLOBALS
WINDOW

WRCH

writes a section of memory to a file (see
READFILE, WRITEBYTES)

screen operation (see RECOLOUR,
WINDOW)

selects a stream for input (see FINDINPUT,
ENDREAD)

selects a stream for ouvtput (see
FINDOUTPUT, ENDWRITE)

writes a new file header

initialises globals defined in loaded code
defines the éntry point of a program
exits from a program

returns the time in seconds since the startof a
job

returns the time of day as a string

unpacks the length count and characters in a
string inte a vector, ane to a word (see

" PACKSTRING)

pushes a character back into the currently
selected input stream so that the next ca'l of
RDCH on that stream will yield that character
{see RDCH)

uninitialises globals defined in lnaded code
screen operation (see RECOLOUR, SCREEN)

writes a character to the currently selected
output stream

QL. BCPY Davelopment Kit » Y LCPL Library

WRITEBYTES write block of memory to f{ile (see
READBYTES, SAVEFILE)

WRITED writes a number to the current sutput stream
in a given field width

WRITEF writes out formatted data (see. WRCH,
WRITED, WRITEHEX, WRITEN,
WRITEQCT, WRITES. WRITET, WRITEU)

WRITEFP writes a floating point number to the curr nt
output stream

WRITEHEX writes out a number in hexadecimal format

WRITEN writes out a number

WRITEQCT writes out a number in octal format

WRITES writes a string

WRITET writes a string in field of given width

TR AR AT e

CLBCPL Development Kit BCPL Library

ABORT

Purpose: Toabortthe run with diagnostic output.
FPorm: abort({ code }
Specification:

This routine is used to terminate a program and provide diagnostic
output. A message indicating the meaning of the code is printed, followed
by a backtrace of the BCPL stack. This displays the functions culled up to
the call of ABORT and the first few values on the stack for each function,
These values will be the arguments and then the local variables in the
order they were defined. If a local variable is defined to be a vector then
the stack will contain a pointer to the start of the vector, followed by the
elements of the vector.

The routine can be called in a number of ways. Firstly it can be called
by a user program, and in this case the code specified must be positive.
Secondly it may be called by other library routines if a call to QDOS fails
in some odd way; in this case the value of the argument will be negative
and represent the QDOS error code. Thirdly the routine may be called if
a runtime error such as divide by zero or calling an undefined global is
detected. In this case the error code will also be negative and a suitable
message will be printed.

It is possible for a user prograin £o specify a new version of ABORT if
required, which »an take any suitable action. However the routine
specified as ABORT should not normally return; it should either call
STOP or LONGJUMP.

e g e e
B 2 AR

TIETLY

L BCPL Development Kit Lt BCPL Librarv

APTOVEC

Purpose: Toallocate a variable amount of memaory from the stack.
Porm: res := aptovec(£n, size)
Specification:

The specified function is called after allocating a vector of length 'size'
from the stack. The function 'fn' is called with two arguments: the first is
the vector so atlocated and the second is the value of 'size’. The result is
any result returned by 'fn’,

This routine is provided for compatibility with other BCPL systems,
hut should not be used in general. In other BCPL implementations all the
available space is allocated to the stack. and hence APTOVEC is used to
carve up part of the stack as workspace. In this implementation most of
the available space is available via the routine GETVEC.

CAPITALCH

purpose: Toconvertacharacter to upper case.
Porm: <ch2 := capitalch({ ch)
Specification:

[f the character 'ch' is any of a, b,...., z then the result is the upper case
version of that character (ie. A, B,...., Z respectively}. Otherwise the
result 1s just the character.

QL BCP.L Deveo'apment Kit BCPL Library

CLOSE

Purpose: Toclosea QDOS channel

Porm: error := close (stream)
- Specification:

This routine is ealled internally by ENDREAD and ENDWRITE to close
down a stream. Any streams not closed by the user program are closed
automatically when the program terminates. Closing a stream makes
some more store available and closes the connection with the QDOS
channel. User programs should normally use ENDREAD and
ENDWRITE in preference to this routine. The result is zero if the
function worked and a negative QDOS error code otherwise.

See also: ENDREAD, ENDWRITE, OPEN

COMPCH

rurpose: Tocompare two characters irrespective of case.
Porm; res := compch(chl, ch2 }

Specification: .

‘The two characters are upper cased if required {oy calls ol capitalehi, and
then lexically compared. If chl occurs before ¢ch2 in the ASCI! ordering
then the result is negative; if they are the same then the result is zero; tf
chl occurs after ch2 then the result is positive.

QL BCPL Development Kit v ® BCPL Library

COMPSTRING

Purpose: To lexically compare two strings.

Form: res := compstring({ sl, s2 }
Specificacion:

The two strings are lexically compared with the characters upper cased
using compeh. [f s1 oceurs lexically hefore s2 then the result will be
negative; if they are the same then the result will be zero; if sl cecurs
after s2 then the result will be positive,

DATE
Purpose: Toaobtain the date as a string.
Form: s := date()
Specification: |
This function returns a string which represents the current date
{assuming that this has been set correctly when the machine was first

started). The string is in the form "YYYY MMM DD"

See also: TIMEOJOFDAY

QL BCPL Develonment Kit DCPL Library

DELETE
Purpose: Todelete afile.

Form: error := delete (name)

Specification:

Attempts to delete the file specifed by the string name. !f this succeeds
then the resuit will be zero, otherwise it will be a negative QDOS error
code indicating the reason for failure.

ENDREAD
Purpose: Thecurrently selected inputstream is closed.
Form: error := endread()

Specification:

The currently selected input stream is closed. If no stream is selected
then the routine has no effect. Any store associated with the current
stream is released, and the file or device cannected to the stream is
closed. The current input stream is unset. The result will be zero if
succesful or a negative QDOS error code otherwise.

FINDTERMINAL,

ENDWRITE, FINDINPUT,

SELECTINPUT

See also:

QL BCPI, Development Kit o ° BCPL Library
ENDTOINPUT
Purpose: Torewind anoutput stream to the beginning and reselect it
for input.
Form: error 3= endto'input (]

Specification:

The currently selected output stream is reselected as the current input
stream, and the current output stream is unset. The file associated with
the stream is rewound to the start. This will only work on streams
connected to filing system devices, and is useful when wishing to read for
input a temporary file created for output during a program. The error
code will be zero if the function worked, and a negative QDOS error code
atherwise,

See also: REWIND

ENDWRITE

Purpose: The currently selected output stream is closed.

Form: ertor :& endwrite (stream)

Specification:

The currently selected output stream is closed. If no stream is selected
then the routine has no effect. Any store associated with the current
stream is released, and the file or device connected to the stream is
closed. The current output stream is unset. The resuit will be zero if
succesful or a negative QDOS error code otherwise.

ENDREAD,
SELECTOUTPUT

See also: FINDOUTPUT, FINDTERMINAL,

QL BCPL Development Kit BCPL [Librue:
FABS

Purpose: Toabtain the absalute value of a floating point number.

Form: real2 := fabs{ reall, reall2)}
Specification:

The absolute value of the real number held in the voctor reall is returned
in the vector real2, whose address is returned as result. The vectors reall
and real2 may be the same.

FCOMP

Purpose: Floating point comparison

Porm: res := fcomp({ reall, real2)

Specification:

The real numbers held in reall and real2 are compared. The result

returned is -1 if reall is less than real2, 0 if they are equal and 1 if reall
is greater than real2.

DIV

purpose: Floating point division

Form: reall := fdiv{ reall, real2, reall)
Specification:

The real number held in reatl is divided by the real number held in

real2. The answer is returned in the vector reald, whose address is also
returned as result. The vectors reall, real2 and real3 may be the same.

L BCPL Developicnnt Kit v BCPL Library

FINDINPUT

Purpose: Tofind andopenan inputstream.
Porm: stream := findinput(name)
Specification:

The name passed as argument should be a string representing a valid QL
file or device. An attempt is made to open the file or device for input and
to construct a stream control block which may he used later by
SELECTINPUT. The result is a positive vatue if the function worked and
a negative error code from QDOS otherwise. The stream remains open
until ¢losed by a ¢all to ENDREAD. The stream is unbuffered, so that a
stream opened to CON will return characters (unreflected) as soon as
they are typed. Note that in this case the cursor does not appear to be
enabled. Buffered input from the console, with associated line editing,
may be obtained by opening the stream with FINDTERMINAL.

See also: SELECTINPUT, ENDREAD

Wy

LS.

E
1
L
"

Q2L BCPL Development Kit BCPL Linrary

FINDOUTPUT

Purpose: Tofind and gpen an cutput stream.
Porm: stream := findoutput(name)}
Specification:

The name passed as argument should be a string representing a valid QL
file or device. An attempt is made to open the tile or device for output and
to construct a stream conire! block which may be used later by
SELECTQUTPUT. The result is a positive value if the function worked
and a negative error code from QDOS otherwise. The stream remains
open until closed by a call to ENDWRITE. Any previous file with the
same name will be deleted by this call.

See also: SELECTOUTPUT,ENDWRITE

FINDTERMINAL

Purpose: Toopenatwo-way stream to the console device.
Form: stream := findterminal()
Specification:

The result is this call is a stream connected to the dzvice CON which may
be used for both input and output. The strcam returned may be used as
the argument to hoth SELECTINPUT and SELECTOUTPUT The
stream associated is buffered so that data read from the terminal will not
be transmitted to the program until ENTER is pressed. thus allowing
line editing as supported by the QL. If unbuffered input is required u
stream to CON should b: opened by FINDINPUT. Note that this
function does not clear the window. This means that window
manipulation calls may be used to move it from its default position
before anything visible happens. The result will be a positive streamora
negative error code. When a BCPL program is run the current input and
output streams are both set to the result of a call to FINDTERMINAL
before START is called.

QL BCPL Development Kit oY BCPL Library

See also: FINDINPUT

FIX

Purpose: Toconvertareal number to an integer
Porm: 1int := fix{ real)}
Specification:

This routine converts a real number held in the vector real to an integer
value, truncating if required.

See also: FLOAT

FLIT

Purpose: Toconverta literal floating point to floating point.
Form: real := flit({ string, real)
Specification:

The string should contain a character representation of a floating point
number. The characters will be converted to the internal form used for
floating point and this will be stored in the vector real. The vector
address is returned s the result. This function is useful for initialising
floating point constants. The globai RESULT?2 will be set to zern if the
conversion succeeded,

QL. BCPL Development Kit BCPL Library QL BCPL Development Kit BCPL Library
FLOAT r.acos Arc cosine S
a r.acol Arc cotangent
r.asin- Arc sine
3 > a: 3 ' ¢ mber
: Tfurpose: Toconvertan integertoarealnu L ean Arc tangent
3 : r.cos Cosine
4 : L r L
2 Porm real float(int eal } i ot Cotangent
‘% iEi fen s r.exp Exponential
4 Specification: _ r.ln Natural logarithm
¥ This routine converts an integer into a floating point number constructed ke 19910 gt_agar ithm
in the vector real. This vector must be two BCPL words (eight bytes) r.sin Sme .
long. The address of the vector is returned hy the function. r.sqre quare roo
r.tan Tangent

See also: FIX

FMINUS
FMATHS

Purpose: Floating point subtraction
Purpose: Evaluate floating point maths nperation,

Porm: reald := Eminus(reall, real2, reall)
Form: ceal2 := fmaths(cp, reall, “sa;

“Z
Specification: Specificatian:

Tep == oo o v ws D om aomimneer Tone e ree) zeoeder hedd 2y
reall. The answer 1s recurned 1n the vecrur real3, whose address is also
returned as result. The vectors reall, real2 and real3d may be the same.

The integer operator op identifies a floating point operation to be applied
to the real number contained in the vector reall. The result is placed in
the vector real2 whose address is also returned as the result. The vectors
reall and real2 may be the same. Values of op are as fnllnw.q.‘

FMULT

- Purpose: Floating point multiplication
Form: reall := fmult(reall, real2, reall)
Specification:
The real number held in realtl is muitiplied by the real number held in

realZ. The answer is returned in the vector real3, whose address is also
returned as result. The vectors reall, real2 and real3 may be the same.

-58-

-59.

QL BCPL Develspment Kit ROPL Library

FNEG

Purpose: Tonegate a floating point number.

Form: real2 := fneq(reall, reail2)

Specificat:ion.:

The negative value of the real number held in the vector reall is

returned in the vector real2, whose address is also returned as argument.
The vectors reall and real2 may be the same.

FOUNT

Purpose: Altersthe character fount.
Form: error := fount { fountl, fount2)
Specification:

Each of the two arguments is either zero or a BCPL pointer to a fount
descriptor. If either argument is zero, the corresponding fount reverts to
the default. Default fount 1 extends from #X20 to #X7F. Default fount 2
extends from #X80 to #XFF. A character unset in fountl wiil be printed
using fount2. {f it is also unset in the second fount, then the lowest valid
char of the second fount is used. The fount alteration aupplies to the
screen window identified as the current output stream. Each fount is a
5x9 array of pixels in a2 6x10 rectangle, and is specified by u fount
descriptor which consists of a vector with the following structure. Each
pixel byte contains pixels in bits 2to 6. Bits 0, { and 7 MUST be unset

-60-

5 Purpose:

3. BCPL Development Kit BCPL Librarv

Tount i Initial character in fount,

Fount$l Number of characters in fount - 1

Fountiz2 lst pixel byte for char 1

Fount%3 2nd pixel byte Eor char 1

Fount$10 9th pixel byte for char 1

Fount$ll lst pixel byte for char 2
TPLUS

Purpose: Floating point addition

Porm; reall 1= fplus{ reall, real2, reall)

Specification:

The real number.s held in reall and real2 are added together. The sum is
returned in the vector reald, whose address is also returned as result,

The vectars reall, real2 and real3 may be the same.

FPOWER

Tao raise a floating point number to a floating point power.

Porm: reall := fpower(reall, real2, reall }

Specification:

The real number held in reall is raised to the power given by the real
number in real2. The result is returned in the vector reall, whose
address is also returned as result. The vectors reall, reai2 and real3 may

be the same.

-8;-

QL BCPL Development Kit _BCPL [.ibrary

FREEVEC
Purpose: Toreturna vector allocated by GETVEC to the free pool.
Form: freevec({ vector)
Specification:

A pointer to a vector allocated by GETVEC is passed as argument, and
the space allocated is made available for re-use.

See also: GETVEC

GBYTES

Purpose: Toaccess bytes from memory
Form: val := gbytes(byteaddress, size }
Specification:

The routine will return between one and four bytes from succesive
memory locations identified as 'byteaddress’. Note that this is a byte
address, not a BCPL address which is four times smaller. The value of
'size’ must be in the range 1-4 and indicates the number of bytes to be
returned.

Each byte is loaded separately so that the byte address need not be
even, and each byte is added to those already loaded so that sign bits are
propagated for values cf 'size’ less than 4. The routine is particularly
useful when wishing to access 4 bytes not aligned to an even word
bouvndary. -

See also: GET2BYTES, GETBYTE, PBYTES

-62-

' QL BCPL Development Kit BCPL Librar

GET2BYTES
. .
purpose: Toaccessa 2byte value from memory

Porm: value := getl2bytes(baseaddress., wordoffset }
Specification:

The BCPL base address is converted to a byte address, and the value
'wordoffset’ is multiplied by two and added to the address. The two byt
stored there are returned as the value. The sign bit is not propagate

The routine mirrors the action of GETBYTE for 2 byte values.

See also: GBYTES, GETBYTE.PUT2ZBYTES

GETBYTE

pPurpose: Toextracta byte from memary.

Porm: byte := getbyte(baseaddress, bytecffset)
Specification:

The routine takes the BCPL base address and adds the value
‘byteoffset’ specified. The byte stored at this location is returned as t
vatue. The sign bit is not propogated. This routine is provided |
compatibility with other BCPL implementations. The % operator

BCPL provides the same function more effliciently.

See also: GBYTES,GET2BYTES, PUTBYTE

83-

ot o
i

QL 3CPL Developrmiant Kit BCPL Library

GET . wC
purpose: Toailocate a vector from the heap.
Form: vector := getvec(size)
Specification:

The size of the required vector is passed as argument. The result will be
zero if the call failed, otherwise it will be a pointer to an area of store
size + 1 words in length allowing the use of vector!0 to vector!size. Space
is allocated from the general heap maintained by QDOS, and the actual
amount available will depend on what other tasks are running. The
space will remain allocated until the end of the job. or until returned by a
call of FREEVEC,

See also: FREEVEC

INKEY

Purpose: To read a character with a timeout from the currently
selected input stream.

Form: char := inkey(timeout)

Specification:

" This routine is passed a timeout in display frames (50 or 80 Hz) and

attempts to read a character from the current input siream. If a
character arrives within the timeout period then it is returned. If the
timeout period is exceeded without a character arriving then a negative
QDOS error is returned.

Note that if INKEY is being used to read characters from the
keyboard, and the program is EXECed rather than EXEC_ Wed, the
function SCREEN(screen.cursor will be needed to enable the cursor.

OL BCPL Develrpment Kit

-64-

BCPL Library :

INPUT . .

Purpose: Todeterminethe currently selected input stream.

Form: stream := input()

Specification:

The input routine yields the identifier of the currently selected input
stream (originally yielded by a call of FINDINPUT or FINDTERMINAL

and selected by SELECTINPUT). If the current input stream is unset
then the result is zero.

LEVEL
Purpose: 'Toreturna value for use with LONGJUMP.
Porm: p 1= levelf)“
Specification:

This routine returns the current value of the stack pointer, which can be
used in subsequent calls of LONGJUMP.

See also: LONGJUMP

-65-

QL BCPL Deveiopment Kit BCPL Library

LONGJUMP

Purpose: Toexecute anon localjump.
Form: longjump{ p, label)
Specification:

This routine can be used to jump out of a routine into another one further
down on the stack. The value of 'p' must be the result of calling LEVEL in
the destination routine. The value of 'label' will be the value of a label in
the destination routine. Normally the level and label are stored in global
variables and LONGJUMP used in ervor situations where contrel must
return to a standard place.

See also: LEVEL

MULDIV

Purpose: Toevaluate(A*B) /C with'g 64 bit intermediate result.
Form: wvalue := muldiv({ a, b, c)

Specification:

The routine multiples ‘a’ by ‘b’ and keeps the answer accurate to 64 bits.

It then divides this value by ¢' and returns the result. The remainder
from the integer division is placed in the global variable RESULT2.

.66-

QL BCPL Development Kit BCPL Libra:

NEWLINE. +

Purpose: 'Towrite a newline to the current output stream,
Porm: newline{)
Specification:

A newline character is written to the currently selected output strean
The routine is simply a call of wreh('*N"),

NOTE

Purpose: Toreturna marker tothe current position reached in a file
Porm: position := note(stream)
Specification:

NOTE ts passed a stream descriptor which must refer to a file open [t
either input or output. It returns either the current relative position i
the file in bytes or an error code. File positions are non-negative; errc
codes are negative, The value returned would normally be use
elsewhere in a call to POINT in order to reset the position in the file i
order to perform random access.

See also: POINT

87-

-69-

T § BUTI3ls «— 1 | 203034

1BY) Yons
Buiays oYy ojul paxyoed UdY] BB SIIIBIBYD JO S1IqUINU payads ay],

'§1270B4BY2 ¢z Wey) 123uo] Juraq Bulnys

a1 Juaaaad 0 (JAX#) §66Z JO MsBW © Yim PNV S1 SIYY ‘payoed aq v
$195BJBY3 JO 12qWINU 3Y3 UTRIUCY PINOYS JOIDA 8Y37 JO JUBWIA[S 0132 3],

ruoTyRoTIIRads
{ butazs ‘103235)Butrazisyoed =i 8218 J@IOS

‘Burais e 0Jul 103034 B U1 SI310BIBYD 33 Joed o], :asoding

DNIHLSMOVd

LNdLA0OLOATIS "TVNINHALAONIA " LNdLA0ANEY FOSTF 295

'0182 3 1M 1|NSII aY) Uay)
j1asun s1 weans 1ndjno JuaLIng 8yl §1 (LNdLNOLIATIAS Aq paiasyes

pue TYNIKUALANI 40 LAJLNOAUNIA J0 1122 2 4q papjetd Ljjpuisiio)
wreanls Jndine pa3na)as A[JUsLIND 3y JO I3YNIUIPL Y] SPEAIA 2u1IN0I SiY],

Juor3eaTJroads

{Jand3ino =-*: wWeails @IOS

‘urea}s Inéino pPaoe;as Ajuaaand ayy Ajnuapt o], fesodrng
¢ ILNdINO

xIeaqry 1404 10 wado]san(1d D4 10

TVNIRNYALANIA "LNdLIN0UNIS "LNdNIONIL ‘*HSOTD ‘oste asg

'23ua13ja1d ul pasn aq £jjeULiou pinoys YA TYNINYIALANIL
PU® LNdLNOANIA "LNIANIANIA 49 £][2us3U1 pasn sy uonauny siy,

X1030811p ® se uvado

9113 U23I3TIMIBA0 U®R JO 35N SATSNTIXD
8T7T3 mdU P JO 8SN 2A1SNTOX3

9113 p1O u®P JO asn pareys

2713 PTIO UBR 30O 3sSN SATSNTOX3

O A NMo

‘Ss0]70) se pauado aq pinoys a1y ayj ui Sem Y1 sjuasaada apow ay],

Y13ua|

13J3nq payroads a3yl yirm Burpeal pasyynq aui 10) dn 19s s 408 247 oaaz
ueyl J31ee4d st usng §) ‘Buipraa (133281BYD Ag J932eIBYY) pPalayngun
1oy dn 395 81 g8 9y 013z ST UB[NY] 'APOd 011D SOaH ' 20 yooyy
101100 ulgans e 1942 s1 uelduny ayy jo 3nsal sy, "apow paysenbas
93 Ut switu se payloads aviAdp 40 B[Byl Joj wealls v suado S1Y]
FUOTIRPOY FTORdS

(uaT3ijng ‘epow ‘faweu)uado =: WEaI3S mWIOH

‘wesiysvuadoo], :asodrac

NHddO

Raeaqr] 1404 1Y wswdujsasg 140910

LT

JLON TOETE o3y

"BiU 9Y3 Jo pua sy) 09 aoul ||Im JuFuNTIe PusIIS BY) ST
Jaquinu a21e] A13A € Yim (1B B SNYf, "UOI1IAAID JUBARII 2] U a|qIssod
SE 1B 5% p3uon1sodal usay sABY |jI4 3| Y1 UAY) o[l jO pua $33B2IpUL
PILINIZT 3PCD 10413 3Y) J] "ISTMI3Y30 9POD JOLI3 3A1I880U B PUE j1om Juam
IT8 J1O19Z 813 NS 3y], "G LON 07 [{e2 snotasad © Jo 3nsa1 ay3 1o pajndwod
2q I9UNs ued sy, uswnile puodss ayj Aq payrdeds 1asyo 81Aq 8y
01132834 51 31y 841 Uy uonised Juaazna ay g, Indine xo ndurt 20 uado aq Arw
YIm Inq 3§ B 03 J3J31 SN Y1y 103d110S9p WRINS B SaNen LNIOd

FUOTIROT JIoadg
(uctirsod ‘weaz3s)jutod =: J0IT3 mIOg

211 B utyiim uonised eado] ayjy jesar o), :asoding

LNIOd

"Jutoed sorydead Jusiina sy wroly 3353)0 8q 03 J0SIND

Y1 mo[[e pue sjax1d u1 a1e 04 puw OX JO SaNJeA Y], (0K-A 'OX 4 X) jutod e
J10Sd1D 9y U0YISO4 '(399120D §1 I3PIC 3YY 1NQ *PPO ST XBIUAS 4] JRY] 20N}
LI (x ‘4 'ox ‘04 ‘30sino j07d)j07d

Areaqryda0g N JUsWd0jaARQ 1109 D

&

-OL.

AL s1xe |earnaa Jo yiBuag 4w A'x s uidiie sy jag
(A 'x *&7 ‘31eds5°301d Y3014

‘2[3ue UOITRI0I B3 S31BIYPUI apdue jo
SN[FA BY], "1 SNipLs pue 3 £310113U3299 Yjm £°X I paiaquad asdita ue joig
{ o1bue 43 g +& 1y ‘esdr1rer301d)je01d

22 3Y3 Aq papuaiqns a|Jue oy $31BIIpUL

ajdue Jo anjea ayy, JAYxX e Burysiuy pue s£'sx je Bunaels 2w ue joi4
{ 2a1bue *3& '3x +5& ‘8x ‘2ze*307d)j07d

Lo .

JA e duystuy pue s£'sx Je Bunamssul v iolg
{ Ix ‘3x *s& ‘sx tauyr-joid Jyoid

"A'x uoyisod e Jurod BI013
(& *x ‘3jurod-j01d Jjord

HAHAIT 31y 13peay piepuels
3Y) Ul pauyep aJe SIWBY JSaUBW J|QEIINS '81383juy Buimojioy sy Jo
UL 31 ap0d 10j s3n[1qissod Yy, ($a34q 1yBi9) SPIOMm "T0H 0m] JO 107334
B 0] 19jurod e se passed s1 ydrym J0 yoes 'syuswiniie jurod Surteoy BAL]
01 dn pue anjea apod e saye) U2rym sunnod satydeas pasijesauad v sy STy,

JHOTIRDTITOads

(s® *'pe ‘ge ‘z2p¢ ‘Te ‘3p0oD JaoT1d = 10313 TWIO

"UIRIVE IYI UC SIIT pue §3UY| 10] rasodrng

LO1d

IONIYISHOVAIND ‘oste asg
"AUL138 3y U Pasn SpLoMm Jo 1aquInu 241 s13InsaT ay],
‘de)a2A0 3SIMIAYI0 Jou KB Aoy g (3uisan = 10193410

T8l 1Weptouled aq Lvwr 101094 pue Sullls Y, '049Z 0] 198 auw Surils
FYTJU PIoM ISR} 24) Ul sa14q pasnun Aug pug 195Ut st yidus) ayy, 019

AN a0y 1 uRWdoRRAN] 1400 10

"PPIRIdULd useq saBY staqunu ajqissod Jje 1yun jeades |

10U 1Im sduINbas ays ‘|1ed Jxau Yy 10) pass 3Y) S® pasn 1 WOANVY
03 1182 snolaasd ayj Jo jnsar sy J] ‘pess quawndie 8yl £q paytjuepl
aduanbas e wouy Jaquinu wopue: opansd jxsu ?Y) sUINJA JUIINOL BY],

':uqupa;';.raadg

{ peas) wopuea =: 13bajutwopuex IWIOS

‘“Jequinu wopues opnasd e opiacad o], :asodang

WOONVY

SHLAEZLNd 'SALAEd 'TLAGLID :osTP 855

: "1dOod
ut 103ea3do 9, 83 Jo 8sn ay) se awes Y] st pue ‘gL A 419D Jo ajsodde

343 SI s1Y], *,395]J0934q, 19530 834q 3y3 pue ,SS2IppBAseq, TJ04g oY1 Aq
U313 SSAIPPR AI0WaW) I8 PaI0Is §1 (3N[ea, 10 314q JuBAfIudis 3see) oy,
suorzesryraads

(enjea ‘32s330234q ‘sssippesseq Jerdqand rmroy

"Azowaw ut 934q ® 3jepdn 0], :‘esoding

. ALAGLAd

XI¥Iqr] 1408 . 1y JusuIdo]aasq 1308 10

SLASLAG ‘SELAGd ‘STLAGZLED ‘OSTF &3S

SILAGZLAD JO 211s0ddo 3y 51 SIY, *1985j0paom,

j195]J0 214q T @y} pue ssappedseq, TJDH @Y7 jo uonBUIqUIOd ay] Aq
uaa1d sS2IppB 81j1 J2 Palo}s 918 INEA, W] 6914q 2 JuedlyTuldis 15831 Y]

roor3R2TITOAIdS

" (snTeA “38253]JOpPI0OM ‘SSaIppRIse(q jsa3fqzand wmrog

"Alowmau uy anjea NAqgeynepdno], asoding

SALALSLAd

dLAELNd 'SRLAGELNd 'SHLALD ‘OSTP 39

SHLAYD

30 sa1soddo ayy s1 s1y], |, an|eA, 8314q $ Ay) Wolj §14q Jo Jequinu paysanbal
Y3 ;.{q paoejdai aie ssaappe 23Aq payioads ay) e palols s314q Azts, 8y,
Juorjeargrosde

{ anTeA ‘D215 ‘ssai1ppeaifq)s23iqd :wrog

-£rowow ul s3)4q ajepdn o), asodIng

SHLAGC

Ateaql] 14049 Y JusWIdo[3A3(‘1404 ‘10

ol

-3

sweu aTtj JO 1231DBIRYD 3ISI g91gIa3zIng
sweu 3713 jo yibuaqg £1%32330Q

012z pI1%1233ng

ojzur 3o a3fqg yag £1%3233ng

OJul 3o 234q 18T 9%31233ng

adhy atrg 5%33a33ng

{0xaz AtTewrou) ajliqg ssadoy ¥4 383Ing
s23iq ut 8113 30 yibuag ciiajjog

'SMOJ[O] S© 34 J3JING Y1 Ul PALINTDI $INJBA Y], "SIITAIP WIISAs
Buij1y uo S2|Y 0} PIIDBUUDI SWES U0 YJom LU0 |1m Sy, 'b] 1589
18 2q pInoys Yorym sajiaq uy 1ajng 3y3 Jo Yyidua| ayy st y18ua| Jo snjea
3], 'PERI 5314q jO 13N Y3 JO POI 10113 2ATIEEBU B 18318 §] I Nsaz
YL 'PRIBIIPUL J5yng ayy ojut 1eprey 9]y dY) spedt YIQVIHATIAGV Y

suorjeoryraadsg
(ysbua1 ‘1333nq ‘weazys)iapeaysiripess =: I[nsasx iwaog

B[l B YIIM pajBIOOSSE 19peay ay) peaa o], :@soding

HHAVIHATIIAVAY

dMNITAVS HAAVIHITIAAVIY ‘osTe 395

‘(Y3ua] 03 [enba ag pInoys Yaym) passajsurd)

A1jenjoe $214q Jo Jequnu Y3 JO ‘apod 10413 3anIRSSU B 1ayla s) JNsad
3y, ‘Alowsw ojuy pead S1 3§ 310J3q 3jy © Jo yI1Bua} ay) uteiqo o) pasn
aq Aew YHAVHHITIIAVHY 01 j1e2 v “ndul 10 psuado BIATP WIISAE

Buiy e 0 19331 pinoys 103d1a0ssp wessis oyl ‘iBual uaaf ey Jo 3q
PINOYS yoiym "paijioads 1ajng ayj 0jul SIUSIUGD 3|1} DATIUD UE SPUII STy,
THOTIEDTFToadg

(ybuasy *1s73Nng ‘weasrls)aTrjpeas =: IINS91 !mIOH

"Adouraws ojul 3| AJUB UB peIL 0], asoding

« -+ HATIJAVEY

3 wewdepadg 3d0g 10

A1vagry 4oy

_v L.

SALAGILIYM “ANITAVAY 'dddVEY ‘osTe asg

‘0197 suinga ﬁ PYIEAL UIIQ SBY 2[1]-j0-PU 2B PR{IBISI SHLAIAVIY
JI 72lY 8yl Ul sdajdedeyd auowl Ou BJe 243y} U] US> W J] "W
SE PauIngal s1 pead £]|Bn108 JaQUINU 3Y], 'PEAI AJR §19JIBIBYD U JS0W JY
‘A 13])NQ 3Y3 03Ul wies)s Indul 8y wrel] §1a30eIeYd Spedt SHILAGAVAY
- rgorjvoryrowds

{ U *a)salzkqproz =: w :mrog

‘weans jndul juaaand oY) el s130eiBY2 pRaL 0], ‘osodang

SHLAIAVHY

HJOUYNDN JOSTEe 995

‘uo
05 pu2 WE3J3s PIBAUL UR WoJ) peal 0y Jundwsye s1aa02 s1yl, " LUOgY
01 {182 ¥ pu® J0113 |eiB} B U] Jnsas {j1m uonduny Suipeas Aue Juijpuey
B[Iym wANSAs awnuna ay; £q paivjuncrua uoYIpuod jeuoydasxe Auy

"HOQUND 01 spre? Bujuaaiaul £q paasjpe aq Aew OOy
Jo uonae ayj "pauinial sl (HOWVIHLSANE) 19198182 Wea1)s-J0-pus

9Y1 9SBI YIIYMm UT ‘PIISNBYXS ST LWEAIIS JBY) $SI|UN *Wweas)s ndul payos|as
A]3ua11nd ayy Jo 19dvamYd jRrjusnbas Ixdu) spjatk HJOY Jo 11es v
ruorjeoryrooadg

{Juyspa =: yo :arO;

‘Weasrs
Indut p312s1as A[JUalind 1) WOLJ 13IDBIBYD JX3U 3Y] pRALI O], asodIng

HOdY

AT8IqIT 1409 I Wwswideeasq o 0

"HDAHN 0 1B B Bla weaa)s ndul 3Y] 03 pauinida

81 J930BIBYD Y2 pue |- 01 135 S| ZI'1NSHY 1Bqe[d 3yl ‘019z St nsal
a4y ‘ud(s snuiw e Jo snjd v 10 1181p € $1 punoj 1919BIBYD 1511} Y] SSI|U
"J21DBJEYI qR] B J0 *3uUlm3aU B ‘adrds v j0u st jeY) pUnC) S1AU0 [1IUN HOYH
Buisn wean)s Indul pajdajas A[JUalind 3Y) WoJ] pral ale SI8DBIRYD)
;uor3eot F102dS

{Jupevar = u r@rod

‘weals indut Jusaind Yy woy) Jequinu » praaa], asoding

NAVvVHdy

HOGY 'S31LA9AVIY ‘osTe ass

‘pasapnqun s2usy st pue LOANIONLY
Aq peleald SeEm WEINS 2yl J1 uaad ‘passaid s} YYLNG d10)e4

palaj[e 3q UBI pue pajdapial aq [[Im SUNNO0J $iyl 0] asucdsal ul [RUILLS)
ay3 je pad£; auy] e jeYl O ‘Jndur paiayng sasn sdemie INIIQVIY

‘019z UINYA
Payoeal uasq SeY 3]1-j0-pua Iaye INI1GVHEY JO 5{iB) 'Padjaulj e aq jou
Pa3u a{1) B UT 1970BIBYD }8B| 941 IRY] 310} "PIISNEYXS SI B[]) Y3 ISNELIAY
20 *yBnoua afie| jou sem I3Ng Y1 8sneIRG Iq U S1y], epdwod
10U S1 SUY] A1) INQ ‘PEIL USIQ IABY SIINIBIRYD Ww- aarisod aq jou [Hm
w ‘pealr 43aq Jou SEY PIIJaul] B J] (padrsul] Suneuiwaal 3yl uipnpdun
peal $1310BIRYD JO J3qUINY Y] JO JTUNOI B ST 3] "2A111500 3Q 1]Im "W "IfNsa.
Y7 "PRII S] Padja3uUl} B J] 'PRIL AIB SIIIIVIBYD U IS0W JY A JIYNYQ Y}
03Ut (Padjaul] JIDSY £q PIJBUTWLISY) Bul[B Pl 0] sidWaN® FNITAVHY

ruoIIROT FT29ds
{ 4 A)oUTTPE3T =: W :wIog

"I9JJNQ B OjUI BUI] B PERI O], :3sodang

C O NTIAVaY

AIeaqr] 1dod Y IWPWdoRA3 "4 Jd 10

-QL-

dJALIEM 'HOQUND ‘NAVEY ‘osT® 398

"HOOQUNN
Jo 1182 ' Bia weans jnduy 9y} 03 SUIRIAL 31 YOIYMm J2JIRIBYD BIINE 3U0

SPE3J UIINOI FY T, "3SIMIaYI0 STV PUB Pa1djunodus sem Jaquunu jujod
Sunieo]j pYea e J1 FNY.L SUINIad PUEB ‘BRI Aq PIIEDIPUL JOIIIA PIOM OM)]
aya ojul payoed s1 Jequinu [eal Y], ‘UctIBIOU J JO @sn pus jutod jeuridep
v apnpout Ajsuoiido Aew jewio) Y, "NOVHY ST uolyse] awes ay) ul
ureatys yndur Jusaand ay) woldj ssquinu juiod Fu1jR0Y) B SPEAI 2UIIN0L 3Y),

ruoTyRaTFrOSdS
{ Te21)djpeds =: TOOQ EIOZ

Weal)s
Indut Jusaand ayj wod) 1aqunu juied 3uneopy B peas o], asodang

dJddvHy

YAAVIHINALAS "F'HAAVIY osTe @as

P3DAXA s weadord
3U UM PRIBIO[JB 8¢ 0] BIE BIRP 3] JO 8215 Y3 SUIBIUOD P[aY) OJul 3y)
Ju $214q anoy 351y 9Y3 uayy | s1adA3 8|y oY1 3] S8y Lleulq jeulio) syl
10} 7 pue say Ateutq 21qeNdX® 103 1 'S8y miep o) 0 st ad4y aqy ey,

XIeaqi] 1do9 11y 1wswdn]3A3(] "1d 04 10

_BL-

SULAGYLIYM ‘HOUM UIAVIHATIALAS ‘A TIAA VAN osTe 93

‘(Y1dua) 0] jenba aq pynoys yarym)

palasjsuel) A]1enide $314Q JO JaquInu ay) J0 ‘3P0 10113 2A11RERU B 13313
S1 1INsad 2y], '9d1a9p Wwe1sAs SUl[y B 03 13j3d pPINCUS YII1ym wealls indjno
3U] 0] U3LIm 2JE A3 Ng Y] WOl SIIVBIBYI JO Jaquinu paijisads ayg,
;uorgeorIIoads

{ y3buay f1973Nq ‘wWeDIIS }2TTJIAES =% J[NS2I :@mICY

"B[1] 8117UD UR SB A10WsW JO UGIIIAS B 9ABS 0], :asodang

ATIIIAVS

LNINIQLANY cosTe aas

_ 119 UM [[B J1 0192 PUT *aaNj)

UG pAuanial §1 Ipod J0119 GOAY V "$adadp weisis Juiy o) sjauueys
uo $¥aom Auo (INTMAY 1841 31CN "3y AY) JO IS Y] wol] udye
S1 prad 15]0BIBYD JXaU 2] JBYI 0S PUNOMII S1 Weays ndur juaaind ayyg,
ruorleorTyroods

(Yputmal =: ICiie :rw@mIO4

weas Indut ue putmsi o], :oasoding

* ' gNIMEY

ATRIGIT 14 O 1Y JUBWAC|A3(] T DH 1D

&

.BL-

MOGNIM 'NIBYDS ‘osTe o9g

‘paanbau anojod mau ayy Sutjussaidaa

L -0 33uel 3y} Ul 1BQUINU INOJ03 B SUIRIUDD 314Q yovy "eale 9)4q-g ue
01 Jajutod B st Juawngdie 3|3uis Ay, ‘aaljeuIs}[E ue £q padoe|dal sinojod
841 JOo 4oEd SBY WEaLs Indino Juaiand ayj Aq payijuspl mopuim ayj,
IHOT3RITITodg

{ SINOTOD }INOTO281 =: IQIId !WIOH

TMOPUIM BANOJ0IIY fasodang

YNOT00HY

HOQ¥NN'HDQY ‘osTR 83¢

"HOQUNN
Jo jiea ' ria weans jndul ay) ojuy yoeq paysnd s1 peas ssldeaeyd

1SE| 843 JBY3 U] SI9YI0 2WO0S Wicd) SIAIYIp N VY JO uolttuygep sty

'0122Z 5B peaJd
94 |{1m 3181p B &g pamol(o] 10U S1 4d1ym uB1s snuit 3o snid © Jey) 810N

"0197 0173 S1 2,1 T1SHY 189013 8y} pue ‘asquinu ay) s1
1INS34 Y], "PRAIUN JIOBITYISIY] PUR ‘PIIBIUNOIUA NFIP-LOU 1831 oY1 £Q
P31TUIWIR] ST J3qUING JY], MO[JIIA0 J1ISWNU 10] ¥4 OU ST 919y, '$1151p
10 3uinis snongdnuoo Juimo||c) 2yl Suls12dwod peal usyy §1 Jequnu y

AIRIOT] 1404 10 Juewdoeasq 1404 10

wl. BCPL Development Kit BCPL Librarv

SCREEN

Purpose: Screen handling
Form: error := screen{ code, argl, arg?)
Specification:

This is a generalised operation for handling the QL screen. It always
refers to the window specified as the current output stream. The type of
operation is determined by the code, Many operations require no further
arguments, some require one, a few require two. The error return will be
zero if all went well cnd a negative QDOS error code otherwise,

The possibilities for code are cne of the following integers: suitable
manifest names are defined in the standard header file LEBHDR.

screen(screen.border, colour, width }
Set window border to the specified colour and width. The border is inside
the window limits and is doubled on the vertical edges.

sgreen(screen,curscor }

Enable the cursor. It is automatically enabled when a buffered read from
the screen is pending. Without an enabled cursor in a window CTRL/C
cannot be used to switch to the new job, even if an unbuffered read is in
operation.

screen{ sScreen.nocursor)
Disable the cursor.
e
screen{ screcn.at, column, row)
Position the cursor at the specified row and column, using character
coordinates,

screen{ screen.atp, *, y }

Position the cursor at the specified point, using pixel coordinates. The
positidn refers to the top left corner of the next character rectangle
relative to the top left corner of the window,

screen{ screen.tab, column)
Tab to column specified.

an

ECPL Library

QL BCPL Nevelopment Kit

screen(screen.newline) '
screen(screen.left }

screen(screen.,rignht)

screen{ screen.up)

screen(screen.down)

Move the cursor to the start of the next line, or one space in the relevant
direction.

screen(screen.scroll, dist)
screen{ screen.scroll.top, dist)
screen(screen.screll.bottom, dist 3

Scroll all the screen, that part above the cursor line or that part below
the cursor line the specified distance in pixels. A positive value for dist
will move the screen down while a negative distance scrolls it up. Blank
space is filled with the current paper colour.

screen{ screen.pan, dist }

-scgreen(screen.pan.line, dist)

screen(screen.pan.eol, dist)

’an ali of the screen, the current cursor line or the right hand end of the
cursor line the specified distance in pixels. The right hand end starts at
the current cursor column. A positive value for dist will move the lines to
the right while a negative value moves it to the left. Blank space is filled
with the current paper colour.

screen{ screen.clear)
screen{ screen.clear.top)
screen(screen.clear.bottom)
s¢creen(screen.clear.line)
screen(screen.clear.eol)

Clear the screen, or part ol it, to the current paper colour. Part screens
are defined as in scroll and pan above.

screen{ screen.paper, coclour)
scrzen{ screen.strip, colour)
screen{ screen.ink, colour)

Set the paper, strip or ink to the specified colour.

v

R

Q1. BCPL Development Kit BCPIL. Library

screen{ screen,flash, switch)
scraen{ screen.underline, switch)
screen({ screen.fill, switch)

Sets flashing, underlining or screen fiil mode on or off. If switch is 0 then
it is turned off, ifit is 1 then it is turned on.

screen(screen.mode, mode)

Sets the screen printing mode. If mode is -1 then iak is exclusive ORed
into the background. If mode is 0 the character background is the current
strip colour, and if it is 1 then the background is transparent. For the
latter two values plotting will be done in the current ink colour.

screen(screen.size, width, height)

Sets the size of characters. Width is a number in the range 0 to 3 and
indicates widths of 6, 8, 12 or 16 pixels. Height is 0 for 10 pixels and 1 for
20 pixels. In 8 colour made only 12 ar 16 pixel widths are allowed.

See also: RFCOLOUR, WINDOW

SELECTINPUT

Purpose: Toselect astream for input.
Porm: stream := selectinput{ stream)
Specification:

T =

The stream, which should be the result of a call of FINDINPUT or
FINDTERMINAL, is selected and made the current input stream. [{ the
stream is valid then the stream will be returned, if not zero will be

returned and the current input stream will be unset.

See also: FINDINPUT, FINDTERMINAL, ENDREAD

R9_

QL BCPL Development Kit BCPL Lihrary

SELECTOUTPUT »

Purpose: A streamis selected for output.

Form: stream :1= selectoutput(stream }

Specification:

The specified stream, which should be th

he : . ¢ result of a cail of
FINDOUTPUT or FINDTERMINAL, is selected and made the current
output stream. [{ the stream is valid then the stream will be returned: if

not, zero will be returned and the current cutput stream will be unset.

See also: FINDOUTPUT, FINDTERMINAL, ENDWRITE

SETFILEHEADER

Purpose: Tosetthe header associated with a file,
FPorm: result := setfileheader(stream, header)
Specification:

The stream must refer to a {iling system device which has been opened
for output. The header is a vector containing 14 bytes of information to be
placed in the file header. The result is either a negative QDOS error
?od‘?' or 14 or 15. 14 indicates that 14 bytes were set in the header: 15
indicates that the stream was a serial stream rather than a file an';i a
$EY followed by the 14 hytes have been sent. The heacer vector'should
contain a file header as described under READFILEHEADER; only the
first 14 bytes can be set by this call. .

-83-

et b ST R R A T

AT
=T T AT B D

QL SCPL Development Kit BCPL Librare

CETGLOBALS

pPurpose: Toset globalsdefined in a code buffer.
Form: bool := setglobals{ buffer, length }
Specification:

This assumes that the region indicated by buffer contains a
concatenation of BCPL modules. The length is the length of the buffer in
bytes. The buffer wouid normlly be filled by a call of READBYTES or
READFILE. The routine scans the code and sets .:p the correct global
values for any global routines defined within the loaded code segment
thus providing access to the routines so loaded. This mechanism allows a
flexible overlay system to be constructed. Once the code is no longer
required the globals defined within the code segment can be set to the
unset value by a call to UNSETGLOBALS.

The result of SETGLOBALS is TRUE if the global vector was big
enough and FALSE if not; in order to load a code segment which uses
globals greater than those used in the root program a dummy global
large enough rmust be used in order to force a targer global vector
allocation.

See also: READBYTES, READFILE, UNSETGLOBALS

R TN

BCPL Library

QL. BCPL Develanment Kit

START .

_Purpose: Todefine the entry point of a program.

Porm:; start()

Specification:

. The routine START is definzd by the user and indicates the main routine

of a BCPL program. Once the BCPL runtime system has initialized itself
it will cail START, if this ever returns the routine STOP is called.

See also: STOP

STOP

purpose: Toexit{roma program.
Porm: stop{ returncode)
Specification:

This causes the program to stop, passing the return code back. QDOS
will then clear up any open streams and GETVECed space. If the
program was run by EXEC__W rather than EXEC and returncode is a
negative QDOS error code then a text message associated with the error
code is displayed. A zero returncode indicates no error condition. The
BCPL command FINISH, or returning from START causes STOP{0) to
he called.

START

See also:

1BY1 Yons ‘107294 31y
03Ul pl0m € 0] Bue paydedun a1e Bulis ay) ul saayaeleys pue Yidusy ay,

‘norjearyroedg

{ 03D2a ‘Dutigs Jﬁug:qsxaedun' rwIog

‘Pi0M B 0] SUO ‘101004
B 03Ul 3UL1)S B U] $43)0B1RYD pUE unod Y1due) ays yoedun oy, :asodang

ONIALSADOVYdND

e

HOGH TOSTPE 9985

A

"1e] €147 yoeq 108
03 ajqissod aq jou Leuw 31 ‘aui] JuaLIND 3y} SB 33 E| B J0U §1.391INq nnduc!i
ay ‘;]- “auy] qualdnd ayy Jo ButuuiBaq Ayy puokaq ydeq dais o] 3[qIsso
Jaaau 81 ;;] ‘saang ndur Yiim Swealls uo yaom AJuo s HOQ}]N‘;F;
Jo s[jes bamadaa ‘porjdde uasq sBY LNIO4 YNYm 0] SU0 10 PUNOMIL

A

dILVd :‘osre aosg

pauado uaay Isn{ sey yoIym WEaL}s € J0] |Tef SABM|E |[In HOQUNS) 'Pead
B SEA WEB3JIS 23 10}]JBd IsE] 3Y) ji paadons sdem(e jiin HOQYNN

"SEY 110U 10 19473Yym

SSTWIWTHH,, Wioj 9y3 uj 51 Butags oy, (parrers
1SIY Sem auIRw ay) udym £[3991109 335 UBAq SBY STYY JBY) Butuinsse)
SWIly JuBUNY sY) sjuesardas yaym Buis v suinjed uorjauny sy,

§21EdIpUl 3 nsad By, "paevons jou Lew j] "urede peas aq Aew 31wy}

TUOTIRIT ITOads
05 WE3IS 8YJ OJUT ¥OB(Q PEAL J3)IRIBYD 15E] 9] nd o3 sydwsne HOHQUNN

{}Aepzoawry =: s :wrog
ruorjeosryroads

‘duins e se £vp J0 3} Yz uieqo o], asoding

AVAJOHNIL

{Yyspaun =: To0q @104
*29198dBYD 1Y)

1 184 05 WE31)S
314 []1M WIESIYS VYY) U0 YIPJ JO [ED JXIL By '
frl1du1 pajdales A[Iualind ayj ojul ¥Ieq Japeieyd e ysnd o), ‘@sodrng

HOAYNI

_ ‘uly |Bjiul 3y pue
BULL JUSJIND M2U Y3 UIIM)IAQ BDUBIBHIP BY3 UINJaL [[Im (owry 03 jjed v
'Pa103s ST 32012 aY1 JO anjeA JuBIIND 8y} Pajress 51 weaSoad d0g »uaym

‘uoryeoryroads
DNIMISHDOVYd o5T? 395
()BII[‘-[',1=: So1 1@mI0g
‘dejaaA0 25118110 JoU Al £3Y) INg

: : U039 UL 3] 8] uinjal o N
(10123A2) = SulIs{) "8} JUIPIIUID 8q AW 103094 PUT Bulnls 3y, 32 qof & Jo 1.1e3s ay) 80ULS Sp tswy oy uinjaro], :asoding

HWILL

AT6IGT Td08 M UBWART3A30 T JDE TS

0 | J0308A «— p % butrias

do|oae g5
Avigr]idod 313 uRwmde|aas(] r]dO.

QL BCPL Development Kit

UNSETGLOBALS

Purpose: Toreturn globals te their unset pattern.
Form: unsetglobals({ buffer, length }
Specification:

The buffer with specified byte length must contain a concatenation of
BCPL object modules. This routine sets the globa! values of routines
defined in the buffer to an unset value which can be detected bv the
runtime system; an unset global will cause ABORT to be called. An
gverlay may be loaded via READBYTES or READFILE and the globals
initialised by a call to SETGLOBALS; when the overlay is finished with
the globals should be set back by a call to UNSETGLOBALS.

See also: READBYTES, READFILE, SETGLOBALS

WINDOW

Purpose: Screen operationson windows.
Porm: error .:= window(code, descriptor, colour, width)
Specification:

This is a general purpose routine for manipulating windows. The first
argument, code, describesthe action to be taken. The second argument is
a vector of four BCPL words and is used to specify the window. The first
two wm:ds are a width and a height; the last two are an x coordinate and a
y‘coordmate, being measured to the right and y down from some origin.
The last two arguments represent a new colour and border width
respectively. Colour is used when deflining a new window or filling e;
block within a window. Width is only used when defining a new window.

og

Q.. BCPL Davelopment Kit BCPL Library

window(window.askp, descriptor) . e

wirdow({ window.askc, descriptor)

Return the size of the window in the first two words and the cursor
position relative to the top left corner in the last two words. window.askp
returns the information in pixel coordinates; window.aske returns it in

. character coordinates.

window({ window.define, descriptor, colour, width)

Define a new window as specified by the descriptor. The size is given in
pixels by the first two words in the descriptor. The position, also ir
pixels, in the last two words refers to the top left corner of the window
relative to the top left of the screen. Width and colour define the bordet
width {in pixels} and border colour, respectively.

window(window.fillblock, descriptor, colour)

Fill a block in a window. The size of the block is given in pixels by the
first two words in the descriptor. The top left corner of the block is giver
in pixels by the last two words. The third argument, colour, is onl
relevant for this call of window. The block is filled with the specifec
colour (or stipple) according to the current overprinting mode.

See also: RECOLOUR,SCREEN

WRCH

@ purpose: To write a character to the currently selected output

stream.
Form: wzch({ ch }
Specifi~atioa:

The character is written to the currently selected output stream. As with
the reading functions, all exceptional conditions encountered during

sutput (such as drive full) result in fatal errors.

see also: SAVEFILE, WRITEBYTES

.89-

QL BCPL Development Kit BCPL Librasy

WRITEBYTES

Purpose: To writecharacters tothe current output stream.
Form: writebytes{ v, n)

Specification:

0 This routine writes n characters from the vector v to the current output

stream. An exceptional condition will result in a fatal error. The vutput
is not terminated by a newline character, although one cun of course be
placed in the buffer or explicitly written by a cali to NEWLINE.

See also: NEWLINE, SAVEFILE, WRCH

WRITED

Pﬁrpose: To write a number to the current output stream in a given
field width.

Form: writed{ n, w)

Specification:

The integer n is written in a field of w spaces, except that if the field is
not wide enough then it will be expanded to the necessary size. The

number will be right justified in the field, and the field will be padded
with blanks, -

Aan.

L BCPL Development Kig BCPL Librax

WRITEF - ¢

Purpose: Towrite out formatted data.
Form: writef{ format, a, b, ..., k }
Specification:

The 'format' ts a string. This is written out character by character as I
WRITES except that when a percent (%) character is encountered, tt
next item from ‘'a', 'b’, ete., is taken, and written out in a form:
dependant on the character directly following the %. In some cases t}
format character is follewed by a length character which should be 0,...
or A,. . F representing the numbers 0 to 15.

The options are as follows :

%S Write argument as a string.

%Tn Write argument as a string in a field of n places.

%C Write argument as a character.

oFn Write argument as floating point in a field of n places.
%0n Write argument in octal in a field of n places.

Xn Write as for %0 but in hexadecimal.

%In Write as for %0 but in decimal.

BN Write in decimal.

%% Ignore this argument.

For the cases of writing in a given fleld width, the truncation ar
padding schemes are as for the corresponding direct routines (ie., write
writecct, ete.).

[f the character following the % is not one of the above then th:
character is written out. Hence to output a % the string 'format’ shoul
contain %%.

QL BCPL Development Kit BCPL Library

QL BCPL Development Kit BCPIL Library

Note thai strings that are written out (%S and %Tn) are not - o
processed Jor percent symbols. WRITEN :
See also: WRCH, WRITED, WRITEFP, WRITEHEX. WRITEN. Purpose: To writeoutanumber.
WRITEOCT, WRITES, WRITET

Porm: writen{ n }

Specification:
WRITEFP | |
@ The number 'n' is written to the currently selected output stream in a

field that is just wide enough, The routine is simply a call of WRITED(n,

Purpose: To write a floating point number to the current output
0).

stream.

Porm: writefp{ real, w) See also: WRITED

Specification:

WRITEOCT

Purpose: To write outa number inoctal format.

The floating point number in the vector real is written in a field of w
spaces, except that if the field is not wide enough then it will be expanded
to the necessary size. The number will be right justified in the field, and
the field will be padded with blanks. :
Porm: writeoct(n, w)

See also: READFP
' Specification:

The specification of this reutine is exactly that of WRITEHEX, except
that cctal format is used.

WRITEHEX

, Purpose: Towriteouta numberin hexadecimal format. o See also: WRITEHEX

LI

FPorm: writehex{ n, w

Specification:

The number 'n' is written to the currently selected output stream in
hexadecimal format in a field of ‘w’ spaces. If the field is not wide enough
then only the lowest order 'w' digits are written. Otherwise the number is
right justified in the field and padded with zeroes.

See also: WRITEQCT

.93-

92.

QL BCPL Development Kit BCPL Libravy

WRITES

Purpose: Towriteastring.
Form: writes{ string)
Specification:

The string is written to the currently selected output stream, character
by character, using the routine WRCH.

WRITET

Purpose: Towriteastringin a field of given width.

Form: writet({ string, w)

Specification:

The string is written to the currently selected output stream in a field of
‘w' spaces. [f the field is insufficiently wide then it is expanded as

necessary, otherwise the string is left-justified in the field and the field is
padded with blanks.

Q1. BCPL Development Kit JCPL Libr
| . b

3.3 Global Variables

CIS The current input-stream.

CODEBASE A pointer to the start of the main code segm

COos The current cutput stream.

GLOESIZE The size of the global vector. This is glo
zero, so the address of globsize ((@globsi
refers to the base of the global vectar.,

-RESULT2 This vatue holds extra information af
certain function calls.

STACKBASE A pointer to the start of the stack.

SYSIN The default input stream.

SYSOUT The default output stream.

9

0L BCPL Development Kit Instaliation

' L]
Appendix A: Installation

Changing the default window

Both the editor and the BCPL compiler allow the window which is to
he used to be altered as part of the initialisation sequence. If this option
is not required then the default window is used. This is initially the same
as the window used during the start of the program, but if required the
default window may be altered permanently by patching the programs.
This is useful where a certain window size and position is always
required and means that the window does not have to be positioned
correctly each time the program is run.

Changing the default drive name

The BCPL compiler uses five overlays which it assumes are all
located on drive mdvl along with the file LIBHDR. For those users who
upgrade their QLs with disc drives, there is the possibility of changing
the default drive to something other than mdv1l, This means that the
compiler, its overlays and LIBHDR can be copied from the supplied
microdrive to disc, so that the compiler can be EXECed from the extra
device. This option will not be given when installing the editor ED since
it does not use overlays and hence can be EXECed from any device.

The INSTALL program

The program INSTALL is supplied on the distribution microdrive to
perform both of the above tasks. It is run by the command

LRUN mdvl_install

The program starts by asking whether the default window is to be sct
up for TV or monitor mode. The minimum v'indow size is greater in TV
mode because the characters used are larger. You should answer T if you
are setting the default for use with TV mode and M if you are setting it
for use with monitor mode. Note that the current mode in use is of no
consequence.

QL BCPL Development Kit Installation

The standard window wiil appear on the screen and can be moved by
means of the cursor keys and altered in size by means of ALT cursor
keys. This is similar to the mechanism used when altering the window
during normal program initialisation. Once the window is in the right
place and of the desired size, press ENTER.

The program now asks for the name of the file which is to be
modified. If you wished to alter the editor then the file would probably be
something like 'mdvl__ed'. The next item requested is the name of the
program. When a new job such as the editor or the BCPL compiler is
running on the QL, it has a name associated with it. This can be
inspected by suitable utilities. The name is six characters long, and
whatever is typed here is used as the name and forced to the correct
length. The name is of little importance except for job identification.

In the case of the BCPL compiler the program will then go on to ask
for a default drive name where it should look for its cverlays and
LIBHDR. If you do not wish to change the defauit drive name the reply
should be

MDV1

(Note - the reply must not be MDV1_). [f you do wish to change the
default drive name the reply should be the device name, for examp!le

FLP1l

In this latter case the compiler will append 'FLP1__"to the name of each
.of its overlays befare attempting to load them,

The INSTALL program will then modify the file specified. INSTALL
can be run as many times as you like to alter the default window of the
editor or the compiler. It is unlikely to be useful with any other program
except these twao,

A-2

QL BCPL Development Kit Linking conventions

Appendix B:
Assembler linking conventions

A BCPL program consists of a number of sections linked together
with the runtime system before they are run. Normally these sections
are written in BCPL. but it is possible to write one or more of them in
assembler. The assembler code must have a certain format as described

bhelow.

Firstly all assembler routines must be position independent; the
normal output of the Metacomeo QL Assembler is suitable. Secondly the
assembler code module must have the same structure as that produced
by the BCPL compiler. This structure consists of the length oftl'fe mod-_.lle
in long words, followed by the code, followed by global initialisation
information aligned to a long word.

All communication in BCPL is performed through the global vector,
and hence an assembler routine must define at least one global by which
it may be called, Globals are defined by entering pairs of values at the
end of the code, preceded by a value of zero to indicate the end of the list,
and followed by a number representing the highest global referenced in
the program, Each pair consists of the value of the global number, and
the offset of the label from the base of the program segment, The
structure would be as follows.

Length in words
Assembler code

0
Global number of routine n
Offset of routine n

Global number of routine n-1
Offset ¢of routine n-1

Global number of routine 1
Offset of routine 1
Highest referenced global

Bl

Linking conventions

QL BCPL, Development Kit

A assembler routine must uze registers in the same way as BCPL, at
least initially. If registers cre altered from the standard described here
they must be saved and restored before returning or calling another
BCPL routine. A BCPL routine is passed up to four arguments in the
registers D1 to D4. (The first argument being in D1, the second in D2
etc.). These arguments can also be found on the BCPL stack at 0(A1) to
I2(A1} as can any further arguments which are placed on the BCPL
stack at 16(Al) onwards. If a routine returns a result it is returned in the
register D1. The'register D0 is used as the stack increment (in bytes) of
the calling procedure. This value will be 4 bytes [or each local variable in
the calling routine plus a further 12 bytes to allow for information stored
on the BCPL stack at call time. Otherwise all data registers are
available as waork registers.

Address registers are used as follows, AO is always set to zero, to
allow the use of data registers as pointers by using the construction
(AD,Dn.L). If AD is corrupted it should be restored by

SUBA.L Z,2Z

Al is, as mentioned above, the BCPL stack pointer. while A2 points to
the global vector. Both of these are machine addresses. (A1) is the first
stack location, 4(A1) the second and so on. The value of global variable 20
ts held in 80(A2). These must be saved and restored if they ure corrupted.
A3 is used as a link register during function call and return, and is
otherwise available as a work register. A4 is used as 2 base register, and
is set to point to the base of the current routine. It is then possible to use
this register to address locations in the current program segment. Ad is
loaded with the function address during function application. Ad cun also

-be used as a general work register. A5 and A6 are used to point to the

code which performs function application and function return
respectively. '“hey should both be restored if they are altered. Function
call is executed by

- JdSR (A5}
with the registers set up as detailed above. Return is accomplished by

JIMP (A6)

BCPL uses long word addresses, and thus muchine addresses must
be converted before calling BCPL routines. Any address passed to BCPL

B-2

Qi. BCPL Development Kit [.inking conventions

must therefore be aligned to a long word. The assemRler directive
CXOP G,4

must be used to ensure that this is the case. [n particular, entry points
defined as global and the global initialisation information at the end of a
module must be long word aligned.

Example program

The following is a trivial example program which defines global 150
(FRED), and which calls global 73 (WRITES) to write out a string.
Finally the routine calls a QDOS service to find out the current display
mode, and returns this as result. Note the use of registers and the use of
CNQOP toensure alignment.

*

* Txample assembler routine

»

RORG $0
FRED EQU 150 Define global 150
WRITES EQU 73 Use this to write

[3

a string

L

FIRST DC.L { ENDMOD-FIRST)/4 Length of module
CNOP 0.4 Ensure long word

* aligned

LaB LEA.L MESS, Al Point to string
MOVE.L A3,Dl Place into D1
LSR.L 42,01 Convert to BCPL

* address
MOVEG #12,D0 Minimum stack frame
MOVEA.L (WRITES*4)(A2),A4 Extract address

n from global
JSR - (AS} Call WRITES, arg
* in DL
*
MOVEQ #510,D0 gDCS mode reguest
MOVEQ $-1.D1 Read mode
MOVEQ #-1,D:2 Read display type
- MOVEM.L AO~-A2 ,-{SP} Save BCPL registers
B-3

QL RCPL Uevelopment Kit

LLinking conventions

*

TRAP 41
LOVEM.L (SP}+,A0-A2
JMP {Ag)

* Constant string

*

*

MESS

*

CNOP 0,4

DC.B 6,'Hello’,s

*Global information

*

*

CNOP 0.4

DC.L 0

DC.L FRED, (LAB-FIRST)

DC.L WRITES

ENDMOD END

oA

QDOS call
Restore registers
Return, result in Dt

Ensure long word
aligned
"Hello*N"

Ensure long word
aligned

End of global list
Global number

and offset

Highest global
referenced

QL BCPL Development Kit " Fxample prosrams

']

-ppendix C: Example programs

Example Program 1

An example of how to read a string in BCPL.
SECTION “"Example 1"

GET "LIBHDR"

MANIFEST ${ length = 10 §)

LET START {({) BE
${ LET v = VEC length
LET no.of.chars = ((length + 1) *
// since 10 to llength are
// available
BYTESPERWORD) - // now in bytes
1 // less one byte
// which will hold the length count
${ LET res = readstring(v,no.of.chars)
// read a string
WRITEF{ ((res=-1) =-> "“*NString too long",
“*NString = W5*N*),v)
// write it out
$) REPEATUNTIL COMPSTRING(v,"stop")=0
// continue until
// 'stop' typed
5)

// Routine to read up to 'n' chars and place them in

// a vector 'v'. Initial tabs, spaces CR's are ignored.

// A tab, space or CR is treated as a terminator.

AND readstring(v.,n) = VALQF
${ LET ch = 7

LET count = @ // initialise counter
WRITES("*NEnter a string : ") // Prompt for input

C-1

QL BCPL Development Kit

Fxample programs

ch := RDCH() /7 get first char
WIILE breakchar({ch) DO ch:= RDCH{)
// eat leading spaces,
// tabs and CR's

UNTIL breakchar{ch) DO // space, tab or CR
// terminates string

S{ count := count + 1 // increment counter
vicount := ch // put char in vector
ch := RDCH() // get next character

IF count=n THEN BREAK // exit loop if
// array full

$}

v#0 := count // store string length
IF (count=n) THEN // 1f arcay is full

${ IF "breakchar(ch} // and the next char is

7/ not trgt, 1aps
THEN count' := -1 // or '*N', return -1 to
// indicate string too long
UNTIL breakchar(ch) DO ch ;= RDCH()
// Throw away any excess

/7 chars
$)
UNRDCH() // Put the 'break’
// char back
NESULTIS count et

$)
// Routine which returns TRUE if the argument
// past to it is a space, tab or CR, and
// FALSE otherwise

AND breakchar{ ¢ } = {c = '*S')|(c = |*T')|.(C = ey

C-2

QL. BCPL Development Kit Example programs

Exr mple Program 2 -
This example shows the use of floating point and writef.

GET "LIBHDR"

]
-

MANIFEST 5(err.bad.number
err.dosum = 2

$)

LET error(code,argl,arg2) BE
S{ SWITCHON code INTO
${ CASE err.bad.number
WRITEF({"%S not a number. Error = iN*N",argl,arg2)
ENDCASE
CASE err.dosum ¢
WRITEF{"Bad op %C in dosum*N",argl)

ENDCASE
DEFAULT :
WRITEF("Unknown Error = $N*N",code)

$)
$)

// myflit is the same as flit but checks for errors
// during conversion

LET myflit(s,v) BE
S(FLIT(s,Vv)
IF RESULT2 < 0 THEN error(err.bad.number,s,RESULT2Z)

S)

// dosum works ocut which ~peration +,-,* we want to do,
// does it and works out result

LET dosum(op,argl,arg2,res) BE
${ LET fun = ? // function to be called

SWITCHON op INTO
S{ CASE '+' ; fun FPLUS ; ENDCASE // plus
CASE '-' : fun FMINUS; ENDCASE // minus
CASE '*%' : fun := FMULT : ENDCASE
// times (see note on **}
DEFAULT : erroc{err.dosum,op)

C-3

N . N
QL BCPL Development Kit Example program.

// bad operator give error
RETURN /7 and return

3)
// use WRITEF to write out args and result

WRITEF("%F8 3C 3F8 = ¥F8*N",argl,op,
arg2,fun(argl,arg2,res))
5}

LET START{) RBE

${ // Declare some space for floating point numbers
LET nl VEC 1
LET n2 = VEC 1
LET n3 VEC 1

i

SCREEN(screen.clear) // clear the screen

// Try some test conversions
myf£lit("1234,567",nl)

myElit("4321,756",n2)

myflit("abcdef”,n3) // this should be an errorc

// Try some operations

dosum('+',nl,n2,n3] // add numbers
dosum('~',nl,n2,n3) // subtract numbers

// HOTE BCPL tfeats * as a special character
// (e.g. *, *S) so we have to use ** for »

dosum({'***' . n1,n2,n3)// times numbers

dosum('”',nl,n2,n3} // this should be an error
error(27) _ // bad er-or call
5) :
C-4

9-0

{wed135)I1NdLNOLIITAS
{ (WNOD.) LNGNIANII) INANILDETAS = WesIs 147
pJoooﬁi:o:dx:asap'pzooox;:oqd1zasap = A% 147
JqﬁjaqiJOJd]JDSBp‘HJpINiJOQdTJDSBP = U's 1973
¢ = U 13T)¢
dg {103dradsap)mopurmason gy

passaid st //
Aay 1s3us ayjz Traun sday J0snd ayjy Bursn jnoqe //
MOPUTM 3yl saow 03 325N 3Y3 SMOTTR BUIJNO; sTyy //

. (s
01 =: pacoskjroidiaosap
05 =i pPJoODxiioidizasap
¥oot1o //

SU3 3O uoT3TSOd TRIITUT BYI PUTFIP SUTT OM3 XU ayy //

(¢ >> yaprm*i1apaoq)
+ aeysr*jo-aybray =: 1ybrayjrojdraosap
(vsU3pIma23pa0q)
+ (Z+MD0OT2UT"SIRYD) 9ZTSYD =! YIpTmjaocizdrassap
€1 =% 22Ysyo> 3gs1a
9 =i 9Z154D NIHL OV < UIPImjioldiiosap LsSuy
(303d1ID59p ! DYSL mOPUTMIMOAKTM)&
38 (103d1I0S8p)SSITRTATUT QNY

/%

“J3pJdog 3Rym © pue 320}
a1 Aeydsip 03 ydnoua §1g s11ey) mopuim Saujap usys 9] “(3pow 10}1uniy
40) ¥L PUe 3powl 4] 10) L S1 1Y) S| mOPUIM JINE)P BY] BPIm SI19122aRYD
Aurwr moy Sutass AqQ ul aie am apow YIIYys Jno syliom dumnoet sy,

%/

(3
swty Aeydsip // ()awrimoys
10s1n> e1gesip // (10s1n00U* UBBIDS)NTTHIS
PUNOIE MOPUTM daOw // (103d11052D)R0pPUTMaAOY
moputm dn sas // (103draosaeplssiteiiTun
A2'IS UG spaom 1dog t+ 18b /S ¢ 204 = 103dr30sap 47)¢
Jg ()LEYLS Ld7

swiIgod s dwiy I WRAOIBAN) T IDH D

ao3o084a 1®qOib ut //

aoeds aalssal // ($ Bbr : 2z1syn)¢ TYgoIO
(s

sAsy 1o0713u0D 10sand//
BOX# = ybra
00X# = 3391
gax# = : dn
00X4 = umop
£ = pP10024
T = DI0QOX
1 = aybray
0 = YIpim
1 = U3pim-Iapiecq
01 = 7eyd-jo°3ybray

8 = ¥OOTD-UT"SiPUD)8 ISTIINYW

pesy 01 12ises weiboid axew 03 s3isajruen S/

ssanpeooard Aaxeaqry 336 s/ #wdOREIZ, 14D
sweu uorjnas // w300T2, ROIILDES

32012 243 JulABdsIp 11835 0] < NULAY >

pue ‘Juem noi alsym J1 A0Ul 0] SAIY JOSIND MOPUIm Yy 198

03 D1W.LD 'uns 03 nFx asn -awity oy sAefdsip wesdord sjdwexs sy,

¢ meldoag vjdurexy

SwE1s02d 3|dWeNy I 1uado]aa(1404 1O

X QL. BCPL Development Kit Example programs

SCREEN({screen.cursor}

S{ descriptor!xcoord := x
descriptor!ycoord := y
SCREEN{screen.clear)

// clear screen
SCREEN(screen.border,black,border.width)
// remove old border

// redraw window with a white border

WINDOW{window.define,descriptor,.white,
border.width?

ch := RDCH()

- SWITCHON ch INTO

$(CASE '*N': RETURN // carriage return

//down
CASE down: IF y < 1 LDOP
y 3= y-1
ENDCASE
//up
CASE up: IF h+y > 256 LOCP
y 1= y+l
ENDCASE
. //left
: CASE left: IF x < 1 LOOP
X = x-1
ENDCASE
//right
¥) CASE right: IF w+x > 512 LOOP
¥ 1= x+1l
EXNDCASE
DEFAULT: LCOP
5}
$) REPEAT

$)

AND showtime()} BE
${ SCREEN{screen.border,white,l) // draw white border

SCREEN(screen.at,1,0) // home cursor
WRITES{TIMEOFDAY ()} // write out time
$) REPEAT

c-1

