[S
L by =

. » + * » . » .
.

.
L]

»
. +
[ox I W) T =N SV N

SIS S NS N S SN S SN
L]
(oA VLRV RS TR & B U5 I N PN]

[
PNV S

. s B " r 4 a4 a4 e x ww
LI
PR [N

LI D T]
WD~ W N

*

PR HERRHREHERRRRRBH B 289 B2 000 -0 8 Wk

» . L
[arpy—
VB WNNNNRORRERRHERRPRR PR B O

[
+

+ N
B W b

e R O - T - WY - N - W gt A "t N N Gt N T R S - N O N S %

4.16
4.16.1
4.16.2
4.16.3
4.17
4.17.1
4.17.2°
4.17.3
4.17.4

CONTENTS

INTRODUCTION TC DIGITAL C

What You Got for Your Money
Getting Started
Copyright Notice

COMPILING AND RUNNING DIGITAL C PROGRAMS

Source Programs

Parser

Code Generator/Linker

Library Generator

Program Execution
General rules
Parser command line- o
Code Generator/Linker command line
Library Generator command line
Input/output redirection and pipes
The sample program sort

The Configurator Program

[N

THUMBNAIL DIGITAL C TUTORIAL
A Short Program

Getting Bolder

Flexing Digital C's Muscles
Striking Out on Your Own

THUMBNAIL DIGITAL ¢ REFERENCE
Limitations
Program Line Organisation
Comments
Constants
Variable Types
Initialisation
Scopg of Variables
Cperators
Unary operators
Binary operators
Expressions
Statements
Keywords
The if ... else statement
The while statement
The do ... while statement
The for statement
The switch statement
The break statement
The continue statement
The goto statement
The return statement

. Functions

Function definition
Function calls
Pointers to functions
Function argument counts
The Preprocessor
Standard Definitions
Standard DIGITAL C Channeils
Libraries ' .
‘ Standard C library functlons
QDOS functions
Floating-point library
Errors
How to interpret error messages
Parser error messages . ;
Code Generator/Linker erkor messages
Librarv Generator error messadges

IGITAL C

BY
G. JACKSON
, Manual by
Dr. Helmut Aigner & Dr. Andy Aigner
A
ADIGITRL PRECISION
0 oo |

Copyright 1988 Digital Pracision Lid,
Published by F, A. Vachhg for DP, 222 The Avenue, London E4 95F

1. INTRODUCTION TCO DIGITAL C
1.1 What You Got for Your Money

DIGITAL C is an impleﬁeﬁtation of the Small-C compiler originally
published in Dr. Dobbs' Journal. This compiler, which was originally
written to run on 280 and 8080-based systems has been heavily modified
to run on the QL or Thor. " Included with the compiler proper, which
will henceforth be referred to as the Parser to avoid ambiguity, are
two other programs specially written for this implementation, a Code
Generator/Linker and a Library Generator, as well as some library
programs: these two progrqms'are all that we are charging you for.

Chapter 2 of thi? méhualfqil} tell you how to run programs written
in DIGITAL C. It is indispensable for all users, including those who
can program in C. For'gﬁose new to the language, Chapters 3 and 4
contain an introduction to'programming in €, but this can only skim
the surface. For serious study - or if you do not know SuperBASIC
reasonably well - you should get a text on programming in C, such as

Boris Allan

Introducing €

William Collins Sons & Co Ltd
£ 9.95

ISBN 0-00-383105-1

Boris Allan)

C Programming: Principles and Practice
Paradigm

E 12.50

ISBN 0-948825-15-4

Kevin Sullivan

The Big Red Bock of C
Sigma Press

¢ 7.50

ISEN 0-905104-68-4

or the C 'bible' by the creators of the language:

Brian W. Kernighan, Dennis M. Ritchie
The C Programming Language
Prentice-Hall Inc.

ISBN 0-13-110163~3

The DIGITAL C Parser is an integer-only parser handling a subset of
the complete C language. A library is provided to handle fiocating-
point arithmetic and QL input/output.

The feollowing files are included in this package:

cc Parser

cg Code Generator/Linker
ig - _.-Library Generator
mc_obj’ Machine-code module
std lib ., . Standard library
stdio_h Standard definitions

updates_doc Updates to the manual, to be read with
Ouill - only present if needed

config Change the default device, alter the
' ~ screen characteristics

sieve ¢ = Sample program

sort ¢ Sample program

clone " Backup facility

2. COMPILING AND RUNNING DIGITAL C PROGRAMS

2.1 Source Programs

The DIGITAL C microdrive or disk contains two sample programs named
sieve ¢ (a sieve-of-Eratosthenes prime-number algorithm) and sort ¢ (a
multi-purpose sorting program). If you wish to add programs copied
from a magazine or written by yourself, they must be written in ASCII
format. This can be done in QUILL, if you take certain precautions to
prevent non-printing characters from going into the file: set left
margin to 1, indent margin to 1, right margin to suit your screen
display, right justify off and page length to zero (Design command).
Use the Print rather than the Save command, and when you are offered
the default ‘'to printer', type in the name of the file (be sure to
specify a _¢ extension, so that the Parser can deal with it). After
writing the filename and before pressing Enter, remove ti~ Quill disk
or microdrive to make the printer dat file unavailable. Ignore the
'bad or changed medium' message {(for once). Alternatively, if you
have a versicn of QUILL which supports the File Export command, use
this.

It would be vastly preferable, though, to use an editor program to

?rite your files, such as Digital Precision's The Editor. This not
only makes for faster writing and editing but also greatly simplifies
the saving process. Again you must save your programs with a _c

extension so that the Parser can deal with them.

2.2 Parser

This section may safely be skipped if you are not interested in the
theory but only want to run programs.

The original Small-C compiler was written by J. E. Hendrix and
placed in the public domain. A description and source code of the
compiler (and many other useful programs) are contained in "Dr. Dobbs’
Toolbook -of C" published in 1986 by Brady (Prentice Hall), ISBN
_0L§9303—599—8. This is a source of many useful programs. The DIGITAL
Re Parser takes C source code and produces an intermediate-code file.
The 6riginal compiler produced output suitable for a conventional
assembler and linker.

The DIGITAL C Parser produces a numeric intermediate-code file
which is used by the Code Generator/Linker. This approach was taken
because it is much faster: e.g., with the original system it took the
‘compiler abbut 12 minutes to compile itself and a further 13 minutes

“for ar’ assembler to generate an executable program. With the
code-generator approach the Parser takes 6 minutes and the Code
Generator 50 seconds. Large programs can be compiled in separate

modules and the object modules linked together into an executable
program by the Code Generator/Linker. This makes recompilation a much
quicker process when programs are modified, since only those modules
which have been changed need to be recompiled.

2.3 Code Generator/Linker

The DIGITAL C Code Generator/Linker has been specially!written for
the QL, using DIGITAL < itself. It takes object-code modules
generated by the Parser and library modules produced by the Library
Generator, generates 68008 machine code for each module, and links all
modules together to produce an executable program which may be EXEC*d
in the usual way. Executable preograms are limited to 64K {including
runtime dataspace) in size; however, later releases (to be produced if
justified by demand) may have no size limitations. The Code Generator

will tell you if an executable program is too large.

2.5.2 Parser command line

The command line for the Parser contains one or more C source-file
names with optional command-line switches. The source file must be
stored in a file on one of the standard QL devices, e.g. mdvl_, flpz_,
ramt , etc.; and the filename must end with ¢ or C, e.g.
the supplied program mdvl sieve ¢ . Possible command~line switches
are:

-p Pause on error: if an error occurs, the Parser
waits until ENTER is pressed; if ESC 1is pressed,
the program aborts.

-m Monitor progress: this prints the first line of
every C function as it is compilc 1.

~-d/dev Set the default device for C source files: this
overrides mdvl , the default in the compiler suite
as supplied, or whatever default device has been
configured with the config program.

The first item ('argument') on the command line should be a
filename. This is taken for both the input filename (with a _c
extension} and the output filename (with an obj extension). Other

switches and filenames may occur in any order. If other filenames are
included, they are compiled into the same object module.

For éxamplé, tc compile sieve c, any of the following may be typed
in as the command line:)

mdvl sieve ¢ -p -m
sieve -m -d/raml -p
sleve

All of these will produce an object module cailed Siéverpbj .
The command line
fred -p mary ¢ flpl joe —-d/raml_

will attempt to compile raml fred ¢ , raml _mary ¢ and flpl joe c,
pausing after every error. A single object medule raml*fred_pbj will
be produced for input to the Code Generator.

With the TURBO Toolkit, it is possible to compile a program that
will not have to stop for a command line (say, from RAM disk to RAM
disk, with the pause and monitor options) by entering

EXECUTE raml cc;'raml_test -p -m*
2.5.3 Code Generateor/Linker command line

The command line for the Code Generator/Linker contains a mixture of
an output filename, object module names, library module names and
command-line switches. The first name on the line is taken as the
name of the executable task; the others may be in any order, except
that, if you have several library modules, earl’er ones may call
functions in the later ones but not vice versa. If this causes
problems, combine library modules.

2.5.5 Input/Output redirection and pipes

The standard channels stdin and stdout may be changed from the
console window by redirection in the command line. This is not used
in the compiler suite itself but may be used in DIGITAL C programs
(e.g. in the example program sort). Redirection is achieved by

preceding the desired filename with < or > or >> . e.d.

<mdv2 fred in a command line will take standard input from a file
mdv2 fred. Of course this file must already exist.

>mdv2 joe will send standard output to mdv2 joe aftexr deleting any
existing file with that name.

>>mdv2 mary will append standard output to the end of an existing
file mdv2 mary -

Compiled programs may alsco make use of pipes if you have a toolkit
(e.g. Digital Precision's TURBO Toolkit)} which supports pipes. E.g9-,

EXECUTE raml input TO raml test:'option string' TO raml output
will run task raml test, set its input stream {stdin), to raml input,
and set its output stream ({(stdout) to raml output. The error stream
will remain set to the console. Of course the output stream can be
piped on to ancther task.

If input/output redirection is included in the option string (a bit
silly but possible}, this will take priority over what i/0 may have
been specified in the EXECUTE command; e.9.,

EXECUTE raml il TO ramL_;est;‘<raml_i2 >ram1_92' TO ramlﬂol
causes files raml il and raml_pl to be opened but ignored by
raml test. They will be closed on task termination, of course, since
they are owned by the task.

Note that

EXECUTE raml input TO raml_cc

will cause the Parser to read a command line from file ramLﬁinput.
But

EXECUTE raml_input TO raml_cc;'-p -m"
will cause the Parser to compile file raml input. On the other hand,
EXECUTE raml il TO raml_pc;'ram;_i2 -p —m'

will compile raml i2 and ignore raml_il. All perfectly logical, we
assure you.

Output pipes from the Parser are ignored, since output 1is always
sent to an _obj file.

2.6 The Configurator Program

The DIGITAL C
permit you to

suite includes

{a} change

a program

the default device

named config, which will

{originally mdvl_ or flpl),

and

{b) alter the characteristics of the screen {window
parameters, character size, colours) for the programs ccC,
cqg, lg and config {vyes, you can configure the

configurator!).

To make any of these changes, place
and type

exec mdvi config

The program will ask you a number
case {except the filename, which must
range and a bracketed default vaiue
pressing Enter}. When all questions
displays the requested
te restart.

screen and prompts you either to

your DIGITAL C medium in drive 1

of questions, supplying 1in each
be c¢c, cg, lg or config) both a
{which you can select by simply
have been answered, the program
accept it or

If you accept the changes, you will be asked for the name of another

program to configure.
this stage.

To terminate the program, simply press Enter at

PROFESSIONAL ASTROLOGER

" Armoing Aslialogy system & Suppied with 140 A page Manudl which ossumes na kntwiodge of asioiegy & Gives 10 Ad pages of personaiityfcharocis:

Jalineaion & Glvas & Ad poges of doy. o YRor-Ho-paar personalised text

* Gives 1 Ad pagos of texd betwaen hwo

N oo il COAT pcdsons
o Massiver J00K of user oxdustabie texd 1lles (450K for disk usars) suppiked logaether wiih machive coda odifor * incredibly tost - 0.5 secondsicomputation « O

inule cocuracy this century « Exoct

on ol opions - 46 print modes, wser dalimably ot
« Symasky & Choica of 7 howse syslems « Individually odjustatie orbs « Batch processng moda

Givphs and printer divet & Tromsits & Pr
& Eufl QiR compataptity « +58 Birnh dalo Res suopdied

& Fils comprassion « Chipdl to ony davice. Inchiding fles & Advanced commind JangUaQe Using ANDICRINOY and a PO12345678¢ mubipte crileria tocility

+ Eclipsas « Closing aspact indicalor « Comprahenshae user lmnatsle defaults + Recliication + Exremaly wser kisndhy + Real-tima

interpralation kim «

“"Ihe most powertul & complete asirology package on any micro.... provides

everything that a present day Nostracdlamus wilfneed.. ...

the ultimate astrology

package....a 5-Star (Yoot} program —a Sinclair User Classic {the highest
award given fo any program 7" SINCLAIR USER
LR ASTROLOGER PROFESSIONAL

I'F:'_TURFS DE LUXE ASTROLOGER
AUTOMATIC HOUSE CALCULATION - -
TEXT FILES FOR HOWSE INTERPRETATION JLIK THE +
AUTOMATIC $IGH CALCULATION * -
TEXT FILES FOR SIGN INTERFRETATION 37K 0K +
AUTGMATIC ASPECTS CALCULATION * *
'LE;EFILE.S FOR ASPECTS INTERPRETATION I K+
GRATHIC PRINT OF NATAL CHART Nal proportonal Proponional
INTEAFRETATION USES ASC + MC. - *
CALCULATION ACCURACY THIS CENTURY Withia 5 aunt. Within 1 mn.
USER DEFINABLE ASTROLOGICAL CHARACTER SET * *
USERMODIFIED INTERMRETATION FILES WITH * -
~ ANDO# LOGIC - FULL SCREEN EDITOR
USEN DEFINABLE PRINTER DRIVER - *
(_)l_}'l_'l’U'I’ TO SCREEN/PRINTERMICRODRIVEDISK * *
AUTOMATIC PROGRESSION CALCULATION - «
TEXT GUTPLUT FOR PROGRESSION INTERPRETATION . .
T ALLOWING YEAR 10 YEAR IIOROSCOPES
&TOMNI‘I.CCOMI’ATIBII.ITY CALCULATION w L
TEXT OUTPUT FOR COMPATIBILITY TESTING ALLOWING _ -

AUTOMATIC COMPARISONS BETWEEN INDIVIDUALS
AUTOMATIC TRANSITS CALCULATION - .
TEXT OUTPUT FOR TRANSITS INTERPRETATION - N
" ALLOWING DAY TO DAY NIOROSCOPES
USTR-SWITCIABLE HOUSE SYSTEM - * (Fdctaulis)
USER-OEFINADNLE ASPECT ORBS - w
TEXT & DEFAULTS EDITOR FROGRAMS, SupcrBASIC High specd Wasde
“NOT™ FACILITY iN INTERPRETATIONS - *
SELECTIVE "ANYTHING” FACILITY {EG:

ANYTIONG I8 THIRD HOUSE BIQUINTILE - *
_AKYTIIENG N ARIES) IN INTERPRETATIONS
BATCH PRINTINGPROCESSING - .
NARROWINGWIDENINGETATIONARY ASPECT INDICATOR - *
SAMPLE BIRTIi DATA FILES 2 150+
BIRTI] DATA FILE, COMPRESSION - -
FULL QUILL COMPATIDILITY (TOFROM) - *
AUTOMANIC ESCIRETRV/ABORT FILE FACILITY - "
PRINTER CONTROL CODE DEFAULTS - F(ongiiets
FRINT MODES 3 4
SEPARATE ORE DEFINE FOR MATAL/TRANSITS -

PROGHESSIONS & COMPARISONS #

“Digital Preclsion have achleved ihe impossible with Professtonat Astrologer.

Descriptions such as superb, utimate, ex

llent are descriptions which are only

barely adequate” . .. &L WORLD/QL USER '
£59 95 COMPLETE WITH HUGE MANUAL, OR £69.95 WITH ASTRONOMER TOO

nonsnouumtonomsuomum«hmm.sméamuummmcmdSmomm.m

MooniAercun e ool 19ce cdsplay wih reol thadows and ach

wolc*udocibﬂummw.&mmmm.lndwatnmmmvm.ﬁwmh

H mumfmm_qundmm
NG Syt

But what about the many other things the user needs? These elements
are either contained in a library or must be programmed by the user.
Every C system features a standard library; in DIGITAL C it can be
found on your disk/microdrive under the name stq_lib- It is accessed
automatically whenever necessary, without the user having to compile,
link or otherwise connect it with his/her programs. But be sure it is
available on the default device.

Of course the program, if first put down on paper, needs to be
transferred to a file and subsegquently compiled before it can be run.

The routine for this has been given in Section 2.1 and Subsections
2.5.1 to 2.5.3.

3.2 Getting Bolder

Our next program is somewhat longer. It requests two words of input
and compares the numbers of vowels they contain.

maing}

char wordl[255], word2[255];

fputs ("\nFirst word: ",1};

wordinput (wordl) ;

fputs ("Second word: ",1);:

wordinput {(word2) ;

fputs ("\nThe two words have ", 1);

if {(vowelcount (wordl) != vowelcount{word2))

fputs("different numbers",l}:
else

fputs{"the same number",l};
fputs (" of vowels\n",1};

wordinput (word)
char word{255];
int 1i;
i=0;
while { {word[i] = getchar ()} != 10)

putchar {wordli]});
i++;

putchar {10} ;

5

vowe lcount (word)
char word{255%];
gnt i, nvowels;
nvowels=0;
for{i=0; wordli] !'= 0 && wordl[i] != 10;i++}
switch{word[il]}

case 'a':
case 'A':
case 'e':
case "E':
case "i':
case 'I':
case 'o':
case '0':
case 'u':
case 'U’':pvowels=nvowels+l;
break;

return nvowels;
" L]

In DIGITAL C integer and <character variables can often be wused
interchangeably, as the two data types are essentially the same.
Thus, the above program line checks whether word{i] is a linefeed
character (ASCII code 10).

getchar{} is a library function which returns a character from
stdin. Similarly, putchar() writes its character argument to stdout.

The statement i++ illustrates one of the many possible abbreviations
in DIGITAL C. It means nothing else but i=i+l, Other possible
abbreviations are i-- for i=i-1, i+=3 for i=i+j and many more.

The vowelc-unt() function, finally, introduces three more DIGITAL C
statements: for, switch and return.

The for construct in DIGITAL ¢ differs somewhat from SuperBASIC.
The pair of parentheses after the keyword encloses three expressions
separated by semicolons. The first is an initialisation statement,
the second a condition which has to be true for the body of the loop
to be executed, and the third an action to be performed at the end of
each repetition of the loop. Thus, SuperBASIC's :

FOR a = b TO ¢ STEP 4
would come out in DIGITAL C as
for (a=b;a<=sc;at+=d)

There is no restriction on the type of the statements within the
parentheses; any or all of them may even be empty (though the semi-
colons are compulscry). Thus the first statement does not necessarily
assign a value to a loop variable, nor does the second one necessarily
check its value. Some possible for headers are

for{a=1;b<27;c--} or for{;getchar()="x";) .

The && in the for statement in function vowelcount() is eqguivalent
to SuperBASIC's AND; || is equivalent to OR, and ! to NOT. (DIGITAL C
has & and ™ corresponding to SuperBASIC's bitwise && (and) and || (or)
respectively, in case you were wondering),

Remembering the syntax for if and while, we are not surprised to
note that there is no endfor statement. Again, the body cof the loop
consists of just one (single or compound)} statement. :

The switch construct corresponds to SuperBASIC's SELect group, with
the case prefix replacing the ON statements and default the REMAINDER
keyword; only single cases are allowed. Once the program has found

“the first match, it performs the action prescribed not only for that
case but also for all following cases. This 'fall-through’ is
desirable in our case, but can be avoided if necessary by means of the
break keyword, which causes the program to leave a switch {(or for or
while) construct, much like SuperBASIC's EXIT.

The return statement is an old acquaintance from SuperBASIC. Note
that it is nlot necessary if no value needs to be returned by the
function (see wordinput{})).

#define MAXNUM 8

scans the wheole program for appearances of the so-called symbolic
constant MAXNUM and replaces each with the integer constant 8, whereas

#include filename

merges the contents of filename into the program. NMote that prepro-
cessor statements, not being part of DIGITAL C proper, do not need
semicolons after them. For further information about the preprocessor
and its possible uses see Sections 4.13 and 4.14.

The next two lines introduce us ro the concept of ‘glcbal
variables'. As we have said earlier, most variables in DIGITAL C are
local +to their functions. There is just one excepition: variables
which are defined cutside any function are global, i.e. they can be
accessed anywhere in the program module. Another feature ocf global
variables is that they can be initialised when they are defined.

If within a function a variable is called which is defined not only
outside that function but alsc outside the whole module, it is clearly
necessary to tell the compiler that it must search elsewhere for such
an 'external' variable. This c¢an be accomplished with an extern
statement, such as

extern int x, char c[], &;
As the extern statement refers to global variables, it must occur
before main{) is defined. Note alsoc that the array is not explicitly

dimensioned in the external declaration, this being the privilege of
a global declaration in the called module,.

Back to our sample program: at first glance the function main() does

not introduce any new statements except the function atoi(), which
converts its string argument to an integer and returns the integer
value. But there is one important concept introduced here, the

concept of pointers.

In all standard programming languages, arrays as function parameters
are passed by reference, using the address of the first array element
{(the other elements have consecutive addresses in memory). The method
is made transparent in DIGITAL C: the address of an array (as of any
variable) is called a pointer to the array and accessed by the name of
the array without brackets (see the function c¢alls in main{()). To
refer to the pointer +to a scalar variable var, use &var; the inverse
process (accessing the contents of a given address addr} 1is
accomplished with *addr for both scalar and array variables. Thus the
first and third elements in array cl{] {(i.e. the ones with subscripts
- zero and two) can be accessed by *c and *(c+2) instead of <¢[0] and
cl2].

It is also possible to declare pointers to variables or arrays; the
syntax for this is shown in the first line of read values(). Before
looking at how this is implemented, observe (comparing the de-laration
of help in main() with that of end in read values{()) that arrays of
size one and scalar variables can be used interchangeably.

3

4. A THUMBNAIL DIGITAL C REFERENCE
4.1 Limitations

This chapter gives a rapid overview of the features of DIGITAL C for

the beginner. It presupposes a reasonable acquaintance with
SuperBASIC.
4.2 Prog~am Line QOrganisation

DIGITAL C 1is fairly permissive about where you put your linefeed
characters; for example, a curly bracket may come at the start or end
of a line or even on a line by itself. Don't, however, try to split a
string (including the gquotes round it) or a name. For your own
convenience, though, sticking to one statemént per line is strongly
recommended .

4.3 Comments

A comment may be placed wherever a space or linefeed 1is legal, as
long as it is preceded by /* and followed by */ .

Comments can span many lines, and it is a common error to forget the
closing */, thus inadvertently commenting out whole functions.

4.4 Constants
Type: Example:
Integer 123 {-32768 to 32767}
Character tx'
String “abc"

Note the difference between single and double guotes.

In the internal representation of a string constant, the computer
marks its end with a null character /0.

Several characters are represented as 'escape segquences', i.e.
preceded by a backslash:

\n line feed (newline)

\f - form feed

\t tab

\b backspace

h\Y {single} backslash

\! single quote

N\### 3 octal digits representing the ASCII value of a character

In all othar character combinations the backslash is disregarded.

4.6 Initialisation

A11 global variables and array elements are initialised to zero by
default. It is, however, possible to initialise global wvariables
explicitly when defining them. The examples

int a = 5;

char ¢ 'x*;

int af] =13,7,5,4,8,6,2,4};
char c[101 = "DIGITAL C\n";

show the syntax rules for initialisation. Note that character arrays
can - but need not - be initialised by strings and that the number of
array elements need not be specified if the variable 1is initialised
explicitly. If the array size has been specified and the number of
initialisers is less than the number of array elements, the remaining
elements are initialised to zero. The number of initialisers must not
be greater than the array size.

The initial value of local variables is undefined. They cannot be
initialised with their declaration and must therefore be assigned a
value before they are first used.

4.7 Scope of Variables

Variables can be declared in two places: at the beginning of any
compound statement (this includes the 'body' of a function
definition), and outside of any function.

If a variable is declared inside a compound statement, it is defined
inside this compound statement and nowhere else; it is local to the
statement or function. Function parameters must always be declared
between the parameter list and the body of the function (see Section
3.2 for an example).

A variable defined outside any function is called a gleobal variable.
It can be accessed by every function in the program module. Of course
global variables can only be initialised when they are defined, i.e.
outside any function.

If two modules are compiled together, module A may use variables
declared in module B (external variables). Such variables must be
declared global in module B and external in module A. The external
declaration differs from the global declaration in that it is preceded
by the keyword extern and that any dimensioning brackets are empty.
The above principle can be extended to more than two modules.

4.9 Expressions

An expression is basically a combination of variables, constants,
function calls, operators and/or .parentheses. Names can be up to 16
charactéers long, with upper and lower case distinguished, and can
consist of letters, digits and the underscore _ . The first character
maist be a letter. As in SuperBASIC, 'logical expressions' are
assigned integer values: O for false, and 1 (or any nen-zerc value on
assignment) for true.

4.10 Statements

There are two tyr=s of statements: single statements, which are
followed by a semicelon; and compound statements (each of which is an
optional list of variable definitions followed by a list of single
and/or compound statements), surrounded by braces. A single statement
may be an assignment, a function call, or one of the following
keywords or keyword combinations.

4.11 Keywords
4.11.1 The if ... else statement

if (expr}
statementl
else
statement2

is similar to the SuperBASIC IF ... ELSE ... ENDIF construct; DIGITAL
¢ also supports the if ... else if ... else variation.

4.11.2 The while statement

while (expr}
statement

repeats statement until the expression is false (equals zero) or the
loop is left with a break statement.

4.11.3 The do ... while statement

do
statement
while {expr)

is similar to the while loop, except that the condition is checked
after the loop, so that statement is executed at least once.

4.11.4 The for statement

for(exprl;expr2;expr3)
statement

works exactly like ;

exprl:
while (expr2)
statement
expri;

All three expressions are optional, the semicolons are not.

4.12 Functions
4.12.1 Function definition

DIGITAL C only allows external function definition, i.e., no
function may be defined inside another function.

The syntax of a function definition is

name {parameter list)
parameter declaration
compound statement

where the parameter list (and with it the declaration}) is optional.
Example:

charcount{line}
char 1ine[l60];

int num;

for (num=1; line[num]!=;\n' && lineinum}!=0; num++}
putchar ("*');

return num;

igs a function that (a) counts the number of characters in a character
array line until a linefeed character or N0 (the end-of-string marker)
is reached, and {b) prints an asterisk for every character.

4,12.2 Function calls

A function can be called either by using it in an expression (in
which case the function must contain a return statement returning a
value, much like a SuperBASIC function) or simply by stating its name
{like a SuperBASIC procedure).

Function parameters are basically passed by value with the exception
of arrays, which are always passed by reference. If you want to pass
a scalar {i.e. non-array) variable by reference, you can do s0 by
passing a pointer to its address.

The final executable program must contain a function called
main() or main{argc, argv) which will ke the first function
executed. If a command 1line 1is requested by the application
program, the arguments argc and argv will be passed to main().
argc is the number of arguments in the command line; argv][] is an
array of pointers to strings:

argv([l) points to the first argument on the command line
{other than the name of the called program);
argv[2] points to the second argument in the command line;

PRSI A Y

argv{0] in DIGITAL C points tc a '*'string.

If your program contains a function called banner, this will be
executed before a command line is requested. The use of function and
variable names beginning with should be avoided otherwise, since
the system uses several such names.

If your program contains a function called _console, this will be
executed before any console window is opened by the entry code. This
is useful for opening your own console window and overriding the
default windows. Your _console function must return the file descrip-

tor of your console window.

<f

4.14 Standard D=finitions

Some standard definitions are contained in a file callied stdioc h .
To make prograus portable to other compilers, these definitions should
be used in place of the constants they represent, ¢.g. stdout instead
of 1 as the numder of the standard ouatpat channel. However, some
authors do not conform to the conventions for standard definitions,
e.g. Dr. Dobbs uses NULL for th2 null string rathsr than for a
non-existent address, opening the door to all sorts of preblems.
Remember th.t strings are terminated with a null character, no matter
what name you use for it, and that the NULL address in DIGITAL C is
-32768 (Hex 8000) and not 0; address 0 actually exists.

4.15 Standard DPIGITAL T Channels

There are three standard channels whan a compiled DIGITAL C projgram

is started up. They have the file descriptors O (stdin), 1 {stdout)
and 2 (stderr) for input, ocutput and error reports respectively (The
threes names in parentheses are conventionally established as

equivalent to the numbers in stdio h). They all use the same QDOS
channel, which is a console channel. If you close one, you will cleose
all three! You are of course free to opean more channels up to a
maximum of 16 (including the three already used).

4,16 Libraries

Libraries are supplied in the file std lib, which, as explained in
section 2.2, must not b2 inzluded in the command line of the Parser.
Thare are three categories of functioas in the library:

{a) standard C functions
(b) QD03 functions
{c) the floating-point library

These are explained below, giving function name and parameters as
well as a brief explanation of the function's operation. Note that
all these library fuactions are centained in std_lib. Where a file
descriptor fd is mentioned, this is the value of the integer returned
by fopen when the file is opened.

4.16.1 Standard C library functions

The following standard library functions are common to nearly all C
systems:

abort{n) int n; Aborts a program, error message if n i= 0.
abs(n} int n; Returns absolute value of n.
atoi{s) char *s; Returns string s converted to an integer.

atoib{s, b) char *s; int b;
Returns string s converted to an integer using base
b.

27

fputc(c, £d4} char c; int fd;
Writes character ¢ to file fd.

fpats{str,fd) char *str; int fd;
Writes string str to file fd.

fread{ptr, sz, n, f£d) char *ptr; int sz, n, fd;
Reads n items, each of size sz, from file £4 into

memory at address ptr.

free (addr) Frees allocated memory, addr beiny the address
previously returned by calloc{) or malloc().

freopen(fname, mode, f£d) char *fname, *mode; int £d;
Closes the file indicated by fd, and ~vans a naw
file whose name is fname. Mode is as for fopen(}.
if successful, fd is returnad, otherwise NULL.
fwrite(ptr, sz, n, f£d) char *ptr; int sz, n, f£d;
Writes n items, each of size sz, from memory
starting at address ptr into file fd.
getc (£4) int fd; Returns the next character from file fd.

getchar () Returns the next character from stdin.

gets(str) char *str;
Reads a string into str from stdin.

gstarg(n,s,size,argc,argv) char *s; int n, size, argos, argv;
Locates argiment n from the command linz, moves it
to string s, and returns the length of the string.
argce and argv must be the valuzs provided to
funection main{) when ths program is started.
isalnum(c) char c¢; Returns 1 if ¢ is an alphanumeric character.
isalpha{c) char ¢; Returns 1 if ¢ is an alphabetic character.
isasciilc) char c¢; Returns 1 if c 1s an BSCII character.
isentrl{c) char ¢; Returns 1 if ¢ is a control character.

isdigit(c) char c¢; Returns 1 if ¢ is a digit.

isgraph(c) char ¢; Returns 1 if ¢ is a graphic character (ASTII codes
33..125).

islower (c) char c; Returns 1 if ¢ is lower case.

isprint(c) char ¢; Returns 1 if ¢ is a printable character (ASCIET
codes 32..126).

ispunct{c) char c; Returns 1 if ¢ is a punttuation character.

isspace(c) char c¢; Returns 1 if c is a white-space character (SP, HT,
VT, CR, LF or FF).

isuppar(c} char c; Returns 1 if ¢ is an uppar-case character.

isxdigitic} char c¢;
Returns 1 if c is a hax digit.

itoa(n, s} int n; char *s;
Coaverts integer n to a decimal string.

strepy (s, t) char *s, *t;
Copies striny t to s.

strlen{s) char *s; Returns the lenjth of string s.

strpcat{s, t, n} char *s, *t; int n;
Like strcat{), except that a maximun of n charac-
ters is transferred.

strncmp(s, t, n} char *s, *t; int n;
Like strero(), except that a maximum of n charac-
ters is compared.

strncpy (dest, sour, n} char *dest, *soar; int n;
Like strcpy{), except that n characters are copied.

strrchri{s, c¢) char *s, c;
Like strcnr, except that the rightmost occurrence
of ¢ is found.

tolowar(c} char ¢; Returns lower-case eguivalent of c.
toupper (c) char c; Returns upper-case egquivalent of c.

utoifstr, nbr) char *str; int *nor;
Coaverts the unsigned decimal number represented by
the string at str to an integer at nor and returns
the length of the numeric field fouandi, or ERR if
the number is larger than 65535,

write(fd, ptr, n) int fd; char *ptr; int n;
Writes n bytes from memory starting at address ptr
into file fd.

4.16.2 QD3OS functions

File std lib includes some DL-specific functions which provide the
same oparations as SuperBASIC keywords, usually with thz same name.
There is, howevar, less flexibility than in SuparBASIC, since all
parameters must be included, in particular the file descriptor fd,
which is equivalent to the SuperBASIC channel nuxber.

For the format of fleating-peint arguments see Subsection 4.16.3.

Functions for which no return value is specified in the following
description return the QDJOS error code, i.e.
6 for no arror
-n for an error where n is as described in the QL User Guide.

adate({n) int n; Adjusts the clock by n seconds. Return is und=finz=d.

arc(fd, =1, yl, x2, y2, angle) int £d: ‘float' x1,vl,x2,y2,an3le;
Plots an arc from (xl,yl} to (x2,y2) subtending
angle.

at{fd, line, col) int fd, line, col;
Positions the cursor using character co-ordinates.

baud(rate) int rate; .
Sets the baud rate of the serial interfaces.
Return is undzsfined.

paper (fd, col) int fd, col;
Sets the paper coloui to zol.

point(fd, x, y) int fd; float x, ¥:
Plots a point.

quiet(} Turns off any soand.

scale(fd, s=ale, x, y) int fd; float scale, X, Vi
Sets the graphic scale.

scroll(fd, n} int £d, n;
Scrolls a window up or down.

scrollp(fd, n, part) int £d, n, part:
Szrolls part of a window up or down.

sound(d,pl,p2,x,y.wr,fz,ra) int ...;:
Complete souni specification, like SuperBASIC BEE?
with all parameters.

strip(fd, col) int fd, col;
Sets the strip colour to col.

under (fd, switch) int £4, switch;
Turns underline mode on or off.

window{fd, width, height, x, y) int ...;
Adjusts the size and position of a window.

4.16.3 Floating-point library

The original Small-C did not include fleatiny-point {(real) numders
at all; bat these are nz2cessary on the QL if you wish to use some of
the graphics routines. Tnerefore floating-point library functions

{all the usual mathematical functions plus some conversion functions)
have been providead.

A floating-point numder muast b2 dzclared as a 3-2lement integer
array; e.9.

int al3}, bi3]l, cl3};

declares three floating-point variables a, b and ¢. For tha eguiva-
lent of a = b + ¢ you must write one of the following in your progran:

*a = fadd(b,c);
or a{0) = fadd(b,c};

Similarly for all the othar floating-point operations.

To do saveral operations, they must be programmad separately, €.9-,
if a, b, ¢, d are all floating-point variables, for a = b+ ¢ + 4d you
must write

*3 = fadd(b,c); *a = fadd{a,d}:
or similar. & line such as

*a = fadd{(fadd(b,c),d)

will pnot work.

4.17 Errors
4.17.1 How to interpret error messaces

Most error messagzs in DIGITAL < are szlf-explanatory. Ths2 rather
cryptic "must be lvalue"™ usually means that you have not d=clared a
variable. The error marker appears just after the actual error, so
that a missing s2micolon should often bz located at the and of the
previous line. An =rror in an expression turns off error detection
until the next semicolon, so0 that thare may be further unreported
errors on a line.

As DIGITAL C assumes undeclared identifiers 0o be function names in
another module, undaclared variables may not be detected until the
Codz Generator is run. Variables defined in other modules must be
declared using the extern daclaratioan.

Error reports in the Coda Ganzrator refer to the source module ani
line number where the error was detected and, where relevant, give the
offending identifier. If, say, the required definition of a function
is missing, only the first reference to it is reported, furthar
occurrences being suppressed.

4.17.2 Parser error messages

"Already dzfinesd" Identifier hag been 3eclared before and cannot
legally b= redefine=d, e.g. a global variable with
the same name.

"Bad labal" Tne label follgwing a goto is illegal.

"Cannot assign to pointer"
A pointzr wvaniable cannot be initialissd in a2
declaratioa.

"Can't subscript" Only arrays or |pointer variables may bz followed by
a subscript, i.e. a '[' character.

"Error writing to file"
Whan saving intermediate codz2 to an obj file, a
Q008 error has loccurred, e.g. if the drive is full.

"Global symbol table overflow"
The internal gpace allocated for storing global
variable names has been filled up (a fatal error}.
Use fewer global variables.

"Illegal address" following the & address operator.

"Illegal argument name"
An invalid ida2ntifier has occurred 1in a list of
argumnents in a [function call or declaration.

"Illegal function or declaration"
An invalid identifier has occurred where a function
or other daclarption was expected.

"Illegal symbol" An invalid idzntifier has occurred.

"Invalid expression”
You have mades spme syntax error in an expression.

"Line too loag" After pre-processing, i.e. replacing macros with
their text, the|resulting line 1is too long for the
internal buffer|

"No apostrophe” A ' character has been omitted in an input linz.

"No clesing bracket”
Tnere is a missing 3’ somewh2re in the program.
This messags only occurs at the end of a program.

"Ne comma” Comnas must be used to s2parate arguments in the
argument list of a function call or declaration.

"No final }" & } is missing at the end of a compound statement.

"No matching #if..."
#else or #endif has occurred 1in the source file
without a matching preceding #if.

"No open paren"” The (characiter mast follow the function name in a
fun-tion declaratioan.

"No pointer arrays"”
You cannot declare an array of pointers.

"No quote™ Tha " character is missing from a lins of input.
"No semicolon™ This message can occur wherever a ; 1s expected.

"Open failure on includs file™
Tne file whose name followad a #include directive
cannot be opened.

"Out of context" One of the keywords Dbreak or continue has occurred
oat of place, e.g. cutside a while loop.

"Staging buffer ocverflow"
The temporary buffer holding code for the obj file
has been filled. Use simpler expressions.

"Too many active whiles”
An internal table holding dotails of while and
similar statem=nts has been filled. Have fewer
nested wnile statemants.

"Too many cases" An internal table helding dztails of case
statements inside a switch statement has been
filled. Use smaller switch statements.

"Wrong number of argumants
In a function declaration the number of argumant
declarations do2s not match the number of arguments

in the argument list.
4,17.3 Code Generator/Linker error messages

In the <Code/Generator/Linker, there are three causes of an error
message:

(4) A user-generated error, e.g. uniefined variable.

(B) A QDO5 system error, e.g. 'drive full', 'bad medium', etc. 'All
you can do if you gzt such a message is try again.

(C) A Parser or Code Gensrator/Linker error. Errors of this type
should naver occur. If ona doss, and is not due to a corrupted
file, please report the occurrence, accompanied with the souarce or
object code which generatas the message, to Digital Precision.
Please try to isolate and minimise the source code which causes
thes error.

Ve

"Label too big" (cause C, form 3)

"Name already exists" (cause A, form 1)
A function or wvariable name has been uged twice.

*name not defined" (cause A, form 2)
A referenzce to a nan-existent function or variable
has been mads.

"Pnase error" {cause C, form 1)
“"Premature end of file" {(cause C, form 3}

"Program toc large" (cause A, form 3)
The compiled program plus requested dataspace is
greater than 64K.

“Symbol table full" (cause A, form 3)
The internal symbol table of the Code Generator/
Linker has been filled. Usas fewar and/or smaller
variables.

" - Too long" (cause A, form 4)
A usgr-gpecified fileanans is fTeoo long. Use a
shorter filename.

"Usagz: outfile onijfile ... libfile ... [-pl [-m] [~d/dev] [-¢/file]
[-nec] [~3#]" (cause A, form 3)
An error has been made in the comnand line; the
permitted format is indicated. i} around a

command-line switch indicate it is optional.

"variable not dafin=d" (causz= A, form 2}
A referenze to a non-existent variable has been
mads .

" - Variable or external sym>ol table error" (caase C, form 4)
4.17.4 Library Generator error messages

The three causes and the four forms of error messajyes in the Library
Generator are th= same as for the Code Generator/Linker.

"Cannot copy negative byte count" (causs C, form 1)

* - Can't open" (cause B, form 4)
An attempt to 2pen a file has failed.

"Close erxror" (cause B, form 3)
A fajlure has occurred whan closing a file.

"Fatal error writing to f£ile™ (cause B, form 3)
b failure has occurred wnen writing to a file.

"Fatal error reading file" (cause B, form 3}
A failure has occurred wnen reading from a file.

“Funcsize space exhausted” {cause T, form 3)
“Instruction ouat of range" (cause C, form 1}
"Invalid instruction® {cause C, form 1)

"Invalid variable typa"™ {cause C, form 1)

VRNYIRURN

SUPERCHARGE V1.19

THOR
» . vt

e TURBO vz2.0 commme | S5 G

;\”5:&&9:&”: ! Scom R
“Dhrmmgic . by e e prmgrn . . . v bt i Srpapmarrrarbys Sl (1] - TLHRIH bebinrma. h] Pligtiad ity WL ¥, iy

“M[ltnlhh-dmmnf‘”mwl l--l"Mﬁvcnlel d - abedind A d r
lkhwsmmmﬂtnnh__.. M Borsibbiny . ul-u m-mlﬂ-ﬁml‘m‘n—u&m;mw&-—' al--ldl!. et i o 2
Bagrre B AKN meed il CHL ot 0 rsn o mﬂmlo.n--u..u-u. i, Ve e b th Wi sy v e g i oy + o rover M-t
S= o ob et i ok ol e p e o e
lipte 100X speedup om BAS]CY ULWOMDAmitw? ot ot 1 s et DS TN
N Sogeeraely Lot - Wonkd' [_R-MW gy FIFCT an ol T¥_ o), bl =
TLRAD. _,,,d,,,;‘""_«m:"“ ,.‘m. T A v, e WHIEN ~ RO wappv of ary reon s sy . weies o o e it G | TPt bt st “;'.9';“". ~
::mi.dma::,ﬁh mnmmwnmfﬂwﬂ"m::q,...m..f....mwsm..cmmtwstmt iy
gw.un] thar YL ¢ [A rvare
5 v, Worldy w,‘d«”‘w“.‘;_ demarv THO HUNDRED SUPER MEDIA MANAGER V1.12

m«w-awmnw.w«r g b e
:wolMMMmem-bHsMthw'

ey
fdmwm‘-hﬂnﬁnwhmhuﬁh et yyrata W s vt bt
e
£t Bappurrmrly tieny o srme n o bbbl ot vl e grreen b, et st e
NINSLOH, wiimbons arlerssdrie chatieng Cownpiindbon, mudsleshs schie Srumifrfig.
hudable b sesuimb ummmsrncr o o ek vy
1, 1

mhnf—mhnﬂmm

he Benride Ltk
k ' -
I shoare Oy bor puaerd EXLOCUME
i Supermcly bee nm rediirbum — g can e e shact o feclioem moay ek
Ream sy iitare LeahT Crrrarrae Lk 2 Lavge e the C8_s FAHR HAM, .. or grcersm o
v b wrre bwe Bl & progeam 1o bl yrul and ey od sy minder ol
e

— b PRI et SAPLIE 40 € it e e

IvaRG i TS OCLRIE T B - FRSIDA AMA APEl PRARILL PRER FTER BEPEEDE

» wervign Al (he TSR STSHCR, tncorpesyiieg
H

Ehramphpyt et Il i ng =i
rsinggfaale nun e JANL Gl abae (hW L caar) =
By Far egally qubtohabbes '-(h-l!.!lu -

o dareqd {Lrseinrm ar
n--u..-«' PRSI iy, DM

1 Sapvernely poweeril TIRILKIT inchorier, wioh

) reaiy sl ¢y mamoparks, ettty el - tires, bna s PASK perpasmmier There

Ay
Pt e W ST A A L TR o St ot 2 P o8 Ay

mwsml&mnhm ..mu.wunmmnrru—u ¥ bl J
s ol y. oy y
e acr’ ol b The TOOLKI (eich e v DL AR, 4/ Prem T #hc)
tep o : 3 3 - Fy - e ARy e e oy i e s
. '_‘ — A_nTl 'hnmnmml»«-z o L, e LAY o I
s drcumennd. » FIREE AND FIFTY Ad PAGE. hebl : e T Folores Uty
Ty h ~ e iy pem Roalad imum G CLaaks
. ¥ iy
The TURBOSvslem costs £99.95 COMPLETE « ™
TUTIE T4 STREIANT, PSS COMNTI RO EVERY SOURCE HRNTR IS T ASH 5 i bt ol - st 108
LT .u...-.-m MR - - e i — COMPATIOLE
The TLRW) TOUN KIT # .98, Thin s
™K O WOM D P ¢ W
ot e et o i nd thor b4 Bk TR OCIRIT b nermrrhemie £39.95 COMPLETE WITH ¥ A% PAGE MANUAL ON £24.73
- g i ey M i Ere FOR A CARTINDGE C4LY VEITSION
prures v SUPERFORTH Y2.0
by Thve bl mmslbiiesskigy, shred -oloee, | spered FORTH N syt i et Juppded with

wEE Pmini L8
AN b L
Byl
L sl

AH R

o e by eyl drmipehed foeol the 19 World Chrreyidm progroem
Tecom WWOHYY Thit doobiesl vt 120 byt repw, e o e icsbeom e fll 1l ing
Feaedor, QO

g I il GO0 eroche &
“Trwrcoech very well” DL WORLD
'mmm'mlh...nulul.. Fort THOR
. e best™ QUANTA, CONTAHALE

‘P ks abima weliad it Tithe iwmprlies, aid Hewne in bn

RETTE

P e |
tHASK 1o prevgramen b antfaer TLASH ks be Drmevslosed dmten
YRR RASHE in uneravnligesdibe mml vy rasy e,

s el « @ 5 stor progeom " SNULAR USER, Dooember s THOR
“indeiligraradoey well it 3 scin sl bnca™ UL Wald, b 1997 COMPATIOLE

HETTER BASIC custs £24.95 complelr with manual

T .,...«enun' Ny} P AIEIRg enlear * Compllee sptideoryp ¥ Pabpl
#uth reme {ax eppraed te Fllenene] @ Defamil vellings fnr mand af Uhe dleee

Imh ¥3 4 ¥ abambwigly fhe Last ward dn drfineern] dnd daan
uilh Ut TR g QA4A. Thp danlé] hey b w
o B etirdy B e Linmy (et
" oalt

.-.m- =y se ran
AT & FADIRMW

‘ Iﬂ LU R 51D Clwlr v (113

|(ss(ncl v WLLAAEY T OUKN T CERILY ¢ B5 CNISSPRISES STLImE S laap *

b v pratral The KON benabemarby Ppe IUPRE TEB, =i1n vourc
wn defaglt [FRCLOOEM): L ag ThEy 1o TIMKTREID midsq H go
BALL LD B LT LR 4] OME SPILPT LA

¥

¥ 3 1 5 L3
TI#RG vy LmprrbhLIL T M dm Mr M T H

iy Or
wTE

roegm
I

%(w:c«'i z
¥ Clissic
with 190 R4 Fage

Izmhdoeulmm L um Isl‘pmﬂwwﬂthllm*wlﬂl -
Givey § R * Gives
uap-u—mrwamnwhoubem-numwommu-«m

e - 05 mimﬂmi mwmnmnmar

PROFESSIONAL ASTROLOGER vi5

NEW F.P‘STER V'ERS!ON (TURBCCHARGED)

WEEAAD BRI D 1 D Dk ArHIPE L 1S
T T FEIT, BRI m T L L ER, 0
THOR
COMPATTALE

Tranmts & Fiomntiony % Synasiry # Choice of T bemen promme & Individmaly
scljustabibe oibs & Batch proceming mode + Toll Ol compatablity & 1T barth s
mﬂ'wﬁhd-nhwuma g w3 urvy device, Inchading Fles « Advanced

d lanqnuags a4 PO Tariliy
kwtmmmw.hm“mkmi
Ex 7 avex brieredy & Nead tima fnberpretetion i

o 41 i — |6
“Dhne-cid-a-Kind . #0erY T

Provided ke . d\nolpnwnnn i raperh, um-n waeeient grg barely sdequane~ L Wadd

equirement
The dod peargr iyl & completr sximocl CaCEEQE 60 Sy Mo

thale prerent

Fostwt (45 0 0r AT) program — a Sinclair Gne e Clavrc {ihe t-phm--«n‘wm lonrwugrm) swcwnm

Webesrm:abwwmntmarmmnmpexmm HLE PR

“Faseinahing . anrirathed scow L erewlient vahne . _ oy g preetumed ™ LV EANODL CORCE

FROCESSHMAL MTIONOM!:I " ‘IQ wrha dor wrn I'll FProtrmictal m ASTRONCOMER bas & Tl plarestuiom degplay, & cheice of 5 coordinene Ayaema
) et lespiay wish 1aal shadows and echywes, ssomaltic paralial CoHETV fonky HASA hax 1YL soiar Fmem display in paraliel preprction

e 'l-uhmqn-rlheun—mu Asnologer.the price 4 79,4

§59.95 Compléte with huge manual, or £69.95 with isironomer

=it g, Hil, keeze,

SUPER wmm-..._:w.«-»nmuarmm.. .u--s:ap-n:;n:mA
ASTROLOGER e e e toer P s
£24.95 £ o) e SIHCLA T ¥5E0 et O USERAL WL

enctllent.
ERTTOR: lis wses secm eadless,,

FETRACTS TAGY GHARTA {IMDECENDENT Gl DSER GROUP WAGARINEY THRAD: Secomd Lo meme

. moLhing cas walch Lhe QL sepporbed
anlperlares

nr THRER TORLEIT: An mecaltent dareslament bo anpone inleresblel in rosraening
200 athers . BP'5 besk spogram as 14t .4 jap Lnowze MTE-Q: Saperb , Ube besl graphic progras araiisble SPFTIR AASIC: & masl
EYE-Q v2.1 The Definitive QL Graphics/CAD System
Fudty skrivh by f=o W marn & mebe bey briry 4 paind 8L 4 e momnmoh-h*mmﬁ
mimﬂmlﬁ.w‘-m‘m'“mm‘“m*'
mm“mmmm-pﬂ-mtmw-m OH--M&M
vy A ey - e 7 v
 frmpe e TUMRO, .
b ieiiskinye :
e ot . .. suracym ryeTd. .
. el
v i v ptirt s .~ L WORLD
LA SR _
w.mﬁﬁnu—d-—qﬂnmmbﬂﬂhﬂmbhﬂ aTg I
%Gﬁﬁﬁﬁ'ﬁﬁ EYE-Q costs £29.95 complete with Incid A4 documentation
DR Chissic ¢ EYE-Q i fully corpatible with DP’z new DESKTOP PUBLISHER ﬂ:gﬂw
LRGN ERY The GIGA mousa version of EYE-Q costs [M.95 COMPATIE

B15KS FOR CARTRIDGES TR

send you brand new btank DISKETTES. 2Zm/c=1x5,25"disk; dam/c=1x3.5"disk. Minfmum 16 m/cs.

Send us your working newfused microcartridges and we will

LT IHF H s are abursrrdering TURMD ae SUFERCIARLE

siies GAMES

there is & mls:un:eplaun amgnz Lhote who dan'l owh # bb Pamié thaf
because P produtes the best “seHous” software, DPean't alvo be good
Eames‘ We slmngly dlszpreel]

BLOCKIANDS £5.95 <hI'classic RACCRNIGREE
~An addictive gzme. , . 3t bwice the usuat speed™ QL WORLD)
DROIDZONE £9.95 ;
*mind-humblng™ SINCLATR USER
*Fgr sheer bastng you would be hard pushar!lo bzarbkﬂlnzotlom

D

 SUPER ARCADIA £9.95

“We flinped nver SLIFER ARCADIA™ HDME coMeLn G“’“K
SUPER REVERS|.£9,95_ =

Did you think Psion Chess was strong?

SUPER BACKGAMMON E12.95 . < m‘
a5 o 3t

Bllilant* QLWGRLD
Aty 3 for E34, any 4 for £30,

SUPER SPRITE GENERATOR versionaoneLune
prb e ummm»«‘muﬂ"lmxmrm e esa

Jotn munge hww--—mw—a\mumg&waof j
The g e, n-d-mdse foet POPULAR COMIITING WETKLT

- ﬂ THi 14 O REAORT

Stk bt con TROMICE &

e O g ! : 5
£29.95 COMPLITE, OF E24.95 IF BOUGHT WiTH ET1-0

RAM EXPANSION OFFER
Sems WF progrowy « SPECIAL SEPTOR, NICRRREIDEE
aad hotk versioss of PESETOP PORLESNER -
require erbre FAX fa rea. #F cew sepply JNIE
HAX apgrades froe F89.95, divkinfeciecer vl
TEEC fron FEEE A0S end TRUAPCARD ot L1091

TULTRA

It o want tuperh graphic prinlowls | Tiweps©|
iriom any EPS0E- or QEd- cruabible printer. this
15 Ihe progran for pou. WIRAPRINT grovides pma
lont chobce wf 22 dliferesg
yivieg pos comirod oser bath sutpul
the way i which anecireen calmirs
atrd Inio shades on pager. Tou dam baes
wpin 5 patsed 0o dmprove elarily and comiragl thn
proqrem i1 very vaty to wse, dedly am i ltasking,
whirzlasy amd (nf Caaryed fully ot fbls ubln
LYF-q (ine!udl-r condepaed wpivent A parl
wreeas] aed 8 oll-w .nphlu progrost, Far
thode inleresicd r- herd 14 gl
amplmer fagrt dw (llwlllll - #ay wpreial FOR
s mneby bhad widh prombice perficl wriginaly Tor
MR pradurtisn, from FOE acreemi dedigned om
TvE g

BLINAPHINE 13 woppiied with & Lecdd A1 samud,
mully Aeulgned dne thoar who [iat pristers

II‘ : Imlll (2118 Ml£1 9 9 5 IH‘OR

THOR

]
a
H
2
2

2t e B
crew>ww~z

pogei n BaR AP yu hawr LLEL papansien. wilh cod & paale L U:-h-'! Iyrger T latabe werem, i por

T dri b alben 8
-

DFSK’,U" PUHL'S' lﬁ" tﬂuﬂa l'l" putithly " 0 Vines x [0 cplamm * u"u . m“"_' o b [7
SSFTDR FUBLISHEE 14 @ tuli-Funtene machine code dedkton * Epyws qospabbhie satper wlfd Matagtsr wipe « IR lbe fald durih Bt =g
bl il lng “qnq for the QL wi “s.h T, qrmawtinn Db gL 1ldn-|,-s whll * el b LEulE WGy " inbtegral faat et Ll o-u-q-. -

b desbpeed ub \lau!r wir target win s eoudl angthlng odilar 4 dnteqral graphicy penerator * pioed paved lef1, ; ,:",'__"" ﬂ.::“.},. P oy
qlw n\.l kle dar @ bosr micre. Rt rerlewes righl £ cesire JmitiTlialbn = plard ar charscier baoed ' it ddk e lmird, el Bed pan be Eo
(303 e ol mn COMPYTImG WILELY, W woRlD & o mvpr -def land ul'l - at Serrded ‘;2
Qo) Th1ok vecre ee § atd Faman et -um-..:u.-».un]
Mere are A Praturdr ol I(SIIU PUBL S5MR w i =W
= [midd uner coniral * WTIIRYE ¢ 12 l-tpqul ,uch I'rt\ 1 r ___'_" r,::,..,"m ”m ":- :SD
=8| N dwat Pants ® ltl Inteqral graphlc 3pebals D anlssivle - - 2
lﬂli l::gh -nl:l 1. m-!nlﬂu .-.."fmm' THber B gharsdie W w
aecmrat lve lanly = |ll l'nls nlrthuﬂe LR el [P i NP te of b 1 b =
Moth B & ¥ dlrvchlnns * puls Bovieri sed marging i el prerrel
inglyle @
drvtrmier ‘“f
ity it
il mygarinas
saror fom s enes 159,95 32
e ¥ depariie TR wTE. Ill!l!l R P L
Trgm EYL- ﬂ L wther lqul, B i e e et P N THOR Y
WHA weecileicled olniey & i f'-ut:’-ulnl wia "y uuu-u COMPATITIE X
T erentb g e B P

aphlpy * aut b pette * arlerdlen
AR el drawbng wepnz }

il o
ponbiirdb iy Ak i o o 1

P LIS, ad st e

FALL-THRIJG! . - .e - .
FGETS(} e e
FILENAMES - e e e e e e
FLOATING-POINT ARITHMETIC . . .
FOR . .- e e e . - .
FORM FEED. - - -
FPRINTF . . . - . . - .
FPUTS () - . . .« s . . .
FUNCTION . - - - - - . - .
FUNCTION CALL . - . .- .
FUNCTION DEFINITION

GETCHAR () - - . -
GLOBAL VARIABLES . - - .-
GOTO . . . - e e ..

HENDRIX, J.E.

IF - - - . .
IMPLICIT ASSIGNMENT-
INTEGER . - . . e e - .
INTEGER ARRAY . - - . .

INITTALISATION . .« e s . .

INTERMEDIATE CODE . . . - ..
I/0 REDIRECTION . . . - .

KEYWORDS . . . - - . . -

LABELS.
LIBRARIES. -
LYBRARY GENERATOR
LIBRARY PROGRAMS N
LINE FEED -
LINKER - sse (ode Ganzarator/Linker
LOCAL VARIABLES . - . . .
LOSICAL EXPESIIONS - . . .
LVALUE - - . .

MAIN(). . . .+ - o . .
MZ OBJ - e e e e e

MUOLTIPLE STATEMENTS . . . -
NZW LINE

O2JECT FILE
OCTAL, NUMBERS .,
QPERATOAS - - . e . -
OPTION S3TRINS

PARAMETERS« . . .
SARENTHESES . . . - .« « . .
PASSING BY REFERENCE
PARSER e e ...
PASSING BY VALUE
PIPES o « e . . .
PIRATING v o - . .
POINTERS « . . .
PREPRICESSOR . . « « « «
PRINTF. . . « « « o o . .
PROGRAM EXECUTION
PROGRAM LINE.
PUTCHAR {} e e e e
PUTS () e e e

- -
- -
- -
- .
- -

. 1.1

1.1

- .
- -
- -

. . 3.2 4.11.6
e e e . 3.3
2.5.1 2.5.2 2.5.3
. - 1.1 4.16.3
. . 3.2 4.11.6
e e e . 4.4
. e . 4.12.4
c e e 3.2
4.12 4.16 4.17.1
. . 4.10 4.12.2
. 4.12.1

L L
RN
o
RS

.
.

o

*

LA

N
=+
3%

.

-

.. 4.11.8
.. . . 4l16
2.4 2.5.4 4.17.4

S

-5,
4.

[B

-1
- . 3.2 4.

3.2 3.3 4.6 4.7
. e e - 4.9
. . 4.5 4.17.1
. 3.1 3.3 4.12.2

.. .. 2.5.3
. e - . 3.3

QDIS FUNCTIONS .
QUILL
QUOTES . . .

RAM DISK . . .
REFERENCE BOOKS

REFERENCE CHAPTER

RETURN .- .

SAMPLYE PROGRAMS
5CALAR VARIABLES

SCOPE OF DZCLARATIONS

SEMICOLON . .
SIEVE-C . . .
SIEVE OBJ . .
SMALL-C . . .
SORT C . . .
SOURCE PROGRAMS

STANDARD CHANNELS
STANDARD DEFINITIONS
STANDARD FUNCTIONS

STATEMENTS . .
STDERR . . .
STDIN
STDIO H . . .
5D LTB . .

STDOUT . .

STRING . . .
SUPERBASIC . .
SWITCH . . .

TAB - . . -
TEMPORARY FILES

TOOLXIT IT . .
TUR3D TOJLXKIT .
TUTORIAL CHAPTER

UONARY OPERATORS
UPDATES DOC . .
UPPER CASE . .

VARIABLE ARGUMENT

VARTABLES ..
WHILE
z80 . e e
s8ot8o

&
*

#DEFINE . . .
#ELSE
#ENDIF . e .
#IFDEF - - .

COUNT

(]
[
-
[SVI
o
)
]
=

4.106 4.16.2

b
[
]

La v
(%]

.
v
bl B3 o
.

W d = W0) b d U

el) .
[l T O I S R S S N S RS BT o)

.. 4010
2.5.5 4.15

- 4.15
4.16

f
[

. . 3.3
- . 3.3
. 3.3 4.13
- . 4.13
- . 4.13
. . 4.13

INDEX

DIGITAL C function names are alphabetised separately in subssctions
4.16.1, 4.16.2, 4.1€.3: DIGITAL C error mes3ajes in subsections

4,17.2, 4.17.3, 4.17.4

ABOREVIATIONS . . . - . .
ADORESS - . -
ARGC . . .- . - - . .
ARGUIMENT COUNT
ARGV . -
ARRAYS - . - -
ASCZIT . . - e - - . .
ASSIGNMENT - . .
ASSIGNMENT, IMPLICIT
ATOI().- -

3AZKSLASH . . - - . - .
BACKSPACE. . . . - . . -
BACKUP. . . - - . . .
BINARY OPERATORS
BITWISE OZPERATORS -
BRACES
BRACKETS -
BREAK -

CASE -
CHANNELS . .- . - - . -
CHARACTERS . . - - - .
CHARAZTER AQRAVS -
CLONE -
CODz GENERATOR/LINKER. . . .
CODE SIZE LIMIT. -
COMMA . - - e - . .
COMMAND LINE
COMMENT . . e

COMPILER . . - - - - - .
COMPOUND STATEMENT - . - .
CONFIG . - e
CONIOLE WINDOW
CONSTANTS - .
CONTINUE . --
COZYING . - . e . ..
CURLY BRATKETS-

DATASPACKE - e e .
DECLARATION
DEFAULTY
DEFAULT CHANNELS
DEFAULT DEVICE

BEFAULJ‘INITIALISATION L
EFINIT . -

- - - - - - - - - -

DR, DORBAS - e - - . .

EBITOR . . . + .« « . .
ELSE . . « .« v
ERROR MESSAGES
ESCAPE SEQUENCES
EX -« .+ . e e e ...
EXEC o«
EXECUOTE
EXSRESSION
EXTERN . . A
EXTERNAL VARIABLES ...

- . 3.
. 3.2
2.3 2.5.3

2.5.3 2.5.4 2. 5 6 4.

.. 1.

. 3.2

. 4.17.1
2.5,k 2,5,

- 3.2 3.3
... 2.1
- 4.10
- e 3.2
- 3.3
- . 3.2 4.4
- e 4.4
- e - 1.2
- . . 4.8.2
2 4.8.1 4.8.2
3.1 3.2 4.10

.. 3.2

. 3.24.11.5
3.1 3.2 4.15
. 3.2 4.4 4.5
e e . 3.2
. - 1.2
4.17 i 4.17.3
- e . 2.3
. . 3.3
12.2

- . 4.3
. . 1.1
L3, 2 4.7 4.10
2 1.5.6 2.5.1
.. 4.12.2
- e . 4.4
B e
- . 1.2 1.3
. . 3.1 4.2

. 3.2 4.11.5
. . . 3.1
. . ., 2.5.1
R Yt
. . 4.11.3
. . 1.1 2.1

. . 3.2 4.4
.. . 2.5
.. . 2.5
2 2.5.3 2.5.5
. e . 4.9
- . 3.3 4.7
. - 3.3 4.7

"is doplicated"

"Premature end of file"

"Symaol space exhausted"”

{cause A, form 2}

A function name has been duplicated.

(cause C, form 3)

&n internal table has
genzarate such a large library file.

- Too long" (cause A, form 4)
A usger-gpecified device or

Usz2 a snorter name.

FEATURES
Handfe Quile DOC files
Accept aff chanactens 0-255
Display all charactens 0-255
Printen driving
Simuftaneous prdntingfediting
ALE printen §ns alfowed
Restiniction-free cunsor move
Change defimitens f{or wonrds
Cunson word Leftinight
Cunson startfend of Line
Cunson Lo next truncated Line
Cunson top/end of screenf{ife
Cunson to manken
Cunson to specigied £ine
Cwnson Lo next/prion para
Curson Lo stant/end of bfock
Cunson to Lasl command podint
Non- immediate cunson commands
Page screen fomwarnd/back
Scroll scneen up/down
Dedete chanfwond Left/aight
Speed independent of §i{fesize
Defete to stantiend of Line
Defeote/Un-Defete Eine
Pegine bfock L{n any sequence
Pefete/Move/Copy bloch
Set marnker
Find frem cunnent position
Replace from curnent position
Ser adight/Left/indent mangin
Switchable case sensitivity
Set tabs - negulartadymmeirdc
Remove Zfabs
Expand tLabs
Compress tabs
Justify Leftinight
Justify centre/middie
Paragraph nefomm {selective}
Ouenstrike/insent mode
Case transfate - Lo UPPER
Case translate -~ Lo fowen
Case transfate - Lo Mixed
Woad wrap
Move bfock
Retain definition of block
Sequence §ife on cols a to b
Renumber program £ines
Unde curnent £ine ediling
Tssue multiple commands
Recalf fast commands
1s4ue nepent commands
Repeat last commands
Dynamic memory management
Memory status display !
On-£ine help
Dynamic speed adjusiment
Mutt.itasking
Range of avaifable colouns
Adjuatable window size/posn
Range of charactler sizes
PROCESS COMMAND FILES
FULLY CONFIGURABLE BY USER
SPECTAL FONTS
HANDLE ANY FILE[ASCII OR NOT)
INSTANT RESPONSE T¢ KEYBOARD

{cause A, form 3)

bzen filled. Don't try to

filename is too long.

Yea
Yes
Ves
Yes
Ves
Ves
Yes
Yas
¥as
Yes
Yes
Yes
Yes
Yes
Yea
Yes
Yes
Yeu
Ves
Ves
Yes
Yes
Yea
Yas
Yes
Yes
Yes
Yes
Yes
Ves
Yes
Yes
Yeod
¥es
Ves
Yes
Ves
Yes
Ves
Yes
Yes
Yes
Yes
Yes
Yed
Yes
Yes
Yes
Yes
Yes
Yea
Yes
Vs
Yes
Yes

Yes

ESEST TN TR s A EEESSTSTTr-sSEsXIEITCFSrIFEFEIERFATSESSSSYFRN-=SSFLFIEZEIZISIER

The error messages can take one of four forms, wnich

the list balow.

Fani ™
Form 1: <madule_name> at line nnn: <error message>
Form 2: <module name> at line nnn: <name> - {error message>
Form 3: <error messag:a>
Form 4: <name> <error message>
where <module name> is the source filename which was compiled into
the code wnere the error was dstected,
nnn is a linz number in the source file.
<erro- message> is one of the error massages listed below.
<name> is a variable or function name.
"ambiguous reference" {(cause A, form 2)
An external variable in one module has zan de-
clared as a glopal variable in two or more othar
modules, instead of the one that is permitted. The —
reference cannct be resolved.
“cannot allocate negative byte count" (cause T, form 1}
"Cannct copy negative byte coant” {(cause C, form 1)
"Cannot make program EXECable" (cause B, form 3)
An attempt to gJe2nerate an executable task has
failed.
“"Cannot skip negative byte count" (cause C, form 1)
" - Can't open" (cause B, form 4}
An attempt to opsn a file has failed.
"Close error" {causz B, form 3)
An attempt to closz a file has failed.
"Dataspace must be at least 1000" (cause A, form 3)
The dataspace specified 1in the command line was N
less than 1000 or greater than 32767.
" - device nams too long" (cause A, form 4)
The specified device nam= is too loag. Use a
shorter name.
"Fatal error reading file" (cause B, form 3}
An attempt to read a file has failed.
“Patal error writing to file" {(cause B, form 3)
An attempt to write to a file has failed.
“"function multiply defin=d" (cause A, form 2)
The same function name has been used in two or more
. modules.
“"function not founid" {(cause A, form 2}
A function reference has been made to a non-
existent function. -
"Instrusztion out of range" (cause C, form 1)
“Invalid instruction" {(cause C, form 1)

Wtmiralid variahlae tumnas" (canee . form 11

are given in

"Literal guzus overflow™”
The spase allocated for temporary storags of string
literals has bzen filled up. Use shorter strings,
or split the function in which this error occurs
into two or more smallzr functioas.

"Local symbol table overflow"
Thz internal space allocated for local variables
has bean filled up. Use fewer local variables in
that function.

"Marcro name table full"™
The internal spare allocated for macro namss has
been filled. Use fewar macros.

"Macro string gueue full"®
The internal space allocated for macro replacement
strings has been filled. Use fewer macros or
shorter strings.

"Missiny token™ One of the following characters or keywords has
been omitted: '}','l','(‘,')',':' , while .

"Multiple defaults"
More than on= dafault keyword has been used inside
a sWitch statement.

"Must assign to char pointer or array"
Youa have tried to initialise a variable which 1s
not a char pointer or array to a literal string.

"Mast be constant expression™
A constant expression was expected, e.g. after ths
case keyword or whan initialising a variable.

"Maist be lvalue" You have an invalid identifier on tha left-hand
side of an assignmant expression, e.g. a functioa
nams or undzsclared identifier.

"Must declare first in block"
Local variables must be declared at thz start of a
block.

"Negative size illegal"
Th= index to an array must not be negative, e.g.
a{-2} is ill=gal.

"Not allowed in switch"
iocal variables cannot be declared in the middle of

a switch statement.

"Not allowad with block-locals"®

"Not allowed with goto®
Local variables cannot be declared in the middle of

a block containing a gote statement; they must be
declared at the start of the function.

"No>t an argument" An illegal argument has occurred in the argumant
list of a function call.

"Not a label” An invalid labal, e.g. a local wvariable, has been
used where a label shouald be used.

"Not in switch" A rcase or deasfault has occurred outside a switch
statemant.

The list of oparations is: {x, y are fleoating-point variables]

acos{x)
acot (x}
asin{x)

azan(x}

atof(str} char *str;

cos{x)
cor(x)
exp{x)
fabs{x}
fadd(x,y)
femp (%, V)
fdivix,y)
float (n)
fmove (x,v)

frmult (X, y)
fneg{x)

fsub(x,y)

froai(x, str) char

int (x)
log(x}
loglo(x)
pow(x,y)
sin{x)
sqrit(x)

tan(x} -

Convert string to float.

Absolute valuz.

Compare: returns <0, 0, >0 for =<y, %=y, %2¥-

Convert integer n to Eloating point number.

Move X tO V.

X-y.

*sty
Convert float to string.

Convert flioat to int.
Natural logarithm.
Log to base 10.

X to thz power y.

beep{dur, piﬁch)

Return is undefinsad.

beeping() Returns 1 if a sound is being made.
- . . . ~
blozsk (fd, width, height, %, ¥y, colour) int ...: .
Draws a solid rectangular block in colour.
border (fd, size, col) int fd, size, col;
Draws a border round a window.
circle(fd, x, v, radius) int £d; float x, ¥, radius;
Draws a circle of given radius at (x,y}.
cls{£fd) int fd: Clears a w~indow.
clsp(fd, switch) int fd, switch;
Clears part of a window or line.
csize(fd, width, height}) int fd, width, height;
Sats the character size in a given window.
cursor (£4, x, y) int fd; fleoat x, y:
Positions the graphic curseor at {X,vy). —
curson{fd) int f4; Enables a cursor.
cursoff (fd) int f£d;
Suppresses a cursor.
dates(str) char *str;
Reads the date into a string. Return is undefined.
date () Returns the date as a long integer. Used 1in the
form *d = date(), where d has bean declared as a
2-element integer array.
day {str) char *str;
Raads the day into a string.
ellipse{fd, x, v, radius, ecc, angle) int £d; float ...
Draws an =llipse.
a - . - L
£il1(fd, switch) int f£d, switch;
Turns area flood on or off.
flash{fd, switch) int fd, switch;
Turns flash mode on or off.
ink{(fd, col} int fd, col;
Ssats the ink colour to col.
keyrow(n} Returns the valu= of keyrow n.
line(fd&, x1, yl, x2, y2) int fd; float ...;
Plots a line.
mode(n) int n; Sets 4 or 8 colour mode. Return is undefined.
pan({fd, n) int f4, n;
Pans a window n pixels right or left.
Kt

panp({fd, n, part)

over(fd, switch)

int f£d, n, part;
Pans part of a window left or right.

int fd, switch;
Sets character-plotting mode.

iteab{n, s, b} int n; char *s; int b;
Converts integer n to a string according to base b.

itod{nbr, str, sz) int nbr; char strl}; int sz;
Converts nbr to a signed character string of size
sz. Result is right-justified and blank-filled in
str.

itoaln, str, sz) int n; char *str; int sz;
Converts unsigned integer n to string str of size
sz. Result is right-justified and blank-filled in
str.

itox{n, str, sz) int n; char *str; int sz;
Converts integer n to hex string str of sirze sz.
Result is right-justified and blank-filled in str.

left{str) char *str;
Removes leading spaces from string str.

lexcmp (strl, str2) char *str, *str2;
Similar to stremp(}, except that a lexicographical
comparison 1is wused, i.e. upper—- and lower-case
characters are considered egual.

lexordex{(cl, ¢2) char cl, cZ;
Returns an 1integer less than, egual to or greater
than =zero depending on wnether ¢l is less than,
equal to or greater than c2 lexicographically.

malloc{n) int n; Allocates n bytes of uninitialised memory from the
task's dataspace. Returns the address if success-
ful, otherwise NULL.

printfi{str, varl, var?, ...)
Formatted print to stdout. For a list of format
options see fprintf.

putc (¢, fd)} char c¢; int £4;
S2nds character te file f4d.

putchar (¢} char ¢; Eguivalent to fputc{c, stdout).

puts{str) char *str;
Equivalent teo fputs(char,stdout} followed by line-
feed.

read{fd, ptr, n) int £d; char *ptr; int n;
Reads n bytes from file fd intc mamory at adidress
ptr.

reverse(s) char *s;
Reverses the order of the characters in string s.

strcat{s, t) char *s, *t;
Appends the string at t to the string at s. HNo
check is made on ths size.

strchr(str, <) char *str, c;
Returns a pointer to the first occurreace of
character ¢ in a string, returns NULL if not found.

stremp (s, t} char *s, *t;
Returns an integer less than, egual to or greater
than O if string s 1is less than, equal toc or
greater than string t.

0X

availicods} int code;
Returns the numbar of byres of free memory in the
dataspace of the task. This numbar does ndt in-
cludz holes left by previous use of free(). If
there is no free memory, the action taken depenis
on thz value of code: if code = 0, avail{) returns
0; if code != 0, tha task 1s aborted.

calloci{nbr, sz} int nbr, s5z;
Allorcates nbr*sz bytes of zerocad memory from the
task's dataspace. Returns the address if success-
ful, otharwise NULL.

cearge () Returns tha number of arguments in the function
call.
cfree{addr) Frees allocated wmemory, aiddr being the address

previously returned by calloc() or malloc().

delete{str) char *str;
Deletes the [ile whose name is at str.

fclosa(fd) int f£d; Closes file fd, returns O for success, else -1.
fgetc{fd) int fd; Returns the next character from file fd .

fgets({sty, sz, fd) char *str; int sz, fd:
Reads up o sz-1 characters from file fd into
memory at address str.

fopen(nave, mode) char *name, *mdda;
Opens a file by name. Mode points to a string
which is "r" for read, "w'" for write, "a" for
append. Returns the file descriptor fd, which must
be used by other i/oc functions. Returns NULL if

the open tails.

fprintf (str, varl, var2, ...)
Formatted print to file. str is a strinj (eaclosed
in double guontes) specifying how the arguments are
to be converted for printout. With the exception
of conversion spacifications, every character in
str is printed literally. A conversion specifica-
tion is introduced by a percentag: sign and 2nded
with a conversion character. This can be d, o, X,
u, 8, b or ¢, causing conversioa of the argument to
decimal, octal, hexadecimal, unsigned d=scimal,
string, binary or character notatioa, respactively.
Between the percentage sign and the conversion
character tha following sptional characters may be
written:
- a minus sign, specifying left instead of ths
dz2fauit right justification
- a number specifying the minimum width of tha
printed field. If necessary, the field will be
extended. If the length of the converted argu-
ment is less than the field width, the field is
padded with spaces as a default. If the first
character of the field width is a 0, the field
is padded with zeroes
- a second number preceded by a full stop,
specifying the number of characters 2f a string
to be printed
If the character after the percentage sign is not
onz of th2 above, it is printed literally. Tnis
is a way to print the parcentage sign itself.
Each conversion specificatioa corresponds to an
argumznt of the fprintf function, i.e., the number
of conversion specifications and arguments shoald
be the same.

(7 4.12.3 Pointers to functions

It is possible to pass a function as a parameter to another function
via a pointer. In the following example a sorting function is to be
passed to a function called fprint:

fprint(sort)
int {*sort) ()

{

{(*sort) (a,b);

An example for the function call would be fprint(shell} or
fprint{quick}), depending on the name of the sorting algorithm to be
used. Of course, either sorting function needs to refer to the same
number of parameters (two in this example). Observe that the name of

a function without parentheses denctes a pointer to the function
{similar to arrays; see Section 4.5).

4.12.4 Function argqument counts

Few functions expect a variable number of arguments. Only two are
supplied in std lib, printf(} and fprintf{}. If these are not used,
the compiled code may be made more concise and faster by defining
NOCCARGC at the start of a source file, e.g. with

#define NOCCARGC

The vupper case 1is essential. If printf or fprintf are used,
NOCCARGC must not be defined. Of course yeu can restrict the
functions using printf and fprintf tc a separate module.

4.13 The Preprocessor

The DIGITAL ¢ Parser includes a&a 'preprocessor' to facilitate
inclusion of other sources files, conditional compilation and

definition of c¢onstants.

The keywoards which are understocd by the preprocessor and executed
before the start of compilation are listed below.

#include filenams2

Merges the contents of filename into the source file at the place of
the #include keyword.

#define name constant
Gives a name to a constant used in a program, e.9g.

#define MAXLENGTH 92
#defins SPACE v

Note that the preprocessor Statements, not being part of DIGITAL C
proper, do not need the semicolon at the end.

For advanced programners, DIGITAL C also supports conditional
compilation with the keywords

#ifdef name
#ifndef name
felse

#endif

#ifdef checks whether name has been defined in the preprocessor. ;E
so, the following lines are compiled (until a #else or #endif 1s
reached). #ifndef chacks for the inverse condition.

4.11.5 The switch stateuwent
switch{expr)

case constl: statementl

case consti: statementi
gefault: statementl

is equivalent to the SuperBASIC CASFE statement. The expression 1is
evaluated and compared with the 'case' constants. If a match 1is
found, the relevant case prefix marks the place where program
execution continues. If no match is found and there is a default
prefix, the statements following it are executed. Contrary ¢to
SuperBASIC, the case prefix has no influence on the flow of program
control, which continues until either a break statement is executed or
the end of the switch statement is encountered.

4.11.6 The break statement

break
is similar to the SuperBASIC EXIT statement: it exits a while, do ...
while, for, or switch statement, but in case of nested loops only the
innermost one. Program execution continues with the first statement
after the exited statement. Break statements are necessary to avoid
"fall-through' in the switch statement {see above).
4.11.7 The continue statement

continue
is eguivalent to the SuperBASIC NEXT statement: it jumps to the end of
an enclosing while, do ... while, or for loop, causing the next
repetition of the loop to start.

4.11.8 The goto statement

goto label
jumps to a label of the form
label:
within the same function and continues the program from there.
4,11.9 The return statement
return
or
return expr
terminates a function and returns control to the calling function. If

there is an expression after the kKeyword return, it is evaluated and
returned to the calling function. :

4.8 Operators

4.8.1 Unary operators

—expr arithmetic negative

lexpr logical negation

texpr bitwise complement

*eXpy ‘indirection': the result is the value stored at the
address expr

&var the inverse operator to *: yields the address where the
variable var is stored

++var

var++ both increment var by 1

--var

var-- both decrement var by 1

The difference between prefix and postfix notation is best described .

by an example:

PfE(++x>5) . . .

increments X by 1 and compares the result with 5, whereas

while (x++2>5} . . .

compares X with 5 and increments x afterwards.

4.8.2 Binary operators

exprl+expr? arithmetic addition

exprl-expr2 arithmetic subtraction

exprl*expr?2 arithmetic multiplication

exprl/expr? arithmetic division

axprl%expr2 modulo operator

exprl<<expr2 left shift of exprl by expr2 bits

exprl>>expr2 right shift of exprl by expr2 bits —

exprl&expr?2 bitwise and

exprlAexpr2 bitwise exclusive or

exprl|expr2 bitwise not

exprlrexpr?2 exprl is greater than expr2

expri<expr? exprl is less than expr2

exprl>=expr?2 exprl is greater than or eqgual to expr2

expril<=expr2 exprl is less than or equal to expr?

exprl==expr2 exprl is equal to expr2

exprlli=expr2 exprl is not equal to expr2

var=expr; assignment

var+=expr; increments var by expr

The operators -=, *=, /=, %=, (=, >>=, &=, M= and |= work much like
+= . Any of these assignment operators can be used in an expression,
e.g. if{(x=a+b)==5) . . {implicit assignment).

Any operator may be preceded and/or followed by ‘white space' (space .

or tab characters), mainly for clarity's sake: Compare i+++++] and the

egquivalent i++ + ++)

-

4.5 Variable Types

Every variable in a DIGITAL C program must be declared before its
first use. {'Variable' 1s a SuperBASIC term corresponding reughly to
what C calls an lvalue - because you find it at the Left of the '=' in
an assignment.} The ‘scope’ of such declarations will be treated in
section 4.7. The following table shows the different variable types
and the syntax for their declaration.

Syntax Variable tvype

(example)

int a; sixteen-bit integer

char b; character (almost identical with int, e.g. b=' ';
can be replaced by b=32;). DIGITAL C treats all

character variables 1like unsigned 1integers, i.e.,
the most significant byte is cleared to 2zero on

assignment.

int c(const]; {one-dimensiconal) integer array of const elements
starting with ¢ [0}

char dlconst]; {one-dimensional} character array of const elements
starting with dfo]

int *e; pointer to an integer, i.e. an address where an

integer is stored. In an expression, e means the
address and *e the contents of the address, viz.
the integer value. All pointers are themselves of
type integer

char *f; pointer to a character. For explanation see above

int {*g) (): pointer to a function returning an integer. HNote
that the parentheses around *g are compulsory: int
*q() defines a function refturning a pointer to an
integer

char (*h) (}; pointer te a function returning a character;
otherwise see above

More than one variable can be declared in a single statement, €.4g.:
int a, b, cl[32), *4;
declares two integer variables, cne array and one pointer.

It is not necessary to declare a pointer to an array, because the
name of the array itself ({without the brackets) serves this function.

E.g.

int afl2); and int al[12];
*(a+3)=5; al31=5;

both have the same meaning.

Since end has not been declared glecbal, it needs to have its value
passed from read values{) back to main(). This can be accomplished by
two methods. We already know one of them: putting the value in a
return statement at the end of read values() and assigning that value
to help{0]l in main(). This works all right, but only for a single
variable. This is why we have chosen to illustrate the cther method:
passing a pointer to read values{) rather than the variable itself. In
the declaration, *end does not, of course, mean ‘contents of the
address end', but 1is simply the sgyntax for the declaration of a
pointer to a variable.

An array, on the other hand, is declared as such (and not by
pointer} in the function to which 1t is passed.

From the lofty to the mundane: the standard function fgets{str, nr,
fd), which is used in read values(}), reads up to nr-1 characters from
channel fd into a character array strl]; the str argument must be the
pcinter to the array.

The for statement in reverse part() illustrates a convenient feature
of DIGITAL C: multiple statements {(comma-separated) may be used in the
first and third parameters of a for statement; in the second parameter
the && and || operaters render this feature unnecessary.

3.4 Striking Out on Your Own

This concludes our stroll through the most important features of
DIGITAL C. ¥You will find some supplementary information in Chapter 4.
In particular, the explanations of error messages given in Section
4.17 may be helpful in case of unexpected trouble.

Alas, it is in the nature cf the € language that various
infringements of its rules, e.g. referring to a non-existent array
element, do not lead to error messages but to what are euphemistically
called 'unexpected results'. So be prepared to experiment.

The information in this manual should enable you to analyse the
sieve ¢, and perhaps also the sort c file, on your own. After that,
will be ready for just about anything!

May we also remind you again of the literature available for further
study {(Section 1f1).

3.3 Flexing Digital C's Muscles

Our final program takes care of the few important points that have
not been covered yet. It reads nine characters and a number n, and
then reverses the order of the second to nth characters.

#define MAXNOM 8

int start = 2;
char < [MAXNUM};

main()

int end;

char helpll];
readﬂvalues(c,help);

end=atoi (help);
reverse_part(c,start—l,end—l);
write stringl(c);

3

read values(c,end)
char *end,cl];:

char h;

fputs ("Enter 9 characters: ",1};

fgets{c,10,0);

fputs ("\nEnter number of last character to be changed: oLy
fgets(end,1,0);

¥

reverse part(c,x,y)

char cl];

int X,Y;

int h;

for (;x<=(x+y)/2;%++,y-~)

h=c[xj:
cixl=clyl;
elyl=h;

¥

write string(c)
char cl};

fputs("\n",1};
fputsic,l);

¥

The first line introduces us to the 'preprocessor' (something like
the EQU directives in assembler packages), which is also part of the
DIGITAL C package. Any statements prefixed by a hash sign # are
executed before the start of compilation. The most important two are
#include and #define.

A short look at the program shows that it consists of three
functions: main(), wordinput{) and vowelcount()}. wordinput {word) re-
quests a word (terminated with ENTER) from the user, places it in the
variable word and returns no value. vowelcount(word) needs a charac~
ter array as its parameter and returns the number of vowels contained
in it as the function value. We'll look at the internal structure of
these functions later.

The first line of main{) illustrates one of the major differences
between SuperBASIC and DIGITAL C. In DIGITAL C every variable used 1n
a program has to be declared beforehand. Among the wvariable types
supported are integer, single character, integer array and character
array {(the last two are both one-dimensional). The array index is
surrounded by brackets, not parentheses. More than one variable of
the same type can be declared on the same line.

fputs() is another standard library function. It is similar to
puts(}, except that it does not add a linefeed character at the end of
the string and that it needs a channel number as a second argument.
In this case, the standard output channel 1 is used.

Non-printing characters can be printed by means of an ‘'escape
sequence' starting with a backslash. E.g. \n {(newline) wmeans a

linefeed, \t a tab, and \r a return character. If the backslash is
followed by a number, this is interpreted as the octal representation
of the ASCII code of a character to be printed.

The if structure has the syntax

if {condition) oY if{condition}

statement statementl
else

statement?

statement can be either a single statement followed by a semicolon
or a compound statement, i.e. a number of statements enclosed by
braces. Thus no endif is needed or allowed. The same principle holds
for other constructs, e.g. the while loop in function wordinput().

The relational operator != is equivalent to SuperBASIC's <> .

Now for a description of wordinput(}. A function parameter must be
declared immediately after the function name, 1i.e. before the
character. The variables declared within a function (in our example

only i} are local to that function.

while, like if, needs its condition enclosed by parentheses. The
rather cryptic program line

while ({word[i] = getchar{}) != 10}
is only a short way of writing

word[i] = getchar(};
while (wordiil]l != 10}

This often-used feature of DIGITAL C is called implicit aséignment.
Note the parentheses it requires.

3. A THUMBNAIL DIGITAL C TUTORIAL

3.1 A Short Program

The following mini-tutorial would need far too much space 1f it were

toc illustrate every feature of DIGITAL C, let alone if it had to start
from scratch concerning programming principles. We do assume that you

are acquainted with SuperBASIC and that you will consult Chapter 4 for
the finer points.

Let's consider the notorious minimal program in any language, i.e.
the one that produces the output

Hello, world!

As we know, this can be accomplished in SuperBASIC by the pregram
100 PRINT "Helle, world!"

The corresponding program written in DIGITAL € is somewhat longer:

main{)

{

puts ("Hello, worid!");:

}

Every C program consists of one or more functions, which are rather
similar in concept to both procedures and functions in SuperBASIC. A
DIGITAL C function is defined by writing its name followed by the
parameters in parentheses (parameters are optional, the parentheses
are not) and by the 'body' of the function (i.e. what in SuperBASIC
would come between the DEFine and END DEFine statements) enclosed in
braces {(also called curly brackets}, i.e. { and} .

We can see that the function main(), which constitutes the whole
program shown above, conforms to this function syntax. The name
main() was not selected at random: every DIGITAL C program must

contain a function <called main(), or else the Code Generator will
complain.

Since DIGITAL C syntax does not distinguish between functions and
procedures, a function may be called by assigning its value to a
variable, but it can also be called like a SuperBASIC procedure. In
the example, the latter method is applied to the function puts{arg)
which prints arg, followed by a linefeed, to the default output
channel.

You will have noticed that the only executable statement in the
above pregram is terminated by a semicolon. This 1is required
statement syntax in C.

Every DIGITAL C program automatically opens 3 default channels at
the start of execution. They are for input {(channel 0}, output
{(channel 1) and error messages (channel 2)}. More about channels can
be found in Section 4.15.

By the way, the puts(} function, like all i/o functions and many
others, is not 'really' part of the DIGITAL C language. It was the
aim of the creators of C to define a small and straightforward
compiler, so they restricted the keywords of the original language to
variable type declarations and program—control statements. DIGITAL C,
being a subset of the original € language, sticks to the same
philosophy.

2.5.6 The sample program sort

As a further example cof what can be done with this version of C, an
example text-file-sorting program is included. You will have to
compile this first with, say, the following series of commands and
command lines:

exec mdvl_cc
with command line: mdvl sort -m

exec mdvl cg
with command line: mdvl sort mdvi_sort -s20000

This will create a task file named mdvl sort with a dataspace of 20000

bytes, which is used for a sorting buffer. If the file being sorted
is larger than this, temporary files are created with the name and on

the device specified in the source file mdvl sort ¢. This 1is set to
ram! sort00.8 but can of course be changed as desired if you do not
have a RAM disk.

To activate sort, issue the command:

exec mdvl_sort
with command line: <mdv]l sort ¢ —u

which takes input from file mdvl sort_c, sorts the lines, discards
duplicate lines and displays the rest on the screen. A command line:

<mdv1_sortﬂp >mdv]l ordered -u
will do the same but save the results in file mdvl ordered.
Note that tabs in the source file are significant.

Possible command line switches for the sort program are:

- Unique: Discard duplicate lines

-3 Sort in descending order

- Use quicksort instead of the default Shell sort

-c# Sort from column number: e.g. -clO sorts from column 10

—-£47? Sort from field number, with character ? delimiting fields:
e.g., -f2* means sort on the second field, where asterisks
are used to delimit fields. If no delimiter is specified,
‘white space’ (i.e. space or tab characters) is used as the
field delimiter.

X

Object module names wmust have the obj extension, which may be
omitted on the command line. Library modules must have a _lib
extension, which must be included in the command line (the Code
Generator uses this to distinguish between object and library
modules) .

Note that the Code Generator expects to see two of the supplied
files on the default device, mc_obj and std lib. Though these must
not be specified on the command 1line (we want to spare you the
drudgery ¢f typing them), the Code Generator automaticatlly searches
for them on the default device and will generate an error if they are
not found.

Possible command line switches are:

-p Pause on error: The program waits for ENTER to be
pressed

-m Monitor progress: outputs original source filenames

-d/dev Set the default device

-nc No command-line request to be included in the

executable program. Omitting this will result in a
command request

-c/name Reads a file for the command line, e.qg.
-c¢/raml _fred will read file raml fred cmd for a
cormmand line. The cmd extension in the
command-file name is mandatory. This doces not

affect any previous switches, but does override any
following ones and all £ilenames.

-sn (where n is a decimal number in the range 1000 to
65535): Sets the dataspace o©f the executable
program to n; e.g. -s2000 sets the program's
run-time dataspace to 2000 bytes. The default is
7000 bytes.

Te generate an executable sieve program called sieve_obj, any of the
following command lines will do:

mdvl sieve mdvl_sieve obj
fipl sieve sieve -p -m -sl000 -nc
sieve sieve

If the TURBO Toolkit is available, the same effect, but without the
Code Generator/Linker stopping for the command line, can be obtained
by the following command:

EXECUTE mdvl_cg; ‘sieve sieve'
2.5.4 Library Generator command line

The command 1line for the Library Generator contains only object-
module names. There are no command-line switches, nor should library
module names be included. Object-module names must have an _obj
extension, which may be omitted on the command line. The output
library module will take the first of the names on the command line,
but with a _1ib rather than an obj extension. For example, the
supplied library module std _lib was produced with this command line:

std fp gdos

with files std obj, fp obj, and qgdos_obj on the default device. Note

that wuse of the Library Generator is compulsory even if library
generation involves only a single file, because the cbject code has to
be converted into a special format.

2.4 Library Generator

The Library Generator is another program written in DIGITAL C for
the QL. It takes a series of ~ompiled object modules, generated by
the Parser, and generates a single library module for use by the Code
Generator. This approach is typically used for C functions which may
be used by several application programs, because the Code Generator
only selects those library functions which are actually used by the
object modules and excludes irrelevant {(unused) functions from the
final executable-code file. The standard library module supplied in
the DIGITAL C package was generated by this Library Gene-atox.

2.5 Program Execution
2.5.1 General rules

All three programs {the Parser, the Code Generator/Linker, and the
Library Generator) are run by using BXEC or a similar command provided
by the various toolkits available. Each program will then request a
command line to inform the program about the action to be taken.

The command line will typically contain a mixture of filenames (NOT
enclosed in quotes) and command-line switches {recognised by the first
character being a -) separated by spaces. A filename 1s specified
either by using the full QODOS name preceded by the device name, €.9.
mdvl xyz ¢ or by relying on a default device and extension provided by

the program, e.g. xyz , or a mixgure of the two, e.g. mdvl xyz or
xyz ¢ . Details of the command lines for the three programs are given
in Subsections 2.5.2 to 2.5.4. Programs may opticnally use the

command-line facility in the Code Generator/Linker (see command-line
switch -nc in Subsection 2.5.3).

The default device is set to mdvl for all three programs. This may
be changed by using: . '

{a) the suﬁplied program config (see section 2.6}

{b}) an editor, such as Digital Precision's The Editor (use
unformatted input mode with overstrike).

The string mdvl_ only occurs once in each program.

If you have Digital Precision's TURBO TOCLKIT, you may use one of
the commands EXECUTE, EXECUTE A, EXECUTE W instead of EXEC. This has
the advantage that the optioﬁﬁstring in these commands may be used to
pass the command line to the program. A sequence like the following
in a SuperBASIC program c<an save a lot of time on repeated
compilations while a program is being tested:

230 EXECUTE A mdvl_cc;’'prog —p -m’
240 EXECUTE A mdvl cg;'prog new prog’-

i

A similar facility is offered by the EX commands availabie on the Thor
and in Tony Tebby's Toolkit II.

A further command-1ine facility, not used by the compiler suite but
usable in OIGITAL C programs (e.g. in the example program sort), is
input/output redirection, which will be dealt with in Subsection
2.5.5. -

1.2 Getting Started

Do curb your impatience to get DIGITAL € up and running right away.
Media have been known to become faulty, and files to be erased by
mistake. Murphy's Law decidedly states that it will happen to YOU if
you fail to make a backup copy of your DIGITAL C medium.

To make a backup copy, put the master disk or cartridge in drive 1
and examine your blank disk or cartridge, checking whether it is
write-protected; if necessary, unprotect it. All kinds of trouble can
result when an attempt 1is made to output to a write-protected
microdrive (this is an unfixable QL bug), whereas the same blunder
with a disk will merely result in a 'read only' error message. So do
use that piece of tape if the write-protect tab is missing. Now
insert your blank medium in drive 2 and type :

LRUN flpl clone Ox LRUN mdvl clone

You will be prompted for the name of the source device and that of
the destination device. when you have answered these questions, you
will be asked whether the destination medium needs to be formatted.
Reply vy or n. When the drives have stopped whirring and the lights
gone out, remove your master medium and stow it in a safe place. Only
the cloned medium should be used henceforth {except for making new
clones in case something happens to the first one). The working c<opy
you have just made is intended to work from drive 1; so put it there
now before continuing. If yor prefer another default device, you can
change this by running the program config (see section 2.6).

Before continuing with DIGITAL ¢, we strongly recommend that you
load the file wupdates doc into QUILL and peruse it for stop-press
information on improvements not contained in the manual.

1.3 Copyright Notice

DIGITAL C, like the rest of DP's programs, is not protected against
unavthorised copying and theft. This has obvious advantages for you,
in that you can make backups freely and transfer the program suite
freely from one medium to another. But the absence of copy protection
has a big disadvantage for us: it means that every time you sell or
give away a copy of DIGITAL C to someone, we lose a sale that would
have helped us to fund more development of QL software.

There is no QL software publisher so large and committed as DIGITAL
PRECISION. But the flow of new QL software from DP, and the
availability of older titles, depends upon the honesty of a circle of
buyers. '

DIGITAL PRECISION will remain active in the OL market for the
foreseeable future, but future products can only appear if people are
willing to pay for them.

~ In effect, against the trend - especially on top-quality products -
we have taken a gamble on your honesty. Please don't let us down.

We offer rewards for information which ehables action (civil and
criminal} to be taken against suftware pirates, big and small. Of
course, we hope to spend ocur time 'more productively!

