

%

@ _LIBERATOR USER MANUAL
Firat edition 1986

Published by Liberation Software

The & Liberator softwgre nd documentation wre copyrighted with all
righis reserved. No pari of the software or documentation may be copied,
reproduced or stored on my electronic medium without the priar writien
congent of Liberation Software, except ag described in this manual.

Whilst all reagonoble care hag been taken to ensure that @_Liberator dees
net contgin errers and that the documentolion is aqccurate, in no
cirgumatances will Liberation Software be liable for any direct, indirect or
congequential damage or loss arising outl of the use or inabllity to use the
sofiware or itg documentation.

Liberation Sofiwaere has o pelicy of constant development and improvement of
ite products, Regisiered users wiil be informed of any significant changes
oF New v reions.

Copyright 1986 Liberation Software
43 Clifton Road
Kingston upon Thames
Surrey
KET2 6PJ

.:?

!
i
b
#
1
|
|
i

foned fome) fed Lol

ot CORTENT S

Contents

CHAPTER 1 INTHRODUCTION

Why a SuperBASIC compiler. System requirements. Packsge contents.
Making copies. How to use thia manual. Commercial use. References.

CHAPTER 2 GETTING STARTED

Conpiling a program. §_Liberator windows. Running a compiled program.
Introduction to QX. Separating phase 1 and 2.

CHAPTER 3 FUNDAMENTALS

The SuperBASIC interpreter. The §Q_Liberator compiler. Multitesking,
Job Control. A multitesking example. Adapting programs to multitask.
Keyboard handling. Screen handling. File handling.

CHAFTER 4 USING @_LIBERATOR

Calling phase 1. Calling phase 2. The command Une. Compiler options.
Command line errors. Passing commend lines. Compiler Directives.

CHAPTER 5 COMPILER MESSAGES
Mesaapes during phase 1. Messages from phase 2.

CHAFTER & RUNTIME ERRORS

The error window. Initialisation errors. QDOS errora. QLIB errors.

CHAPTER 7 MEMORY MANAGEMENT
Object program structure, Data area. Buntime statistics. QLIB_PATCH.

CHAPTER 8 INTERPRETER / @ LIBERATOR COMPARISON

Compatibility. Program structure. DEFine..END DEFine FOR..END FOR
REPent...END REPeat SELeet ON...END SELect IF..THEN..END [F. The
dreaded GO TO. Program size, Unsupported keywords. Data types.
Floating point rmambers. Integers. Sirings. Arrays. Choannels. Initial
windows.

CHAPTER B USING ASSEMBLER EXTENSIONS

Loading aasembler extensions. RESPR. Writing assembler extensions.
Linking during compilation. An example,

CONTENTS

CHAFTER 1) INTER-JOB COMMUNICATION

Pageing Information to jobg. The procedure QX, Passing a command
string. Passing channels te joba. Working with pipes. QJUMP Toolkit.
Example of filter program.

CHAPTER 11 ERROR TRAPPING

Existing error trapping facilitles, @_Liberator error trapping. Tunﬁng
on error trapping. Q _ERR and Q_ERR$§. Turning off error trapping.
Caution.

CHAPTER 12 JOB CONTROL

Listing joba. Removing & job. Changlng the priority of a job. Current job
number, Cursor control.

CHAPTER I3 SOLVING PROBLEMS
Problems with microdrives, Problems with complled programs.

APPENDIX A MAKING A WORKING COPY
APPENDIX B FILE CONTENTS
APPENDIX € SUMMARY OF SYNTAX

INDEX

l.lb.Etor

INTROGUCTION

Nl
4

Chapter 1 Introduction

WHY A SUPERBASIC COMPILER ?

SuperBASIC is an elegant, flexible language designed by programmers for
programmers. It is g considerable advance on other implementatiohs of
BASIC end containg some unigue features, It is ideally suited to be the
QL's native language.

It is alsc somewhat siow, and gets slower as programs increase in size.
Programs can take an age to load and there is no possibility of running
more than one SuperBASIC program simultaneously.

To solve these problems we decided to write a SuperBASIC compiler. We
did not wish te deny the programmer amy of SuperBASICE more exotic
features end soc a major deslgn aim was to adhere rigidly to the
SuperBASIC syntax. There sesmed little point in supporting only a subset.

The result was @ Liberator, a sophistieated tocl which produces compiled
programs with the following benefits:

They load in & fraction of the normal time,
They use less file space and less memory space.
They execute faster than the interpreted version.

Thay are secure. Q_Libei'ator programs are indecipherable when
examined.

With a few well documented (and obvicus) exceptions, virtually eny
SuperBASIC program can be compiled successfully. There ig not normally
any need to change the original program.

EXTRA FEATURES

Q_ Liberator is much more than just a tool to create fagter programs; the
SuperBASIC extensions supplied provide access to facilities within the QL
which until now have been denied to SuperBASIC, In particular full error
trapping <an be included in programs and the interesting poassibilities of
inter-job communication through varicus means including pipes can be
explored.

1.1

INTRODUCTION

SYSTEM REQUIREMENTS

@ Liberator has been designed tc be fully useable on any QL hardw?re.
Special provision has made to ensure that large programs can be compiled
and run on gn unexpanded QL.

If extended memory is svailable then @_Liberator will explojt jt.

Q@ Liberator will work with all extension disk systems which adhere to the
standard QL format.

PACKAGE CONTENTS

The @ Liberator library case confaine this manual, a registration card, a
Master microdyive eontaining all the Q Liberator software and a Working
Copy on microdrive or other QL medla, The Master microdrive can be
identified by ita red label.

The Master copy can only be used for creating further Working Copies; it ia
not possible to use it to compile programs. The Master should be kept in a
safe place; it is your ultimete security copy. Replacement, except In cages
of faulty materiels, is chargeable.

The Working copy of @ Liberator containg a BOOT program and se\feral
files, described in detail in Appendix B, They are grouped in 3
directorles:

Files beglnning with QLIB_ contain the Q@ Liberator system.

QLIB BIN is the first phase of the compiler.

QLIB_OBJ contains the second phase. This file ig protected
T ageinst unguthorised copying.

QLIB_RUN conteins the runtime system.

QLIB_EXT conteins SuperBABIC extensions.

Files beglnning with DEMO_ are miscellaneous demonsgtration programs,
gome of which are described in this text.

Files beginning with INFO_ (if any) contain additional documentation.

MAKING COPIES

You can freely copy all these files for your own use, with the exception of
QLIB ©BJ, which can only be duplicated by creating a new working copy
from the Master, Copying QLIB_OBJ by other means will stop the compiler
from rurming. QLIB_OBJ is not needed to run & compiled program.

Appendix A describes how to meke a working copy for any media from the
Mester microdrive.

1.2

a

v
i

x INTRODUCTICR

To discourege the unlawful distribution of Q_Liberator, the number of
pidditlonal copies which you can create from a Master iz limited to five.
Each Master and each working copy have unigue serlal numbers to aid in the
identification of unauthorised copies.

It 18 Liberaticn Software's belief that the measures described above will
not inconvenience the legitimate uger.

HOW TOQ USE THIS MANUAL

Thie merzal ie designed to be sultable both for thosze who are unfamiliar
with the concepts of compiletion end multitasking, and the more sdvanced
user, who will hopefully find many stimulating ideas. A working lmowledge
of BuperBASIC ie assumed. Throughout the text there are many examples;
you are encouraged to try these to aid your understanding.

Chapter 2 is o rapid introduction to compiling and running programs with
Q@ _Liberator. All usera are encouraged to work through this chapter to
gain some immediate experience before tackling subsequent chapters.

Chapter 3 is primarily intended for thoge who have never encountered
multitasking before. Advanced users may wizh to skip some sections.

Chapter 4 deseribes how to use the compller in detail, including the
command line syntax and varlous directives.

Chapter 5 is a reference list of all messages which cen result when a
program ig compiled,

Chapter & lists the error messsges which can cceur when compiled
programs are running.

Chapter 7 describes how to optimise the memory usage of § Liberator
programs. It can be ipnored initielly, but all programs can beneflt from the
vort of tuning described, and i some caszes it is essential.

Chapter & is a detailed comparison between Q_Liberator and the
interpreter. It is important to be aware of the differences and
enhancements to get the best from the system.

Chapter § covers the use of SuperBASIC exténsions written in assembly
language within compiled programs.

Chapter 10 describes a suite of provedures for passing command lines and
channela between jobs. Pipes are alsc discussed,

Chapter 11 describes some how to add error trepping to a program.

Chapter 12 describes a suite of procedures for controlling jobs. Many
users will already have similar procedures, but the @ Liberator versions
offor some advantages.

Chapter 13 {s for those who encounter problems with the compiler. It
contains a checklist of common causes of problems and possible aolutions.

1.3

INTRODUCTION

COMMERCEAL TUSE

Those who wish to market programs compiled with Q_Liverator are free to
de so0 provided that :

The runtime system QLIB_RUN is linked to the object program and
not supplied as a separate file. (see chapter 4)

The procedures in QLIiB_EXT if used, are linked to the object
program. (see chapter 9.

Cradit is given to Q_Liberator and Liberation Software within the
Program or aceom g documentation.

Liberation S8oftware is notified of sall such programa.

The parts of Q_Liberator contained within commercial programs remain
the intellectual property of Liberation Software at all Hmes.

No other part of the @_Liberator system may be distributed in any form.

REFERENCE MATERIAL

The best book for those who wish & fuller description of SuperBASIC thsn
thet provided by the QL User Guide is:

QL SuperBASIC - The Definitive Handbook
by Jan Jones, designer and writer of the language.
Mc Graw Hill 1985 ISBN 0-07-084T34-3

This book proved indispensible during the creation of @ Liberator. The
language described therein is, followed precisely except where documented
in this mamal,

CREDITS

Q_Liberetor was designed and written in many long evemings between
April 1985 snd September 1886, It was a joint project and lent itself well
to creatlon by a team of two.

Adrian Soundy was mainly responsible for the compiler, which itself was
written in SuperBASIC then complled, whilst I, Ian Stewart wrote the
mnumtime system and the marmsl.

Thanks are due to Leon Jaeggi for relentless bug hunting and much
suppert, to Tony Tebhy for useful tools and challenging test material and to
my wife Julie.

SINCLAIR, QL, SuperBASIC and QDOS sre trademarks of SINCLAIR
Regearch Ltd.

The Toolkit referred to throughout this text is the QJUMP Toolkit II,
available from CARE Electronics. Many of the features mentioned are
present on the earlier QL Toolkit from Sinclair.

1.4

"Q
: 'l.ibctog

Chapter

GETTING STARTED

2 Getting Started

The aim of this chapter is to teach you enocugh about @ Liberator to
compiie an average SuperBASIC program and to run the eompiled version.

Reset your QL , place your Working Copy of Q_Liberator in MDV1_ (or
FLPL) then press Fl or F2 as you see fit. There is a BOOT program cn the
microdrive which will automatically load sll the necessary @_Liberator
files.

In channel 0 you will see the Q_Liberator copyright mesaasge briefly
aAppear. Your system is now ready to compile a program.

Q_Liberator tekes as its starting point a working SuperBASIC program
which has been LOADed into memoty. This is referred to as the source
program, For the demonstration we will use a small program which sorts
integers, strings or floats, present on the Working Copy.

Type LOAD MDV1 DEMO_SORT

and walt for the cursor to reappear. Now type RUN and watch the sereen.
All being well you should see the gort progrem being put through ite paces.
Wait until it is eomplete snd make a note of the times which are displayed.

Now we are ready to see Q_Liberator in ectiom

COMPILING A PROGRAM

Q_Liberstor compiles programs in two distinet phases, The first phase
does some initiel checking snd produces a work file for use by the second
phase.

The second phese does all the detailed work of checking the program for
errors end produces an sbject pregram. An cobject program when
executed behaves in the same way as the original source program, but
ionda and puns much faster. Further more it can multitask ie run
gongurrently with other programs. .

The two compiler phases can be mm independently of each other or,
providing there is enough memoty, they can run autometically one after the
other. We shail use the sutomatic mode for the first demonstration.

Type LIBERATE MDV1_DEMO_SORT,

Toko oure to type in the comma at the end ae it ip this which eauses the two

2.1

GETTING STARTED

phagea to follow each other. If you did forget it, don't worry; just retype
the line.

You should now see the message "Creating work file™ in channel 0 and hear
MD¥1 spinndng. The work flle (its name is MDV1_DEMO SORT wrk) will
oceupy much the same amount of space on the microdrive as the source

program. Once it has been crested, the source program is no longer
necessary for Q_Liberater to complete ita job.

After a few seconds you will see the message "Loading Q Liberator" in
channel 0. The second phase which doea most of the work is now being
loaded. Phese 2 i itself a multitasking Q_ Liberstor program, so while it
is running you will still see a cursor in channel ¢ and can continue to use
SuperBASIC if you wish.

§_LIBERATOR WINDOWS

When loading Is complets you will see the main @ Liberator screen
containing 3 windows.

At firat the top window will contain only the product name, but shortly you
will see the SuperBASIC line number which Q_Liberator is currently
processing displayed In the top right hand corner. When this number
reaches the maximum line mumber, the compilation is complete.

The results of the compilation are dieplayed in the lower window. Hers you
will see the aize of the program, the amount of data area required, the
higheat channel used and the complle time {phase 2 only) The
demonstretion program es supplied compilee perfectly (of courser but if
there had been any errors then they too would have been displayed in the
lower window.

The middie window ie used to enter a command line for the compiler. In
our example no o d was T ry becguse phase 2 of the compiler
was automatically started after phase 1. We ghall return to the commend
line tater.

RUNNING THE COMPILED PROGRAM

When you gee the message "@_Liberator finished" in the command window,
you ¢an try runming the object program which @ Liberator has produced.
The object program name has the extenslon '_obj appended to it.

Type EXEC_W MDV1_DEMO_SORT OBJ

to load and mmn the preogram. After a very brief loading time you shonld
aee the sort program running again, but this time much faster. We used
EXEC_W because this ensurea that oniy the sort program is running. You
could algo uge EXEC, in which case the times for the compiled program are
glightly longer, because the SuperBASBIC Intarpreter 1a still active.

2.2

=

GETTING STARTED

g

INTRODUCTION TO QX

The procedure QX offers an easier way to loed and start object programs,
because there is no need to epecify the extension '_obj'. In other respects
it behaves gimilarly to EXEC. Its eompanion, QW is similar to EXEC_W.

Try QX MDV1_DEMOG_ SORT

Whilst the sort {e runming, you can still type SuperBASIC commands because
the programs are running simultanecusly, We shall explere this further in
the next chapter.

QX and its companion QW have other uses, explained fully in chapter 10.

SEPARATING PHASE 1 AND PHASE 2

When there {s insuffucient memory to hold both the source program and

phase 2 in memory simultaneously, the program can be compiled in separate
phases as followa:

LIBERATE DEMO_BORT

Thie simply creates the workfile then stops. You can now type NEW to clear
all the memory uged by the interpreter then start phase 2 by typing just

LIBERATE

Now when Q_Liberator is Ioaded it prompts for & commend line. Enter
MDV1_DEMO_SORT and you will see the compiler running as before.

When it flnishes you have the opportunity to compile another program or
Q_Liberator can be ended by entering an empty lLine.

The workfile created by phase 1 is sutomatically deleted at the end of a
compilation. If however the compile fails because of leek of memory, it witl
remain on the microdrive. It is not changed in any way during phase 2 and
80 can be resubmitted to the compiler when more memory is gvailable,

You should now have sufficient information to begin compiling your own
programs, The next chapter gives some guidelines to ensurs they will mmn
suceessfully in a multitasking environment.

2.3

FUNDAMENTALS

[}
-

Chapter 3 Fundamentals

The Motorcla 68008 chip Inside your QL can only execute its own machine
code instruetions: it cannot execute SuperBASIC programs directly.
Therefore, before a program can be executed, the SuperBASIC instructions
muat be translated intc apnother form. There are two types of program
which ean perform such & translation; interpreters and compiiers, This
chapter explalns the essential differences between them. It also conteins
an Introduction to multitasking and advice on writing programs designed to
execute in the multitasidng GDOS environment.

THE SUFERBASIC INTERPRETER

When a SuperBASIC program is LOADed, the interpreter translates the
program text which it resds from the microdrive into zn internal program
format, The names of all variables, procedures and functions ere put into a
name table and memory is allocated for the program to use.

Thig precess takes time end is the reason why SuperBASIC progrems take
a long time to load.

When you LIST a progrem the interpreter converts the internal format back
to a text formet which ean be displayed on the screen.

When you type RUN the interpreter starts to translate the program in
memory line by line, Executlng e simple statement can inwvolve many
tundreds of machine code instructions, most of which are spent
determining just what is to be done, 'Ths actual operation, accoumts for
relatively few instructicng.

If a statement is placed inside a FOR or REPeat loop then each time round
the loop the interpreter must retranslate the gtatement.

The interpreter keeps track of the location of each procedurs, function,
loop ete, by means of the number at the start of each line, Finding a line
mumbar invelves gearching from the current line all the way to the target
lne. This process gets progressively slower as program size increases.

_—

THE Q_FEIBERATOR COMPILER

In contrast, Q_Liberator takes the internali form of the program and
translotos it once at complile time , cresting a new file called an object file.

E

3.1

FUNDAMENTALS

in the object file, references to line mumbers, procedures, loops ete are
absolute, ie the program kmows where everything is and searching s
unnecessary.

During compilation, @_Iiberator performs all the work of deciding what
hae to be done to execute a given statement., Thus when the program is
executed at runtime it runs much faster.

The cbject program can only run in eonjunction with the run time gystem.

This ig either pre-loaded by a BOOT program or linked to the object
program et compile time.

@_Liberator programs also load much faster than SuperBASIC programs
hecause no translation takes place during loading.

It is important to reallge ihat Q Liberator in no way replaces the
interpreter. In fact they complement each cther, resulting in a more
sophisticated working environment., The interpreter becomes the ideal
program development tool offering the advantages of interactive operation,
whilst Q_Liberator ensures that the finished produet loads and runs
efficiently.

MULTITASKING

The QL is rare amongst low cost micros in that ite operating system, QDOS,
is inherently multitasking, This means that more than cne progrem ¢an trun
on the machine simultenecusly, A multitesking program in QL parlance is
termed a job. @ Liberator identifies jobs by their number or their name.

The SBuperBASIC Interpreter, together with the program it is interpreting
constitute job 0. Job 0 is unigue in that it can grow or shrink in size as
neceasary, and can never b8 removed.

RDOB manages jobs by sllocating each job some processor time in turn
while the job ig active. The amount of time which a job gets 1s determined
by its priority , The priority ean range from 0 to 255; 0 meana that & job
ig inactive, and gets no processor time. When changing priorities it is the
relative difference in priority between twe jobs that matiers, not the
absolute priority.

If & job is just waiting for a keyboard input, then it is not using processor
TeROUrCes.

JOB CONTROL

The Q_Liberator package containg a number of procedures to manage jobs.
These let you displey which jobs ere nnmng, remove jobs and change the
priority of jobs. You may already have mimilar procedures und know how to
use them. If not, you may find it useful to read chapter 12 so that you can
experiment with the procedures within the example which follows.

You can, for example, see the effect that chenging & joh's priority has on
the rate at which it counts. Try this when there is more than 1 job running.

3.2

l "‘Q,. FUNDAMENTALS
’ Liberator

A MULTITASKING EXAMPLE

The following short program is contained on the Working copy. ¥t 1s useful
for fllustrating some aspects of multitagking,

100 REMark MULTITASKING DEMONSTRATION
105 :

147 REMark DEMO_MULTI

108 :

110 j=Q_MWYJOB BEMark see chapter 12
120 REPeat loop

130 AT j,0:PRINT FILL${" ",20)

140 AT 0

150 INPUT ("JOB "&ja" >™)a

160 IF a=0 THEN S5TOP

170 FORx=1TOa

180 AT j,15: PRINT x

19¢ END FOR x

200 END REPeat loop

This progrem simply prints its job number angd prompts for a mumber to be
entered. If this mumber is 8, the program ends; otherwise it counts from 1
to the number given, whilst displaying the current figure on the soreer.
The pogition on the screen is determined by the job number.

Type QX MDV1_DEMO_MULTI

to start g copy of this pregram. You will see the prompt "JOB 1 >" at the
top of the screen with a non flaghing cursor heside it. The job is waiting
for keyboard input. Mote that there is atill & flashing cursor in chgmmel &,
and you can still use SuperBASIC.

There is only ohe keyboard on the QL, but there may be many jobs waiting
for keyboard input. QDOS provides a mechanism whereby you can
effectively attach the keyboard to different jobs as required. This is dene
by pressing Control-C (held down CTRL and press C). Dolng this mekes the
flaghing cursor move to the next Job which is awaiting input. If you keep
pressing Control-C you cen select any job which is awaiting input.

Select the cursor for job 1 and type in a mimber, say 1000, You will see the
program count from 1 to 1000. Now select the SuperBASIC cursor in
channel 0 and start a few more copies. Use Control-C to select each
in turn end et them all coumting simultanegusly. Notice how the rate of
ocqunting alows down as more and more jobs are started,

Try changing a job's priority to see the effect this has on the rate et which
it counts, particularly when there is more than 1 job mmning.

Whan you are finlshed, end each progrsm by entering 0.

3.3

ADAPTING PROGRAMS TO MULTITASK

Not all programs will he sulteble for mutitasking because when several
programs are running simultanecusly they ecompete for the QL's rescurces.
You need to take this into account when a program ig intended to multitask,

KEYBOARD HANDLING

There sre three different ways of reading the keybosrd In SuperBASIC,
and each behaves in a different fashion when multitesking.

If & program uses an INPUT atatement, there is no problem because INPUT
always puts a cursor on the screen.

The same 15 not true for INKEY$. You can only divert cheracters to a
program using INKEY$ if you have first enabled a cursor on the channel
used by INKEY$. You can do this elther by plecing an INPUT statement for
the same chennel at the start of the program, so you can switch the
keyboard to it then, or you can use the Q_CURSON procedure {or
equivalent) as described in chapter 12.

It ia importent to eonsider thiz point when complling interactive games
which use INKEY$, The alternative 18 to use EXEC_W or QW to start the the
job so that it runs on its own. Then you are guarenteed sole use of the
keyboard.

The final method of reading the keyboard i to use the KEYROW function.
EEYROW does not care which job the keyboard ia currently attached to. It
bypasses this mechenism and reads the keyboard directly. Care is
necessary when uging KEYROW a5 the program will treat all keystrekes as
ite own making it diffleult to type characters intended for other jobs. It is
hest to elther run such programs on their own, or use obscure keystrokes
to minimiae interference.

SCREEN HANDLIKG

FILE

When you have several programs all using the same screen, the result can
be chaos because eech job is free to overwrite another job's windows. In
such cases it is useful to separate the windows on the acreen. In prectice,
at any glven time most jobs will simply be waiting for keyboard input. If
possible, try to inclide a routine in the program which can redraw the
gcreen when necessary.

HANDLING

Microdrive filea can be shared by ssveral joba, so long as all the joba cpen
the flle uging OPEN_IN, Other forma of OPEN grant a job exclusive use of
the file; subsequent OPEN attempts by other jobs will cause an 'In use'
error. The error trapping procedures described in chapter 11 let you
catch guch conditions.

The seme is true for devices such as a printer attached ta serl - only one
pregram can normglly OPEN {t. (In fact you cen get round this problem of
exclugive flles easily, by sharing charnels as described in chapter 100

3.4

¥ USING Q LIBERATOR

Chapter 4 Using Q_Liberator

Thia chepter gives a deteiled deacription of how to use the Q_Liberator
compiler. You will already have seen bow easy this can be if you have
waorked through the demonstration run.

CALLING PHASE 1

Before calling phase 1 you must LOAD the program which 1s to be compliled
and ensure that it runs correctly. Q_Liberator cannot be expected to fix
programming errora for you. If wou have an unexpanded machine, type
CLEAR to free any available memory before attempting compilation.

Phase 1 of @ Liberator can now be started by using the LIBERATE
command in one of the following farms :

a) LIBERATE filename
bl LIBERATE filename,
[y} LIBERATE filename,option_liat

Form a) calis phase 1 alone, whilst b) and e} automatically cause phase 2 to
be loaded when phese 1 is complete. The option_list is descrived under
phase 2,

'Filename' specifies the name Q_Yiberator will use when forming the work
file name and later the object file name. The workfile neme will be
'filename wrk' and the object name "filensme_obj’, Normally you will have
to specify filenames in fuil, but if there are extensions In your system to
support default directories, then Q_Liberetor will use them.

eg LIBERATE mdvl_teat
LIBERATE mdvl demo,

It is not meaningful to use LIBERATE within a program. §f you attempt tids
you will get the ercor *bad name'.

If you want to compile a reslly large program on an unexpanded syatem,
then you need only load QLIB_BIN when you boot the aystem. This ccoupies
only 2k of memory. You can then use phase 1 to create the workfile, Now
alear the program using NEW, load the runtime system QLIB_RUN end start
phnao 2 to complete the compilation.

4.1

r USING ¢ LIBERATCR

CALLING PHASE 2

Phase 2 of the compiler can be started sutomatically from phase 1 as
described above, or can be started Independently by typing

LIBERATE

without amy parameiers.

. : . , L tring whi
Phase 2 gets its Instructions via a command line. This is a atr hich
identiﬁefe all the filemames to be used and speaﬂes_any apecial gchc:ns
wiich ghould be taken durlng compilation. The compiler cgn receive its
commend line in several different ways.

When phase 2 I8 started independently then it is simply typed in response
to the prompt in the command windaow.

The other ways in which a command line can be passed are described later
in this chapter.

THE COMMANID LINE

A command line has the following format:

filename [option:_liet]

is j duced by
At n mindmum it is just the name of a work file which was pro
phase 1. This name should be speciffed without the extension '_wrk. If
nothing follows the name then @_Liberator will compile your program using
standard default velues throughout. The option list is described overleaf,

eg Commend : flpl_demo

i fve based QL it
When have aeveral programs to complle on a microdrive
may bey?ﬂ.ore productive to create ali the workfiles first then compile then
one after the other with phese 2. Phase 2 is then only loaded mmce.

4.2

X USING Q LIBERATCR
tor

COMPILER OPTIONS

One or more options, separated by spaces, can be placed after the filenama
to form an option list. Each consists of a short mnemonic name preceded by
a minus sign. Opticng can be specified in upper or lower case in any order.
Same options require a parameter to give further information to the
compller. Such parameters muet immediately follow the corresponding
optien, again separated by 1 or more spaces. The complete list of options
is summarised below. Some relate to toples di d in detail el here,

~NOLINE Suppress generation of a line number table. This makes

the object program ghorter, but any runtime errors will
not contain a line mamber. If your program includes a
GO TO expression (eg GO TO x*10) or other statements
which require a line number to be caleulated, then the
compiler will always generate the lne mimber table
beeause the runtime aystem requires it.

-STAT Print memory usage statlstios &t end of job.

The format of the statlaties is desoribed in chapter 7,
-0BJ filename Use filename as the name of the object file.
Tris lets you create the object file on a different
device from the work file.
Note that _obj will still be appended to the filenama.

-NAME jobname Change the name of the job. This is the name used to
reference the job whilat it is rurming. 1t carmot
contaln spaces and is best kept short,

~RUN device Link a copy of the runtime system to the compiled

program. The object program can then run in stand alone

mode ie without the runtime aystem loaded, You MUST use
this optien if you wish te sell your compiled program,

Such programs are approximately 8500 bytes lenger than

programs without thig option.

The device parameter specifies where the runtime system

QLIB_RUN is to be copied from. eg mdvi_

-LIST filename Divert the error iisting to the specified device or

fite, Thia can be a printer, a digk file eto.

The defaults when no options are present are:
Line mumber table, no statistics, no runtime linkage, listing to
Q_kiberator window. The object name and job name are derived
from the fllename.

Soma examplag of command lines are shown cat the next page.

4.3

USING O LIBERATCR

EXAMPLES OF COMMAND LINES

Command : mdv2_demo_sort -list sezl

The workfile is mdvZ_demo_gort_wrk., Compile in standard fashion but
gend any error messages to the printer connected to serl. The object file
will be mdv2_demo_sort_obj.

Command : mdvl_testprog -stat -noline ~obj mdv2_test

The workfile is mdvl_testprog_wrk. Don't generate a line number table
vut include statistics. The object flle will be mdv2__test_obj.

Command : fipl_graph -run flpl_ -name Demo

The workfile js flpl_graph_wrk. Link the runtime system flpl_qlib_run
1o the object program flpl graph_obj. The job nams is *Demo'.

COMMAND LINE ERRORS

If you make an error in a command line, Q_ Liberator will print the bad line
on the listing channel with an arrow polnting to the part in error. You will
see one of the following gelf explanatory messages:

No source file
Option name expected

Parameter expected
Imvalid opticn

You now have the chance to try again or abort the compiler.

4.4

. l
']

4

USING Q LIBERATOR

Liba

PASSING COMMAND LINES FROM PHASE 1

If you have sufficient memory to run phase 2 automatically after phage 1
then any options wiich are required can be gpecified as a second
parameter 1o the LIBERATE command. Before calling phase 2, phase 1
combines the file name with the option list to produce a command line.

When phase 2 ig started in this way it prints the command line which it
received in the command window then runs sutomstically without aty
keyboard interventian. it will remove itself at the end of the compitation.

eg LIBERATE mdvl_ testprog,"-atat"

Phase 1 produces the workfile mdvl teetprog wrk. It then combines the
two parameters into the command lne ‘mdvl_testprog -stat' and pasaes

this to phase 2 which completes the compilation and {erminates
sutomatically,

PASSING COMMAND LINES USING QX

Phage 2 can alsc be started using the procedure QX, posgibly under the
control of a program. QX s deseribed in chapter 10, The complete
commend lUne should be passed as the command string, This gives the
possibllity of batch operation of the compiler, fe many separste workfiles
cen be antomatically compited under the control of a program,

eg QX flpl_glib,"flp!_testprog -stat"
QX mdvi_glib,"mdvl_demo -atat -list ser] -name freddy”

Remember that phase 1 can only be executed as a direct command.

4.5

USING Q LIBERATOR

P

¥

USING @ LIBERATOR

Li

[

COMFPILER DIRECTIVES

These are speclal REMark statements inserted into a SuperBASIC program
to instruct the compiler of special storage requirements or asgembler
routines requiredé at runtime. They are only necessary when the default
values are inadequate or over genercus. When present, they are best
placed at the start of the program, where they can be easily seen

A line containing a directive must atart with a REMark followed by 2 [

OPrIMISATION OF ARITHMETIC

'Thore ere itwe compiler directives which turn on or off a space/speed
optimisation. They need no parameters.

'

REMark $$i Turn on integer made.

dollara then the firet directive.

Each directive congists of a 4 character name followed by an equal sign and
then a parameter. There must not be sny spaces separating these items.
More than @ directive can be placed on a line by separating each with &

This directive instructs the comgpiler to generate integer constents
whenever possible. This will reduce the size of the object code and give
increased performance when integer arithmetic is used. Floating point
cperations ob such constants are slightly slower, due to the coercion from
integer to float which has to be performed.

QOMM A, -

The complete liat of directives is given below. Explanations of the
parameters which are changed can be found in chapters 7 end 10.

REMark $$f Turn ch fleating point mede.

This directive instructa the compiler to generate floating point constants,
thus optimising the code for floating point work.

The default cese is equivalent to $$f and is snitable for general use, Where
space is at a premium, uging $$i gives space savings of around 10% on
average programs. When maximum speed is required, these directives can
be used any mumber of times within a progrem to turn on the appropriate
optimisation for specific routines.

BEMark $$heap=SIZE Set size of initia) user heap allocation.
Default 2048, minimum 32, maxdmum 512k .

REMark $$stak=SIZE Set size of the working stack,
Default 820, minimum 128, maximum 512k

coa

*
P

REMark $¥chan=MAX Define maximum chammel number to be used.
This reaerves space for the channel table.
See chapier B inder CHANNELS for more
informaticn

INPUT BUFFER SIZE

When data is read from e device using INPUT, it is placed in a temporary
buffer. This buffer has a fizxed size of 128 bytes in ROM versions AH and
IM, If the input data exceeds this size then a 'buffer overflow' error will
oceur. Page 11.4 shows how to trap such a condition with @ Liberstor.

J5 and later ROMSB have & dynamic buffer which expends as necessary. If
you wish to compile programe which INPUT more than 128 bytes then you
must use the $$buff directive described below to set the maximum buffer
slze required.

3

REMark $$asmb=FILENAME,INIT,TABLE

This directive causes SuperBASIC extensions written in
assembler to be linked into the object program during
compilation. It may be specified up to & times.

Each module can contaln any mmber of procedures or
funetions.

See chapter 9 for details of how tc use this directive. REMark $$buff=size Set INPUT buffer to size gpecified,

EXAMPLES OF DIRECTIVES $$huff gives no advantages with AH and JM ROMS.

i

REMark $$stak=1024
REMark $$heap=10000,chan=10
REMark $$asmb=mdvl_extensions_code,0,12

: T ..Z

3

.

»

4.6 4.7

COMPILER MESSAGES

o

Chapter 5 Compiler Messages

Thla chapter explains sll of the messages which can occur when you are
compiling a program wth Q_Liberator. It concentrates on those messages
which pertain to errors or inconsistencies in your program. However both
phase 1 and phase 2 esn encounter errors when sccessing mierodrives eg
'drive full' or file not found's These messages are self explanatory.

MESSAGES DURING PHASE 1

Phasze 1 will give the error 'bad name' if you try to use the LIBERATE
procedure within a program and 'invalld Job' if there ia me program to
compils. You can also get 'had parameter' if the name ycu have chosen for
e object corresponds to one of your procedure or function names.

Phase one of Q_Liberator produces only two error messages relating to
the format of your source program. They are displayed on channel ¢ Both
are congerned with the structure of procedure or function definitions.

END DEFine error

This meens that you have elther nested DEFinitions or an END DEFine has
been found outelde of a procedure. The rules concerning DEFine end END
DEFine are listed in chapter 8,

END DEFine altered

A correctly written SuperBASIC procedure or function should have only
e END DEFine statement. However the interpreter will tolerate end
correctly handle multiple END DEFines,

eg DEF PROCedure TEST ()
IF =1 then END DEFine
PRINT X
END DEFine

During phase one Q_Liberator checks that there s only one END DEFine for
oach progedure or functien. This is neceassary for phase % to operate
correctly. If a procedure or function contains muitiple END DEFines then
Q_Livarator changes ell but the last END DEFine into & RETurn, which is
the oorrect way to exit prematurely from a procedure.

This change is made to your scurce program in memory. It {s the only time
that Q_Llberator is so bold as to actuslly change your program for you,
beoaune 1t breaks a fundamental mile, If you LIST such a program after
running phase 1, you will gee the inserted RETurns.

'

'

5.1

o COMPILER MESSAGES

Thus the above example would become:

DEF PROCedure TEST (30
[¥ x=1 then RETURN
PRINT X

END DEFine

The message 'END DEFine altered’ is only issued once, regart_lless of how
meny RETurns had to be inserted. See chapter & for more details.

MESSAGES FROM PHASE 2

Phsase two reporta errors on the screen or other listing device as they are
encountered, Q Liberator continues to process your program after en
error hes been found, but will not generate any object program, since it
would be wmsable.

Some conditions generate warnings rather than errors, These happen
because of subtle differences in the way in which the interpreter and
@ Liberator work. Q Liberator recognises a problem and takes
correctlve sction, In such eases an object file Is generated and wili often
mumn correctly. You are advised however to examine your source program to
vnderstand the warmng, then make the necessary corrections and
recomplle.

All warpings and errors are preceded by a line rumber and the statement
number withln the Une. eg Line 100,3 ia the third statement on line 100.
The line number is the line st which the error was detected. This will
usualty be the line which needs changing, Sometimes however the real
error may ie elsewhere, usually earlier, in the program.

If your program ie still in memory you can examine it and correct errors
while phase 2 of Q_Liberator is running.

To draw your attention to these messages, Q_lLiberator gives a short high
pitched beep when warnings are lssued and a low pitched beep for errora.

The complete list of messages reported during phase 2 is glven overleaf:

5.2

.i-"

P
L

BN M AN Y

—t |

m‘

m

@

L

COMPILER MESSAGES

Warning..END IF without IF

The compller has spotted an END IF where one is not needed. It simply
iguorea it in the same way 28 the interpreter does.

Warning..END IF misaing

Any IF atatements within a procedure or function cught to have a
corrasponding END [IF within the same procedure or function. The
Interpreter is not so fussy about this as the compiler and will quite happily
uge the next END IF which it finds. Thia will almost certainly not be what
you Intended. Thus if the compiler arrives at an END DEFine with one or
more unterminated IFs outstanding, it will insert them automatioally in the
cbject program just before the END DEFine and give you a warning., It
does not change your gource program; that is your responsibility.
Warning..Procedure cannot be compiled

You heve used a procedure which makes no gense In a compiled
environment. Rather than foreing you to remove It, Q@ Liberator simply

ignores it. See chapter 8 for further explanation. The Tllegal procedures
are:

AUTO CONTINUE DLINE EDIT LIST LOAD LRUN MERGE MRUN NEW RETRY
RENUM SAVE

Warning..Variable used for channel rmmber

This mesaage is printed once at the end of compilation if somewhere in the
program you have specifiéd a channel number in a variable. Q_Liberator
doea not know how big to generate the chenmel iable snd generates the

default size (0 to 15). It may be necessery to insert a $$chan directive to
increase this,

Errorw.Not & @ Liberator work file,

The file which phase 2 is processing is unrecognisable as the output of
phase 1. Either you have been tampering with the work flle or u corruption
hes occurred. Repeat phase 1.

Error...Unrecognised symbal

Tha line being processed atarts with an unrecognised character. Normally
auch errors are trapped by the SuperBASIC editor which flags them as a
MISTake. The Hkely cause is that the work file iz corrupt, Repeat phase L.

Error..Unsupported statement

The Une containg a statement which is not supported by @_Liberator: In
practles this means SuperBASIC has recognised an error and inserted a
MISTAKE, or you are trying to use the undocumented constructs in J5 and
later ROMS for error trapping ie WHEN ERROR etc.

Error..Too many nested IFs

Bach time you use an IF asiatement within an IF statement the compiler
needs space to keep track of this nesting. It can do this up to 32 times;
bayond this it gives up with thia error, If you get thiz error then it most
probably means that your program needs restructuring. If a Hmit of 32
really amunes you a problem it can be increased, Write to us.

5.3

COMPILER MRSSAGES ‘ RUNTIME ERRCRS

9

Libe:

Error...Too many nested SELects

P

Thie is similar to the nested IF error described above. The maximum
nesting is again 32. Note that there is e separate storage ares for
administering SELects and 1Fs.

Error...SELect miasing

The compiler has found a SELect clause (eg ON x=1 or slmply =1) but there
hes been no previcus SELect which must precede such a construct. Your
program must be corrected as the interpreter's beheviour in such
circumstances is to go searching through your progrem for the next END
SELect (any one will do!) then contimue execution after this point. An END
SELect without a prior SELect will also glve thie error.

Ertore...ELSE without IF

An ELSE gtetement has been found ocutside of an IF construet. When the
interpreter encounters this it searches down your program until it finds
the next END IF then contlnues execution at that point. This is a4 good
sorce of bugs. If no END IF ig found the interpreter just stops. This is
an example of how uging Q_Liberator ¢an help to track down problems in
FOAIT DrOPram.

Error...END 5ELect pissing

In a correcily structured SuperBASIC program, every SELect must have a
corresponding END SELect. Furthermors they should both be contained
within the same procedure. If the compller finds itself at an END DEFine
with en unfinished SELect then it issuea this errer.

Errors...END REPeat missing

Each REPeat started within a fimction or procedure should be terminated
with an END REPeat within the same procedure. If this rule is viclated then
this error will be given at the end of the procedure.

ErrorweAmbigusus name

A name has been uged ta represent more than one entity. eg as a veriable
and as a procedure or functlon, You will also get this error if you try to
make sn assignment to a function. Programs containing such errora will
usualty be rejected by the interpreter with a 'bad name' error.

Error..Too many assembler rcutines

A maximum of 8 mssembler extensions can be linked to an object module
uging the directive $$asmb.

Errol...Cammot open asgembler routine

The assembler extension cannot be found an the device which you stated In
the directive $$asmb,

5.4

f

Chapter 6 Runtime Errors

When an error occurs within a rurming object program it is termed a
runtime error.

You will already be familiar with many of the runtime errors because they
are identical to those generated by the interpreter. However, the
interpreter iz often vague about the exact cause of an error with some of
the messages being used to cover more than one situation. Q_Liberator
improves upon this with more exgplieit messages. Furthermore, recovery
from many errors is inchided as & standard feature,

THE ERROR WINDOW

When a runtime error oceurs, Q@_Liberator opens a 3 line error window in
which to display it. This window stays on the screen until you select the
cursor within it by preesing control C. Now you must acknowledge the
error with any key or if prompted, answer the Retry question. The error
window will then disappear, Wote that when memory permits, this window
is transient, ie when it {s closed it restores what wes present on the
acreen at the time it was opened,

The name of the job that caused the error is alwayg printed in the top left
hand corner of the error window. The rest of the error information
depends upon the eategory of muntime error.

Q_Liberator splits rumtime errors into three categories:

- Inltialisation errors
- QDOS errors
- Q_LIB errora

INITIALISATION ERRORS

Initinlisation errora occur Immediately after an object program is loaded if
somothing esaential to support the program cannot be found.

‘The first thing a job looks for is the runtlme system. If this ie not found
then you will see

Buntimes missing!

on channol 0. The error window cannot be used because it is contralled by
tho runtimo system!

6.1

Libearator

The mmntime system, QLIB_RUN cught to be loaded by a boot program prior
to running en object program, or the program should have its own copy
linked to it.

The second thing that a Q_Liberator object program does s c!:leck that amy
extra procedures or functions which it needs ave present. If it _cunnot find
them, then it produces a list of the missing names in the error window. The
program can go no further and aborts.

For example if you had & game which required 2 assembler procedures and
you forgot to loed them with a boot program, you might see:

JOB : Spacegame ZAP EXPLODE missing!

6.2

Liberstor

RURTIME ERRCRS

QNS ERRORS

QDOS§ errors are the standard error messages which are also used by the
interpreter. They are listed in the Concepts gection of the QL User Guide,
and will be familiar to most users. There is a procedure described in
chapter 11 which contalns every QDOS error.

Only some of the QDOS errors are actually uged. The only ocecaston which
can result in & QDOS error is when a maching eode procedurs or function
returng an error code. _Liberator hag ita' own messages for other
circumstances. For example trying to position the curgor outside of a
window resulte in a QDOS 'out of range' error. Trying tc access an array
element which does not exist gives a @_LIB 'Index cut of range' error.

QDOS errorg are reported along with the line number at which they
cccurred providing that you have not suppressed generation of the line
mimber table by & compiler option. Following the line mimber the name of
the offending procedure is printed, then the text of the QROS message.

QDOS errors are usually input/cutput errors le they cceur in progedures
which move data to end from devices, Often guch errors wilf be
recoverable, For this reason Q_Liberator elways letas you retry when a
QDDS error ocours, The point at which the retry restarts is lmmediately
before the procedure name which ceused the error. For example the
program TEST might contain the following:

10 CL8: OPEN_IN #3,MDV2_TESTDATA

If you ran this with the wrong tepe in mdvZ then wou would mee the
following in the error window:

Job:TEST Line 10 OPEN_IN
not fourd
Retry Y/N

Note that this meane the procedure OPEN IN has reported error 'not
found', It doos NOT mean that OPEN_IN itael cannat be found.

Placing the correot tape In mdvZ and anewarlng 'Y' to the retry question
would result in the program rastarting just after tha CLS procedure and
oonttimulng suocaesafully,

If you anmwar 'N' then the program will print ita runtime statlatios end
abort.

In additfon to this standard farm of arror racovery, QDOS errors can be
trapped using Q_BHR error trapping, explainad in chapter 11.

6.3

RUNTIME ERRORS

Q_LIB ERRORS

Q_LIB errors are more serlous. They indicate either a programming
problem or a lack of memory. Wherens the error messages generated by
the interpreter ere often ill defined and unhelpful, @_Liberator has mamy
explicit mntime measages to ghed light on where an error really lies. Some
of these are related solely to Q_Liberator's Internel workings while others
are used to replace an ambigucus QDOS message.

Each @ LIB megsape hes 1 or more error numbers associated with it which
cen sometimés convey additional information. Where this is the case,
details are given after the explanation of the message in the complete list
below, Q_LIB errora are always fatal; no retry is poesible.

No heap space

The job has requested more data storege from the common heap but has
heen msuccessful. There are too meny jobs mnmning, the heap is
fragmented or you have exceeded the memory capacity of your QL.
Poaaibly you have written a program which rmma riot and grabs more and
more memory. Read the section on memory orgenisation for further
details,

No steck left

There is Insufficient stack apace to contihue. Allocate more stack using
QLIB_PATCH or Include a $$stak directive in the source program and
Tecompile. .

& Ocourred within runtime system
12 Oecurred within procedure

Variable indefined

You have referenced g varlable which has not been essigned a value.
BuperBASIC would give 'error in expression's

String toc long

The maxlmum string size is 32767 characters. This error is generated
when concatenating two strings (eg a$&"ABC™ produces a string which
execeeds this liodt.

6.4

e

']

3

-

ER—y

—

4

RUNTIME ERRORS

Array too big

‘The dimensiona of the array when multiplied together are too large. See
the section on arrays for further detatla.

Array not DIMed

You have tried to eccess an array which is currently undefined. Place the
DIM satatement before thia point in the program,

Indices wrong

You have specified too many or too few indices for an array or stri
the 'array' ig actually a variable, ay e o

19 Type is wrong
20 Number of indices wrong
27 Occurred in & procedure parameter

Index out of range
An Index is negative or greater than the dimension.

43 Oceurred during a slicing operation
28 Qceurred in a procedure paremeter

3% Ocourred during array or string acceas

Slica not allowed

You have attempted to perform a slicing operation on the wron
| g sort of
dets. This can hsp;_:nen if you pass a simple variable to a procedure which
expects to work with arrays, or if you don't specify enough indices to
zﬂrgnu:ly identify an b:lemiimwi 0:’];2 arrgy, Note that only sHeea of strings or
arrays can be use an, expres but
used as & procedure or Aimetion param;’f::;.m #w areey sllee oan be

7 Occurred with an expresaiom

24 Occurred when storing data Into a varlable eg a(2 to 4)=1
26 Ocourred in a procedure parameter

6.5

2 RUNTIME ERRCRS

Array not allowed

You have attempted to use an array when a simple variable was expected.
This happens when sh array is passed to a procedure or function which can
only deal with aimple varisbles.

Division by 0
Thia iz of course illegal in both floating point end Integer form.

25 Integer operation
37 Floating point operation

Overflow

If floeting point overflow, you have exceeded the range of QL floating point
grithmetic or more likely, divided by zero. If integer overflow then an
integer has exceeded the range -32763 to +32767, This can only happen
when malting an aasignment to an integer wariable. When evaluating an
integer expression, §_Liberator will automatically switch to flosting point
if integer overflow cccurs.

13 Integer averflow
36 Floating point overflow

String is not numeric

You have tried to perform a calculation on, or aset a variable to, s string
which does not contain a valid mumber.

Carmot retry

The error is too severe for retry to work. This is unllkety to cecur in
prectice.

Unreaclved reference

Your program ia trying to go to an undefined place. This may be caused by
EXITing from a FOR lgop which has o END FOR.

BETurn misging in functicn

Every function shoild RETurn a value. Thie error occurg if the program
reaches the END DEFine of a funetion.

6.6

[¢
Liberstor

¥

RUNTIME ERRCRS

Out of DA'TA in READ

‘e KEAD procedure has run out of DATA statements. Use EOF to test for
this condition prior to calling READ.

QO 'TO out of range

You are attempting to GO TO a Une pumber beyond the last line in the
program,

Intarnal

Ch dear, you should never see this! An error hss occourred inside
@_Liberator. If it peally happens to yon, check that its not & aspurious
corruption, that you ere not violating any rules and that your program
works correctly inder the interpreter. If the error persists, plesse write
to us.

6.7

Libheritor

Chapter 7 Memory Management

[

T

+

SuperBASIC iz privileged among QL jobs in that it is the enly one which is
allowed to shrink and expand lig entire area to sult its needs. EXECutable
jobs such as Q_Liberator object programs have to make do with & fixed
job area allocaled when they are started. If they require more storage
then they must use the common heap.

The common heap is an area of memory which QDOS administers. When a
job asks for some memory, QDOS splits off an area of the common heap for
the job to use. When a job is removed, any heap it has borrowed is
returned to QDOS. If many jobs are running each using common heap, a
problem ealled heap fragmentation can cecur. Thig is when the heap ir aplit
into mary small parts none of which are big enough for a given job to use.

Q_Liberator is flexible about memory organisation. Object programs can
be tellored to confine ail data within a job's boundaries, or they can expand
inte the common heap as required. The choice can be made before a
program is compiled by using s compiler directive or after compiletion
using the utility program QLIB_PATCH,

OBJECT PROGRAM STRUCTURE
A Q_Liberator object program consists of a code ares and a data area.

The code area contains the compiled form of the program and parameters
gasociated with it. If wou have linked in the runtime system or amy
asaembler routines, then they too are contained within the cods area.

The deta ares contains varlous control areas degeribed below end storage
for variables. Note that it {s only the code area that occupies file space on
a microdrive. However when the program ia loaded into memory, there
must be enough space to accomodate both the code and the data.

Tho eizes of the code and data areas are printed st the end of a successful
compilation. They can also be obtained by using QLIB_PATCH, whilst the
totol area occupled by a job in memory ean be displayed by the procedure
Q.

7.1

MEMORY MANAGEMENT

DATA AREA

The following paris of the data area are of interest to the user because
their size cen be modified:

Charmel table

The size of this table dictates the highest channel mumber that can be used
within a program. It is sensible to Keep channel numbers low because a 40
byte entry is ressrved for all charmels up to the highest which you gpecify.
(This is also true for the interpreterk

The mmber of c¢harmsls i{s normally set sutomatically by the compiler, The
minimum number of charmels 1s 3 and the default if variables are used for
charnel numbers 1s 18. This can be changed by using the $$chan directive,
Note that an stiempt to open & channel with a number higher than the table
gize allows wili probably result in a system crash.

Stack

The stack erea ie a general work area used to store return addresses,
loeel variables, procedure parameters and miscellaneous control
information. The amount of stack used depends very omieh on individuel
programs. Deeply nested procedure calla or recursive routines will
require a large stack to mm successfully, as will machine code routines
which manipulate large strings. If a program mms out of stack then it will
normally stop with a @_LIB error,

Occasionally the steck shortage oceura within a machine code procedure
which cannot handle the condition. This is likely to cause a crash.

The default size for the stack is 512 bytes which iz penerous for small
programs. It can he changed by placing a $$stak directive in the source
program,

Heap area

‘The heap aren is the section of the job's data area used for the storage of
dynamic data types (le those that grow or shrink in size during runtime).
All strings end arrays and any associated descriptors are stored here.
When program is compiled, Q_Liberator cannot tell how large these items
might become and sc it simply reserves space in the data area to be
administered at runtime. If this space proves to be toc smwall then an
object program will automatically request one or more areas from the
common heap and expend into them. Thus a program will never crash
because of a heap shortage until the whole of the common heap fa
exhausted.

The default size of the heap area is 512 bytes. [t can be increased up toa
maximum size of 512k. When extra storage is requesied from the common
heap, it is allocated in 512 byte clumke at & minimum. To avoid amy
possibility of common heap fragmentetion you should obtain the statistics
for a given job and set the heap area high enough so that ne common heap
requests Are NeCessary.

7.2

;
g

MEMCRY MANAGEMENT

HUNTIMLE STATISTICS

Mont programs wili run correctly with the default parameter settings, but
they will pot be making the optimum use of memory. To assist in settgi.:g the
stack size end deta size parameters, the runtime system can produce
statiatica. These are produced when a job ends if the -stat option was
selected durlng compiletion or subsequently turned on by using
QLIB_PATCH. The statistics are always produced when a job terminates
with an error.

The statistics appear in the error window in the form:

Deta waas bbbb ec Stack dddd eeee

where agaa glves the size of the heap area within the job, as

set by the $$heap directive.
bbbb givez the totel rumber of byrtes requeated from
the common heap.

cc is the total number of common heap requests.

dddd is the size alloeated to the steck as set by the
$$atak directive,

eeee is the amount of stack which was actually used,

If you compile & program which uses strings or arreys using the stans
defanlts, then the firgt time that it is run 3;‘:.1 will t;e-gF that b%)bb and c::i *;1;2
non zero ie the job has 'apilled over’ into the common heap. By setting the
heap gize to a figure alightly greater than the sum of aaaa and bbbb the
entire user heap can be confined to the job's data area.

Similarly the stack area can be reduced by setting the atack siz
e to a
figure closer 1o ecee, It Is wise to always leave some spare.

7.3

) MEMORY MANAGEMENT

QLIB_PATCH

The program QLIB_PATCH, supplied in objeoat form on your workl.n_g COpY,
can be used to change parameters after a program has been compiled. It
may be used interactively by leading it with the command:

QX QLIB_PATCH

You will be esked for the object name which you went to change {nc need to
specify _objk The current parsmetsrs are displeyed and you can
overwrite them if necessery.

QLIB_PATCH can aiso be started by passing it a command string in &
similar format to the LIBERATE command.

The first parameter In the command siring is the name of the file to be
patched. It should be followed by a list of options separated by spaces or
commas. All options expect a parameter except for -stat and -nostat.

The opticms are as follows:

-chan number change the gize of the channel table

-stak rumber change the size of the stack area

-heap mumber change the size of the job's user heap aves

-name jobname chenge the name of the job (NOT the cbject nama)

-stat turn on stztistics
-noatat turn off statistics
Example

QX mdvl_glib_pateh,"mdvi_demo_sort -stak 404 -chan 4 -stat"

if a parameter is out of range then QLIB_ PATCH enters the interactive
mode to ellow the error to be corrected. If the patch is successfut the
message "QLIB_PATCH complete™ is printed on channel 0.

7.4

1 Q
Liberitor

INTERPRETER / { LTBERATOR CUMPARISCH

Chapter 8 Interpreter/Q Liberator Comparison

Q_Liberator was designed to provide maxiomm compatibility with the
SuperBASIC interpreter. There are however greas where a compiler must
by Ita nature do things differently from an interpreter. Furthermore there

are SuperBASBIC keywords which ape meaningless in a compiled
emvironment.

This chapter compares the operation of @_Liberator with the interpreter
and documents deviatlons, enhancements and restrictions. A number of
rules are formulated which if applied will help to ensure that your
programe compile without errors. These rules should not be regarded as
resirictions; they are all realiy part of the syntax of SuperBASIC and are
therefore built into Q_Liberator, The interpreter is less rigouroue in 1te
Interpretation (of the rules) and can be made to disregard them by bad
programming.

COMPATIBILITY

Q _Liberator was designed to support the version of SuperBASIC present
in JM and AH ROMS as documented in reference 1. The additional
keywords present in J5 end subsequent ROMS are not supported as they
are incomplete gnd not formslly documented, The @ ERR form of error
trapping ia adequate compensation for thelr omiSsion and hss the
advantage of being useable with all ROMS,

Compiled programs are fully portable actoss different ROM types,

Compatibility means that a Q_Liberator object program should behave
identically to the corresponding SuperBASIC program under the
Interpreter. Thig Is generally true providing that the flret rule is met:

Rule 1: The acurce program must run correctly under the interpreter.

Complilng programs which conform to the SuperBASIC syntax but give rise
to serlous runtlme errors can produce unpredictable results; there is no
guarantge of identical behaviour in such cases.

Samotimgs, however, it can be enlightening 1o complle & program which is
behnving strangely, because Q_Liberator's more expliclt error meseages
may pln down the problem either at compile time or runtime.

8.1

INTERPRETER / Q LIBERATOR COMPARISON

PROGRAM STRUCTURE

SuperBASIC, in contrast to earlier BASIC implementations is well equipped
with constructs which add structure to a program, PROCedures,
FuNctions, REPeat loops, FOR loops ete, simplify s program and make it
easier to read. Programs can be well structured or badly struetured. We
shall not attempt to formally define 'well structured" but will simply state
that a well structured program would already cbey ell the rules presented
here, would probably be indented to reveal the underlying form and would
compile withcut problems.

Badly structured programs will result in compilation errors and warnings,
and may well be impossible to fathom,

During compilation, @_Liberator has to ascertain the structure of an entire
program as it reads it from top to bottom. The interpreter however
tackles a program's structure as it encounters the keywords st runtime. It
iz quite possible to expleit thizs phenemenon to produce ill-structured
programs which will nevertheless run. As an extreme example eongider

10 bad_practice: 8TQP

20 END DEFipe bad_practice

30 DEFine PROCedure bad_ practice
40 PRINT "breaking the rules"
30 GOGTO20

The interpreter does not care that the procedure seems to end before it
starts. At runtime it sees a DEFine then an END DEFine which is all it
requiress Of course Q_Liberator cannot predict the order in which
statements will be executed and so would reject the above program during
phase 1.

DEFine...ENI) DEFine

The rules relating to procedure definitions sre simple:

Rule 2: Every DEFine statement must have a corresponding END DEFine
later in the program.
Rule 3: DEFinttions cannot be neasted inside each other,

It is algo a bad habit to have more than one END DEFine in o procedure or
funetion. Some programmers use this as 2 methoed of escaping prematurely
from a routine. Q_Liberator tolerates this by changing such END DEFinea
into BETums during phase 1. This change is azctually made to the
interpreted program in memory; if you SAVE it, you will have a correctiy
structured version,

8.2

i

r

e

¢
]

INTERPRETER / O LIBERATOR COMPARISON

FOHLLEND FOR

The SuperBASIC FORW..NEXT...END FOR construct is a wvast improvement
ovor the FOR...NEXT loop present in earlier BASIC implementations.
Howovor eome of the books purporting io tesch SuperBASIC fail to maeke
clear exactly how it cperates and how it should be used.

With the exception of the single line {nline) form, each FOR statement ought
to have a corresponding END FOR statement. This is the point at which the
loop ends.

If you wish to prematurely process the next item whilat within a FOR loop,
the NEXT statement should be used. This passes control back to the line
conteining FOR.

If you wish to prematurely escape from the entire loop, then the EXIT
gtatement should be used. The progrem jumps to the statement after the
END FOR,

For example,

10 FOR x=1 to 10,20,30,40
20 IF x=a THEN NEXT x
30 IF x=b THEN EXIT x
40 PRINT x

90 END FOR x

; REMark akip print i#f x=a
: REMark abort loop if x=b

In practice, often due to experience of earlier BASICs, programmers will
use NEXT in place of END FOR. Q_Liberator supports this usage and such

programs will compile without errora. They will algc run without problems
with two exceptions:

If an EXIT is attempted, the QLIB error "Unresolved reference™ will
bo reported.

An ampty FOR loop (eg FOR x=2 to 1} will cause the same error
boecause the program expects to continue after an END FOR, and none
ip prosent.

In \hane cages, the intarpreter would simply stop or, worse still, use the
naxt mplohing IND FOR which 1t coutd find.

The Inling form of & YOR NEXT loop has an implied END FOR at the end of
the llne. If B auperfluous END FOR (or NBXT) la present, it {s simply
{gnored.

1o 10 FOI x=1 10 16: PRINT x
and 10 FOILx=1 710 16 PRINT x1 BND FOR x

ary syulvalond.

8.3

INTERPRETER / Q_LIBERATOR CXMPARISR

FOR loops can be nested to any desired depth; there is no stack penalty.
FOR loops ought not to be neated as shown below, but Q_Liberator will in
fact handle such neating in precisely the same manner as the interpreter,

10 FOE %=1 TD i0
28 FOR y=1TOD 10
3¢ PRINT x,y
40 END FOR x
50 END FOR ¥y

REPeat...END REPeat

Tnis construct has no coumterpart in earlier BASICs. Consequently there is
no excuse for not obeying the rules,

Rule 4: Ewvery BEPeat should have a corresponding ENI} BEPeat later
in the program.

Rule 5: REFeat loops started within a procedure or function must be
termingted Inside that procedure or function.

The use of NEXT asa a substitute for END REPeat ig not supparted because
guch a loop camnot be EXITed. (EXIT causes a jump to the statemsnt after
END REPeat) Q_Liberator will generate the error 'END REPeat miasing'
with the line number of the END_DEFine statement where it was detected.
There is of course no restriction on the use of NEXT within the body of the
loop.

A superfluous END_ REPeat at the end of an inline REPeat is ignored.
REPeats can be nested to any desired depth.

SELeot ON...END SELect

It is regretable that the interpreter only permits floating point rumbers as
the varlable which is tested in a SELect construct. It is in fact possible to
enter and run & pregram containing 8 S8ELect on a string or integer, but it
will not give correct results with the interpreter. It will, however, run
correctly when compiled. This is a conatruct well worth using if you can
put up with the inconvenience of not being able to test It with the
interpreter.

eg 1D SELect on a$

20 ON e§="STOP™: print "gtopped™
30 END SELect

8.4

l &QJ’ INTERPRETER / O LIBERATOR COMPARLSON

1
II
N

ol

IF..THEN.,END IF

With the exception of the inline form, each IF should have a corresponding
END) IF within the same procedure or functlon. Missing END IFs detected st
Lhe end of a routine will sutomatically be inserted immediately prior to the
END) DEFine, and a warning will be igened. You are strongly advised to
c¢hack that this s the correct place for the END IF.

Buporfluous END IFs are always ignored,

THE DREADED GO 1O

GO 'TO in all its forms is fully supported. If you use a computed GO TO and
end up bayond the last line of a pregram then you will get an error. Use of
ooinputed GO TOs requires that a table of SuperBASIC line mumbers is
Inpludtod in the object program. This is also true for GO SUB expression
and REETORE expression.

¥ou should navor use GO TO to jump into or cut of & procedure or fimotion.
‘Ihie eun couse problema for both interpreted and compiled programs,

PROGIAM BIZE

‘There i no restriction on source program size other than the memory size
of your Ql. For ell but the shortest program the object produced will be
wmuller than the source. This is particularly noticesble on very large
progrnms whare the savings cen approach 50% when the option to suppress
1ine mimbgrs 18 used.

The workfite 1s typlcally slightly larger than the source program. It is
lmprtant to ansure that thera s encugh space on microdrive or disk for
both the workfile and tho object filo before starting compllation. A useful
rule of thumly s that an area approximately twlca the sizo of the scurce
progrum ahould be avallable. When space 18 at a premium, it {5 posalble to
pleog the workfle file on ono devico and produco the object on ancther by
uming the aompdlar oplion ~Oikl. ‘The fastast results will bo obtained when a
HAM link Is uagd,

UNBUPPOI'IED HiRYwOIDA

If ary bemo from the following sl Im used within a program then
Q_Liverator will ignore the entlre stutemant, i9sug & warning and continue
qompilmtlon.

AUTO, DLINE, RIMT, HENUM bocsuse thay ara of use only during
and LIST program davelopment with the Interprater.
CONTINUE and RETHY which are dealgned for interactive uae.

Thay can be replaced by @_ERR arror trapping.

8.5

INTERPRETER / Q LIPERATOR COMPARISCN

LOAD, LRUN, MERGE, MRUN, becsuse they relate only to the source form
NEW and SAVE of a program. They are replaced in part by

QX and QW which load and run object programa,

Note that other precedures concerned with program development contained
within some toolkits will alse e unsuitable for compilation.

DATA TYPES

Q@ Lirerator alwaye stores and manipulates date in a manner compatible,
though not necessary lidentical to SuperBASIC. This is necessary to
provide maximum compatibility for additional assembler procedures, In
general the storage requirements of an object program at runtime witl he
lesg than that used by the corresponding source program, due to more
efficient packing of numeric variables.

FLOATING POINT NUMBERS

Floating point mimbers (floats) occupy 6 bytes. The range supported is
identical to that of the Interpreter. Arithmetic operetions on floats are
gu.lly compatible with those performed by the interpreter, it are often
anter.

INTEGERS

Integers occupy 2 bytes. The interpreter provides very lttlhe support for
the use of integers. Simple integer variablea occupy as much space as
floats {8 bytes, the minimum storage alloeation) and, with the exception of
DIV and MOD cperations, the interpreter always converts Integers to
floating point before performing eny caleulations. This eonversion makes
working with integers actuaily slower than working with floating point.

When presented with 2 integer quantities Q_Liberator will use 16 bit twos
complement integer arithmetia for the arithmetle operatlons +, -, *, DIV
and MOD, Note that division, !/ , aiways produces a floating point result.
Buch arithmetic is much faster than floating point arithmetio.

Integers should be used wherever possible to achleve maximum execution
speed. Making all array indices Integers is particularly beneticial.

If integer overflow ocours when eveluating an integer expreasion, ther both
integera are converted into floats and the calculation is repeated, this time
giving a floating point result. Integer overflow errora can only oecur when
attempting to store an out of range mumber in an integer varlable.

8.6

| |
] |
-

o

Libe

X INTERPRETER / @ LIBERATOR COMPARISON
tON

STRINGS

Btrings are stored within the user heap {pee memory organisation). They
have the same format ag in SuperBASIC je one word length follawed by the
string characters. Q_Liberator supports both stringe and string arrays
of one or more dimensions. The subtle differences in the way in which the
interpreter handles strings from one dimensional string arrays is
reproduced precisely.,

If a program manipulates large gtrings then a gtack area larger thsn the
longest siring s needed for some machine code procedures to run
properly. Furthermore the job's heap area nlsc needs to be large (use
atatistics to see how large). For some applicgtions, DIMensioning all
atringa will reduce the memory reguirement. The strings then hecome one
dimensional string errays and alweays occupy the same area in memory.

Many string operations are actualty performed by memipulating pointera to
stringa rether than the actual etringe. This inoresses speed, tut leads to a
very minor restriction. If a etring variable ls used two or more times
within an expression snd 1tz value chinges between these occurences, then
Q_ Liberator will use the latest value throughout the expression, leading to
u false result. This is best illustrated by an example:

10 a$="old"

20 print a$steat(a$)

25:

30 DEFine Fuletlon test (s$)

40 g3="new"

50 END DEFine

Under SuperBASIC line 20 prints “oldnew", whilst §_Liberator prints
"newnew" because a$ 1a changed within the function teat. Note that

20 PRINT n$;teat(a$)

aorrectly prints Moldnew™,
samo exprosslon.

Hore the a$ and test(a$) do not oacur within tha

In praotice, this problam will raraly, if ever ba entounterad.

a7

Libe

Y INTERPRETER / ¢ LIBERATOR COMPARISON [i ' ”‘gl
tor Lib:

CHANNLLS

ARRAYS

All of SuperBASIC's powerful array handling features sre fully supported.
Thus slices ean be made of arrays to produce sub-arrays, and arrays or
sub-arrays cen be passed as parameters to procedures.

Arreys can be DIMensioned dynamically et runtime. eg DIM alx,y)
BeDiMensioning en erray is a fast way of clearing all elements to zero.

The maximum size of an array in both SuperBASIC and @ Liberator is
determined by three things: -

a) The memary available

1) The restriction that en index can have a maximum value of 32767

¢} The BuperBASIC array descriptor, which limite the multiplier
for a given dimension to an msigned word.

To determing If & numeric array satisfies (c), write down the dimensions of
the array then add 1 to each dimension (to allow for the zeroth elsment).
Now starting from the second dimension, multiply all remaining dimensions
together. The result must be less than 65535 for the array to be viable.
The caleulation 1s similar for a string array, but the final dimensicn should
firgt be Increased by 2 then reunded up to an even mmber,

For example, on an expanded system
10 DIM a%(2,4,13106)
is acceptable because (4+1) * (13106+1) = §5535.
i0 DIM a%(2,4,13107

causes an error because (4+1) * (13107+1) > 65535,

Since the firat dimensicn plays no part in thie caleulation, making it the
largeat dimensjon can ellminate such problems,

Thus 18 DIM a¥(13107,4,2)

ig entirely acceptabie.

The total storage required for an array can be ealeulated by taking the
result from the caleulation above and multiplying it by the first dimension
(Incremented by 1), then by the size of the array element. Tiis will be & for
a float array, 2 for an integer array and 1 for a string array.

8.8

—

r

| i

[a—

INTERPRETER / ©_LIBERATOR COMPARISON

SuporBASIC will quite happily let you open chamnels with numbers such as
#50, but thia is in fact a very wasteful prectice, The charmel teble contains
o 40 byte entry for each charmel from up to the highest used. You can
obwviously save memory by keeping your channel mumbers low.

At compile time, Q_Liberator allocates a similar channel table large encugh
to accomodate the maximum channel number unged. This canr only be
established when all charmel numbers are literals. If any charnel mnumber is
a varleble, then Q_ Liverator issues a warning and allocates either a
default table which supports charmel mumbers from 0 to 15, or a larger
table if the hiphest literal channel mimber exceeds 15. You can override
the default by using a $$chan directive as described in chapter 4.

The minimum size of a charmel tehle 1s 3 entrles, for chamels 0,1 and 2.

Hote that attempting to eceess a channel mumber higher than the teble
accomodates will probably result in a total system erash.

INITEAL WINDOWS

When a SuperBASIC program staris, charnels 0, 1 and 2 are usuelly oper
The aize end location of the associated windows, the paper and ink colours
etc, are an left behind by the last program. It s therefore wise to always
redefine these windows in the program.

When & Q Liberator object program starts to run, the windows for
channels 0, I and 2 are identical to the defeult windows present after the
syatem is reset. If the ascreen is in 8 colour mode then the windows
correspond to those get up when F2 1s preased; 4 colour mode corresponds
to Fl.

Tha Initlal windows are overridden if a channe! is replaced by a channel
pagsed to the job. This subject ia disouseed in chapter 10.

8.9

a

! USING ASSEMBLER EXTENSIONS

¢
:

Chapter 8 Using Assembler Extensions

Ono of the mejor advantages of SuperBASIC is its extensibility. New
procedures and functions cen be written in gssembler snd lnked to
SuperBASIC, whereupon they behave as if they were an integrol part of the
Ienguage. Meny such extensiona are in existence. Some are designed to be
of general use, such as the error trepping facilities supplied with thig
package, whilst others are specific to a given spplication.

The exceptional compatibility of Q_Liberator means that the vast majority
of extensions will cperete correctly in compiled programs, This includes
thoze that access Interpreter dats gtructures like the name table, or alter
varieble values using the utility routine BP_LET. Any which try to
manipulate the internsl form of the program will of course be doomed to
failure.

The rule when using assembler extenslons is that they MUST be resident at
the time your program is compiled, and they MUST be presgent In some form
when the object is run. ©_Liberator will give you a runtims error if this is
not the case.

LOADING ASSEMBLER EXTENSIONS

Normally a program which uses extensionz will be startsd by a BOOT
program of the form:

10 base=RESPR(gize) : REMark reserve space

20 LBYTES mdv]_extensions_code,base : REMark load the file

30 CALL bage : REMark add the new names

40 LRUN mdvl_meinprogram. : REMark load the main program

(MERGE might also be used)

The BOOT program is separate from the main program so that all the new
procedure names are recognised before the main program is loaded, Such
beot programs CANNOT BE COMPILED by Q Liberator for the following
renscne:

a) The stendard function RESPR glves an error if any jobs ars
running and so has been modified (see helowk

b} Each file of extensions contains & small piece of code to
Link the new names into SuperBASIC's name table which ia
dealgned to grow as necessary. The Q_Liberator name table
I8 of o fixed size, determined during compilation.

o) LHUN ip ¢n \llegal procedure as far as Q_Liberator s concerned.
(woe chaptor 8}

1
i
—

9.1

' DSING ASSEMBLER EXTENSIONS

This is not a serlous restriction since BOOT programs are ususlly short
and are only executed at the start of s sesslon. By simply changing line 40
in the program above, it ean be used to load extenslons prier to ruming a
Q_Liberator object:

40 EXEC mdvl_mainprogram _obj

TREATMENT QF RESPR

The function RESPR is designed to oreate a permanent space at the top of
memory for new resident procedures. It is, however, often used in
programs to reserve memory for other purposes. This is a practice which
gheuid be avoided if possible, beeause each time such a program ls run,
more and more memory i reserved, RESPR eannot do its work if any job is
running and so is given special treatment by the complier,

In an object program HESPR will allocate an area of common heap. This
aree is owned by the cbject program and will be released when the job
ends.

For applications which need a permenent storage area to run correctly,
memory can be allocated using RESPR in a SuperBASIC program. The
address can then be passed to the job in & command string (see chapter
10)

WRITING ABSEMBLER EXTENSIONS

The rules for thla are of eourse the same as those for SuperBASIC. Be
careful; however, not to hard code amy velues into your eode which relate
oniy to the interpreter and remember that the job number wili not be 0.
Channel {dentifiers should always be taken from the job's channel table,
accessible relative to AS.

A procedure can tell If it 1s running in a compiled form by teating the long
word BV_TGBAS(A8). This will be 0 for a compiled program and non zero
when interpreted.

BV_CHRIX can be used to reserve space on the arithmetic stack, but the
stack will never actually be expanded. If there is insufficient memory then
a runtime error will oceur, The current stack peinter is in BV_RIP(AS),
the lower limit is stored in BY_RIBAS(A6)

Funections which work with lerge strings will require a correspondingly
large stack erea.

Unlike the interpreter, @ Liberator permits addresses passed relatlve to
A6 to be converted to absolute addresges. Some routinea can be apeaded
up considerably when they are not restricted to the doubly indexed
addreasing mode. Mote that A6 {tself must never he changed.

8.2

) ll
K

b USING ASSEMBLER EXTENSICHS

Liber&tor

-

LINKIN(AHBEMINLER ROUTINES DURING COMPILATION

Tha compiter dircotive $$asmb can be used to permanenty link SuperBASIC
uxtenalons Into an obfect program. This removes the need to use & boot
program mud gives tha benefit of not filling the interpreter's name table
wlth numes which it does not need. To use this feature you need to
unterutand the straoturo of such extensions and should preferably hsve
Ay to tha HEurae.

Iher tlireotive $$08mh miy roforonge up to 8 modules eontalning extensions.
Euetl mytinla enn condain any number of procedures or functions.

"I format of n $$ramb dlraative Ls:

HiMark $8asmb . PILINAME, INIT,TABLE
wlinre
FILENAME (w Wim £l rome of the module eg MDV1_EXTENSIONS CODE
[LEN N 1a tha nddeaan tn moduto of rny inltinlisation routlna.

If geament it must endt wlih IUTS and MUST NOT conteln a

oull 1o BB INIT.

IF thoys (4 5o rowtlig ot INPE:0,
Is T mddddpony of the FfupurBABIC procodura { funatlon table

an vawd Dy (e WOM routhug BP INITS

TAIN R

I BH EHRENTIATL: THAT SOUT BVEPRNATONS ARE ALINBADY LOADRD WIIEN
THE PROGRAN I8 CoMelbic, 1T (e 14 nol obwerved, unpradletablo
mad fme Lebmvlour will ramiid,

The axtendlong n QL kX can B Linkod to your programs with the
follawing dlraitive
HEMark $hammh-mdvd gl exd, 049

Tha followiny page cinstulim mn axmingde of Uia use of $aunil.

9.3

USING ASSEMBELER EXTENSIONS

As an example of procedurs linkage TO { Liberator, here is @ shortened form

of the file QLIE EXT. The directive in the source program would be:

REMark $%asmb mdvl qlib ext,D,12

000 43PAQ0CA start lea.l table,al standard procedure
004 34780110 move.w bp init,al linksge (not veed
008 4ESZ Jar (a2} by Q Liberator)

&%k* Popsibie additional Lnitlalisatien routine
%%tk Ind paramecar for $SASME wh#

00A 4ETS INIT
TLE migt end with rts

k&% Procedure and functlon rable

*kk% drd parameter for §$ASMB
Qoc Qo02 TABLE de.w 2 2 proceduree
00E 0028 de.w curaon—*
010 08515F435552 de.b 8,'Q__CURSON' ,0
D1A 0014 dc.w cursoff-*
o1c 09515F435552 deab 9,7Q_CURSOFF”
028 0000OGOO0O0D de.w 0,0,0
02E bl12 CURSOFF bsr.s channel 1 CURSQFF
030 &S0E boe.s cural procedure
03z FO0F moveq #ed curs,dd
034 8006 bra.s cursl
036 6104 CURSON bsr.s channel Q_CURSON
038 6606 tae.s cursl procedure
038 FOOE moveqg #e8d _cure,dl
03C TJ6FF curgl moveq #-1,d3
03E 4E43 trap #3
040 4E75 cursl rts
042 34780112 CHANNEL. move.w ca gtint,aZ subroutine to
048 4B92 i5r {aZ) return channel 14
048 6618 bue.s chanl in al
D4A FOFL woveq #-15,d0
0ac 5303 gubg.b #£1,d43
Q&4E 6612 bne.s chanl
0s0 7028 moveq #40,d0
052 COF69800 oulu.w O(ab,al.l},d0
056 20BEQQ30 move.l bv chbas(ab),al
054 DOGO add.w d0,al
Q5¢ 20763800 move.l 0C(a6,a0.1),a0
080 7000 woveq #0,d0
062 4ET 3 chanl TEe

9.4

—s

W

]

k]

.

;

Chapter 10

0 INTER-JOB COMMUNICATION

Inter-dJob Communication

Q_Liberator cobject programs, like other independent programs can be
tpaded gnd started using the procedure EXEC. You have to specify the fil
name of the cbiect program,

eg EXEC MDVt_DEMO SORT _OBJ

When you type this ag a direct command the sort program startg to run, but
you will still be akle to use SuperBASIC, i they rn concurrertly.
Sometimes it is more unseful to suspend SuperBASIC when the object
program is mmning, particularly to avoid conflicts over the use of the
kReybourd. EXEC W will do this sutomatically.

eg EXEC_W MDV1 DEMO_SORT _OBJ

Now while the sort program is running, it is not possible to use
BuperBASIC. Be careful to provide a "wey out™ of programs started using
EXEC_W, or you will have to reset the machine to stop them.

EXEC end EXEC_ W can aiso be uged within complled programs to start
other jobs rwming. For the following discussion we shall refer to the job
which contains the EXEC as the parent job and the job which it starts aa its
daughter, Within the limits of QDOS, any job can spawn as many deughtera
a8 1t pleases. A job also has an owner agsocieted with it, which may or may
not be the same job as the parant.

Jobe only survive for ae long aus their owner cxlets. If the owner le
removod or comes to o natural end, all jobe which it owns aro outomationlly
remavad.

EXEC makoa Job ¢ the gwner of the doughter job.

EXEC_W mnkea the parent the ownor of the deughiar job. The porent la
auapaniod whitst the deughter job Ia rusnlng. BuporDABIC and any other
Jobs continue to run

PASBING INFORMATION TO JOISH

QDO dofinow mochaniame for paralng usaful informoilon to Joba upon their
areatlon hul EXNC and KXEC_W In thalr alandard form provida no support
for thin faciilty. -

10.1

) INTER-IUB OOMMUNICATION

Q_Liberator has been designed to explolt QDOS to the full and so three
closely related procedures are supplied to complement EXEC and EXEC_W,
They are QX, QW, and QX _JO80, They shere a common syntax which is
described below, but firat let us make plajn the differences between them.

QX loade and starts en object program making the parent the owner. The
parent continues to rumn.

QW loads and starts an object program making the parent the owner. The
perent is suspended until the daughter is complete, (of EXEC_W)

QH_JOB0 loads and starts an object program, but makes the owner Job 0.
(e EXEC) Since Job 0 cannot be removed, using QX_JOBO will spare the new
job from s premature death if {tg parent is removed. It is only useful
within programs.

THE PROCEDURE QX

The simplest form of QX is:

QX objectname

In this form the procedure behaves identically o the EXEC procedure
except that:

&) There is no need to supply the extension _OBJ, since QX assumes
that you gre running & Q_Liberater object progrem,

b) The job ia given a priority of 8 whereas EXEC gives it 32 (except
when using the Teclkit), v

) The owner is the parent job.

Iike EXEC, QX can be typed direcily at the keyboard or used within a
compiled progrem. When used as e direct command the parent is job 0.

For example QX MDV1 DEMO_ SORT

This has the same effect as EXEC MDV1_DEMO_SORT OBJ,

PASSING A COMMAND STRING

It ig wery useful to pase information to a program when it is started, For
example a program which prints a file could be passed the file name or the
heading for the top of sach page. QDOS provides facllitles to pass &
command string to a job via its atack when it i created, but few programs
exploit this feature. QX makes this possible for Q_Liberator programs.

10.2

i
[]' -lQ. INTER-JOB COMMINICATION
i LibexRtor .

N ' Valng Q_Liborator, thia command string can be any string literel or string
virlabla up to a length of 127 characters. If you wish to pass numeric data

. . to a Job then §f must first be moved to a string, The command string cen
#1890 ba a SuperBASIC name, but then the range of characters avaslable i
. rialricted.

| o pase such a string it must be given as the first parameter after the
! object name in a QX procedure call,

¢ eg QX MDVI__PRIN‘I‘FILE."accomts_dataJuIy 1986™
L C QX MDV1_spocler,contents_doc

In your program the command string appears automatically In & reserved
otring variable called CMD$. This wili contain an empty string, length 0 if
no command has been passed. This is the only special characteristic of

CMD$; it can be used as a normal string variable throughout the rest of the
program.

When developing programs with the interpreter to work with a command
string, you will need to set up CMD$ mamuelly to test the program.

L

PASSING CHANNELS TO JOBS

Finally QX can be used to pass & list of chammels to & fdaughter job. Such
channels must elready have been opened by the parent job or they will
ceuse & mintime error. They are entered into the daughter job's channel
table ag being already OPENed . They must not be reOPENed or CLOSEQ by
the daughter job or behaviour will be wnpredictable, In general you need

not werry about closing channels becanse QDOS tidies up for you when the
job 18 removed.

Channels passed to a job in this way can be accessed by both parent and
daughter job. This means that 2 or more jobs could all write to the same
file without amy 'in uge' errors acourring.

Tho firet channel in the parameter tist is passed to the new job to replace
Itse own chermel ¢. The sscond repleces channel 1. Thereafter the channels
which are replaced rumber sequentially from 3. Chanmnel 2 ought to be
rasgrved for LISTing and so cannot be pessed.

eg QX mdvl_testprog,#3,43

Btart testprog using the parent's channel § as testprogs's channel 0 and
wlwe nm its channel 1,

If you wunt to leave a channel as it is, then a gap can be left in the
paramalar et by typing o comma.

QX mdvl_demo,"TITLE",,#1,#4
Bturl temtprog, passing "TITLE" as the command string. It will uso Ite

own ahiannel 0, the parent’s channel 1 ag its channe) 1, and tho parant's
ohminel 4 ns b8 channe) 3 !

. .I'q

10.3

) INTER—JOB CCRMUNICATION

Remember, the channel numbers relate to the parent job; the position of
the parameter determines the chammel which is repleced in the deughter
job.

A example which can easily be tried should help to clerify the ebove. Enter
the following 1 line program gnd compile it with the name MPV1L _COMMAND.

10 PRINT emd$

AR it does ig print the command string which it is pasaed. Mow type

QX MDV1_COMMAND, "Where em I now?™

This will result in the program printing the command string "Where am I
now?" on itz own chanhel 1. Now the fun starts. Try

OPEN #3,scr_50x5085Gx5¢
QX MDVi_ COMMAND;"Inside your window",,#3

The message appears inside the window which you just OPENed hecause
COMMAND ig using SuperBASIC's channel 3.

WORKING WITH PIPES

A pipe is & one-wey cormectlen between two channels. Pipes are a very
useful of passing ges or date between Jobs. Messages are
PRINTed into one end of a pipe and retrieved from the other end using
INPUT. In the following deseription we shall refer to the end which PRINTS
as the active end and the other as the passive end,

A pipe has a fixed iength, determined when the active end is opened and
behaves as a 'first in first out® buffer.

The active end of & pipe can be opened with a normal SuperBASIC OPEN.
The length ig appended to the device name PIPE.

eg OPEN PIPE_1024

The passive end of a pipe can only be opened with the @ Liberator
extension Q_PIPE, There are two forms:

Q_PIPE #pipe_chan

This takes channel pipe_chan, as passed by another job using QX, assumes
itz a pipe already opened, and opens the pasgive end. The passive channel
id replaces the active cne in the job's channel table. Either the parent or
the daughter can elect to open the passive end, permitting pipes to be set
up in both directions.

10.4

oy

;

' INTIR-JON QOMMUNICAT ION

‘Thorn lg alse o torm of @ _PIPK for oreunting & pipe botwean two channels
ownod by tho samo job.

Q_PIPE #ctlvo to gpaasive

Horo foctive 1a a plpe already actively opened and passive is an umised
chonnel humber less than factive. You will get a 'bad parameter' If this is
not the case. It is & useful convention to make the setive end an even
channel number and the passive end odd.

Such @ pipe can serve as a useful temporary memory buffer.

eg 10 OPEN #,PIPE_256
20 Q_PIPE # to B
30 PRINT #,"plumbing"
40 INPUT B,a$
50 PRINT a$

If you completely fill & pipe with data, the active end wili wzit until the pipe
is emptied. End of file (EQF) iz gignalled at the passive end when the active
end ig closed.

There is & demonstration showing this technique being used to create a
sorted mierodrive direetory in DEMO_PIPEDIR,

USE WITH QJUMP TOOLKIT II

‘This Toolkit else contains procedures which support the ereation of pipes
between Jobs and a hest of other useful functions. Liberator was
designed to be compatible with, and to complement this produet,

The Toolkit procedures and functions have been extensively tested with
Q_Liberator. Almoat all will work correctly in complled programs. There
are o fow functions and procedures which are not useable (eg ED), and
soma which should bo used with care (wildeard eommonde). PARNAMS and
PARSTHS oannot be used pecsusa they require Interpratar date astructures
which are not omulatod. BW and EX had probloms in Toolkit vareion 2.06.

Default dlrectorion are supportod throughout Q_Liborator and the objact
programs which It producas,

Tha axtanded BXEC command, EX, gontalnod In tho Teolkit can pass o
command] Une to a Q Libarator program [n tho samo wey as QX Plpes gan
also be created hotwoen s chatn of jobs. Q_Liborator i the ideal tool for
writing short flltor programa to explolt thia.

‘The ¢onvontion adopted for ahanndt namboring when writing flitars s

9 13 the Input charnel
#1-1s tho output channel

Other channel numbera pasaed to the Job start from #3 as with QX.

10.5

L

, INTER-JOE COMMLINICATION

ing i i 0_PAGER which
The following is an example of a short filter program, DEMO_]
gplits a document into numbered pages, putting a title at the top Pf each,
End of page can be forced by placing '.pa' at the start of a line. An
example of its use to print a text file cn a printer might be:

EX demo_pager obj,0p2 textfilte,gerl;"AGENDA"

10 REMark DEMO_PAGER

20 REMark page size is 72

30 REMark

100 L=0: P=1

105 title

11¢ REPeat page

1i5 IF EOF{#0) THEN formfeed: STOP
120 INPUT #0,a$

130 IF a$=".pa" THEN

140 formfeed: title

150 ELSE

160 PRINT #1,a8: L=L+1

170 IF L»64 THEN formfeed:TITLE

180 END IF

130 END BEPeat page

200

210 DEFine PROCedure formfeed
220 PRINT CHRS${12);:FmP+1l: L=0
230 END DEFine

240 :

250 DEFine PROCedure title

260 PRINT emd$,"Fage : ";PyWA\
270 END DEFine

10.6

. |
L
L1
L1
L

| ERROR TRARPING

Chapter 11 Error Trapping

Writing ond rurming computer programs is an activity fraught with errors.
llow meny times have you seen ot found!, 'bad or changed medium', 'error
In expression' ete, at a critical point in aperations?

In professional programa, considerable attention hag to be glven to
trapping errors go that recavery where possible takes place gutomatically.
It the user must be troubled with an error measage then the program can
present it in & meaningful way.

When working with the SuperBASIC interpreter, you ecan often recovar
manually from errors by, for example, listing the program to see what was
expected and restarting at & specific point.

When a program hag been compiled however, this Is not poaaible because
the source form is no longer present. It becomes essentlal to include some
error trapping routines in the program.

EXiSTING ERROR TRAPPING FACILITIES

Most QL systems are equipped with either a JM or AH ROM, You can check
which yours has by typing PRINT VERS. The versions of SuperBASIC In
these QLs provide no support for programmed error trapping whatsoaver.
Manual error recovery is possible with RETRY and CONTINUE,

A few of the later QLs have JS or MG ROMS. These implemented a form of
error trepping based on the WHEN ERROR keyword, but unfortunately the
implementation itgelf contained errars and was never formally documentad.
Congequentiplly few programs are written to use this error trapping. For

these reasons this form of error trapping is not supported by
Q_Liberator.

Ancther approach to error trapping is t¢ turn the procedures which
commonly generate errors eg OPEN, into functions such asg FOPEN. Thess
return an error code to the program as the velue of the function A
conslderable sumber of such functions is contsined within the Toolkit, and
In many disk system ROMS. Their use is fully supported by Q _Liberator,

%L‘Iberator has an alternative way of handling errors, suitable for any QL
ROM,

114

ERRCR TRAPPING

Q_LIBERATOR ERROR TRAPPING

Every Q_Liverator program automatically contains a rudimentary form of
error {rapping which can help to aveid disastrous failures. Thia is the
'Retry' mechanism deseribed in chapter 6. Whenever a call to a ROM
routine returns an error code, you ers invited to intervene manually and
repeat the operation.

Secondly Q Liberator provides a sulte of SuperBASIC extensions which let
you selectively trap errors reported from any ROM procedure. Thege can
be used in both compiled and interpreted programs on any version of the
QL.

TUENING ON ERROR TRAPPING

Before you can trap errors from a procedure ita name must be added to am
internal list using the procedure Q@_ERR_ON. We ahall #efer to this as the
error trap list. The parameters for Q ERR_ON are ane or more strings
containing the procedure names to be trapped. §_ERR_ON will give a 'bad
perametsr' error if any name is not a machine code procedure. Note that
funetions and user written procedures cannot be error trapped in this Wiy,

eg Q_ERR_ON "OPEN"
Q_ERR” ON "OPEN","OPEN_IN","INFUT", "COPY™

You can print the complete error trap list on channel ¢ using the procedure
Q_ERR_LIST, which takes no parameters,

Q_ERR and Q_ERRS$

When an error is detected by a procedure on the error trap list, your
program will not stop with a message. Instead the error number ia stored
Internally and the procedure returns normally. A program can check if an
error oecurred by using the function Q ERR, which returna the last srror
mmber, or § if no error cceurred. @ _ERR ought to be tested every time a
procedure on the errer trap list is called, but this need not be in the next
statement aince ite value is only owerwritten on the next call to a trapped
procedure,

g 10 @_ERR_ON "INPUT"
20 INPUT 1
30 IF @_ERR<0 THEN PRINT "Error *;Q_ERR:" detected®

The error numbers returned by Q_ERR are the standard QBOS error keys
and will normally be negative. To igt in producing error Fes a
function §_ERRS$ is included in the demonstration libravy. This will return
a atring containing the QDOS error text for error number. It la
reproduced at the end of this chapter to serve es a list of error numbera.

11.2

C

JE—

V

—

p—

Libe

ERROR TRAPPING
Latr

TUINING OFF ERROR TRAPPING

Onae o procedure has been placed on the error trap list it atays there
wven If you type NEW, CLEAR or LOAD another program. The only way to
clear the error irap list {s to use the procedure @_ERR_OFF.

Q_ERR_OFF will remove one or more procedures from the error trap
Het. It tekea one or more strings as its parameters in the same way Bs
Q_ERR_ON. However if no parameters are gupplied then @ ERR OFF
will remove ali procedures from the error trap liat. - =

eg Q_ERR_OFF "INPUT","COPY™
Q_ERR_QOFF

Compiled programs which use error trapping each have their own error

lt_ratp list, which does not interfere with the interpreter's errvor trap
18 1.

ERROE. TRAPFING

A WORD OF CATTION

The error trapping facilities presented here require care in their uae.
If you turn on error trapping and omit to test @_ERR, you can have the
illusion that your program is operating correctly when it is in fact
generating errorsa.

If you are getting atrange results, check what s on the error trap list,
ERROR TRAPPING EXAMFLE

As & gimple example of Q_ERR here is a robust numerie INPUT procedure
which won't stop with 'error in expression' If elpha characters are typed
and which will give a meaningful error if 'buffer overflow' occura.

100 REMark DEMONSTRATION OF ERROR HANDLING
110 BEMark demo_gert

120 :

130 REPeat dewo

140 numinput x

150 PRINT x

160 END REPeat demo

179

130 DEFine PROCedure numinput{n)
190 Q_ERR DN “INPUT"

200 REPeat gatnoum

F3LH INPUT “"Fumbex >";n

220 IF Q_EE.R-O THEN EXIT getnum

230 BEEP 200,10

240 PRINT

250 IF Q ERR=-17 THEN PRINT "Only numbers please”
260 IF (ERR==3 THEN PRINT “"Too many characters”

270 END BEPeat getoum
280 Q_ERR_OFF "INPUT"
290 END DEFine ouminput

11.4

LQ,
Liberitor)

ERROR TRAPPING

Flnally, hore is the listing of the function @_ERR$ which returns the last
QDOS ervor as v atring.

1000 DEFine FuNction Q_ERRS
1010 REMark demo qerr

1020 LOCal e

1030 e=(} ERR

1040 qul.:ct 0N e
1050 =) : EETurn
1060 ==1 t RETurn
1070 =-2 t BETurn
1080 =-3 : RETurn
1090 =-4 : BETurn
1100 =-5 ¢ BETurn
1110 =-6 : BETurn
1120 =-7 : BRETurn
1130 w~=§ : BETurn
1140 =-9 : BETurn
1150 =-10: BETurn
1160 ==11; RETuru
1170 =-12: BETurn
1180 =-13: BETurn
1190 =-14: EETurn
1200 ==15: RETurn
1210 =-16: RETura
1220 =—17: RETurn
1230 =~]1B: RETurn
1240 =-19: RETura
1250 ==2): RETurn
1260 =—32: RETurn
1270 “REMATMDER. :
1280 END SELect

1290 EHD DEFine Q_ERR$

"

"not complets™
"invalid job™

"out of memory”

"out of range"
"buffer overflow”
“thannel not open®
"not found”

"already exlsts"

"in use”

"end of file"

“drive full~

“bad name"
"transmission error”
"forpat falled™

“bad parameter”
"file error”

"error in expressilon”
"arithmetic overflow"
"not implemented”
"read only”

"bad line®

BETurn “arrer "&e

11.5

LI

|
| T
| T
L [
I 1
1 1
1 1
1 1
1.1
L1
11

,l i 'l@v i JOB CONTROL
Liberftor

Chapter 12 Job Control

Whoen working with multitasking programs, it is useful to have procedures
to list which jobs are currently running, to remove jobs which are no longer
nocded, and to set the relative priority of jobs.

Such procedures are available from many sources. They are included in the
Toolkit, on most disk system ROMs, have heen publiched in magazines and
books, and are availeble from the QUANTA (QL user group) ibrary.

For those who have no aceess to these routines, we have included a suite of
procedures to control jobs in the file QIOB_BIN. This file 1s en optional
extra which can be omitted from the BOOT program if required. Whilst
these procedures perform in ronghly the same manner as other job control
procedures, they have some advantages and are generally useful. They
have been given short names because they are often typed.

LISTING JOBS

@l [fchannel N,owmer jobl

This procedure lists the tree of jobs starting from the specified owmer job
to & given channel. If no channel is specified then chennel 2 is used. If no
owner jobr is specified then job §, SuperBASIC is assumed and 4il jobs in
the system will be listed. The format of the listing is best shown by
example.

Typing @F might produce the following:

Job Owner Size Priority Name
(] 4 20k 532 BASIC
1 1] 10k 8 Qdemo_l
2 I 15k 8§ 8 Qdemo 2

where Job ig the job number,
Owner is the job number of the owner,
Size is the memory area occupied by the joh,
Priority is the priority on a scale from 0 (inactive) to 255,
Name is the job's name (if it has one).

'ho '8! before the priority indicates thet a job is suspended,
oy wolting for the keyboard or another job.

Thi 'Q" beforo the name indicates a @_Liberstor job.

121

B |

» JOB QONTROL

Nete that in the example, job 2 is owned by job L If you wanted to see only
the tree owned by job 1 then

i1
would diaplay the following:

Job Owner Size Pricrity Mame
i 0 10k 8 Qdemo_ i
2 I 15k § 8 Qdemo_2

If you want to process thig list with a program then you cen divert the
listing to & chanmel other than the sereen, A useful technique is to list the
jobs into a PIPE, both ends of which sre available to the same program.
The records can then be read back frem the PIPE into an array and
procesasd as required. Note that the layout of the flelds is fixed to make
this easy.

REMOVING A JOB

The procedure QR will remove, ie terminate, & given job. If a job owns
other jobs, then they will be removed also. It is not possible to remove job
%. The format is -

QR jobname [,error_code]
or QR fobnumber [,error_codel

As you can see, the Job can be specified by name or mumber. The optional
error code, if present, is passed back to the program which started the
job, eg ag the result of EXEC_W or QW. It can be trapped using Q_ERR
error trapping. If no error code is specified, 0 is returned.

CHANGING THE PRIQRITY OF A JOB

The procedure QP will set the priority of a job to a given value in the
range 0 to 265, A priority of 0 means that a job is inactive and useg no CPU
time,
QP jobname,priority
or QF jobnumber,priority

FINDING THE CURRENT JOB NUMBER

it ean be useful for a job to know its own job number. The function
Q_MYJOB will return this as an integer.

eg PRINT Q_MYJOB

|

| —

— 3

-

! | JOR CONTROL

ihe

2

CURBON CONTROL
Enoh gonacla device has a cursor associated with it. It 1s normally only
turnad on during an INPUT statement. It {5 useful to be able ta enabie

tha ourecr at other times, in partienlar to allow Control-C to

awitch the keyboard to that device, The cursor will flash when the keyboard
e altached to it.

Q_CURSON [#oharnel 1

will turn on the cursor for a given chermel, The default is channel is 1.
Q_CURSOFF [#channel]

turna it off again,

1 ar

b

;
5

s LYEING PIODLEMD

Chaptor 13 Solving Probloms

Todw chaptar 1o designod to help you if you experience problems with
§ Liboratos,

PRODLEME WITH MICRODRIVES

PROB

b

If you find that you cannot reed either the Master or your Working copy,
und you normelly do not experience Joading problems, then it is possible
that the mierodrive is defective, In such circumstances ws will replace it
froo of charge if it is retwmed to us.

If both mierodrive cartridges will not read then there 18 a fair probability
that your machine is misaligned. We will replece the microdrives if you
return them, but if the problem peraists, your machine should be servieed,

Note that we can tell how many copies have been made from a Master.
Claims that a Master does not read when it has in faot expired will be
viewed with suspicion.

LEMS WITH COMPILED PROGRAMS

At some time you may come across a program which does not function
correctly when compiled or worse still, which crashes the mechine, Before
agsuming that there is an error in Q_Liberator, please check the following:

Doea the program run correctly under the interpreter every time?

Did you ignore warnings at compile time? If so, go back and check
them.

Try running the program with QW In place of QX If It now rums
correctly the problem ig likely to be keyboard handling. Try enabling
the cursor.

If the progrem uses agssembler extensions,
Are you sure that the correct vergions are loaded?

Do they make assumptions which are invalid when run from other then
Job 0 ? For example we have seen routines to set up usger defined
graphics which have a hard coded reference to one of the
BuparBASIC charmels.

The snme applies to machine code routines which are CALLed.

13.1

” SCLYIMG PROBLEMS

If the whole system crashes,

It is pogsible that your program is rmunning out of hesp or stack at a
eritical point. Try increasing these parameters using QLIB_PATCH
and see If it makes any difference. Use the statistics option.

Ape youu accessing a channel number larger than the chennel teble
sllows? Again QLIB_PATCH can help.

If all elge fails, pleage try to isolate the error down to a small program
wiich demcnstrates 1t comsistently, PFPlease send the program, &
description of the error and &s omach supporting documentation as passible,
to the address below. Include the serial number of @_Liberator and don't
forgat your telephone number and address.

Pleass do not telephone with such problems; it is not realistic to aolve them
in this way.

Remember that Q_Liberator has been extensively tested before release.
The solution to most problems is contained withdn this manuai, Please read
it earefully and persevere. Check too for any additional INFO files which
may have been supplied.

Address for all correspondence:

Liberation Software
43 Clifton Road
Kingeton upon Thames
Surrey

KT2 6PJ

i

N APPENDIX &

Appendix A Making a Working Copy

All of the @_Liberator flles with the exception of QLIB_OBJ zan be freely
ocoplod for your own use. The second phase of the compiler, QLIB_OBJ can
oniy bo copled by creating a new Worklng copy from the Maater. Attempts
to copy 1t by normal means will render the compiler incperable.

When you flrst receive Q_Liberator we recommend that you make another
Working copy immediately and keep it and the Master in a safe place,

MAKING A WORKING COPY

This is only possible when there are no other Jobs ruming in the aystem.

Reset the QL, place the Maater microdrive in MDV]_ and press Fl or F2 to
boot from it.

After a short loading time yon should see the Q Liberator windows
containing a diaplay of how many coples cen etill be mede from this Master,
and a prompt asking for the target device name. This can be eny
microdrive, floppy or winchester.

Place a formatted medium in the target drive of your choice. If this is a
mierodrive, we recommend thaet it iz empty, but In eny event there should
be room for approximately 100 sectors.

The copy program coples all the QLIB files on to the target disk, including
the flle QLIB_BOOT. This will have been tailored to suit the target
medium. The working copy will require & BOOT program if you intend to
load from it. If you wish to use QLIB_BOOT you should copy it (or rename
i) to become BOOT. This is not done automatically because there may
already be a BOOT program which you want to keep on the target device.

Romove the Master certridge as soon as the copy is complete.

Note that @ Liberator expects to run from the firgt device of a particuler
davico type, regardless of which number it waa copied on. For example, if
yo\ make n working copy on MDVZ, you must run it in MDVi. The name of
1he lond device is embedded within QLIB_BIN for the LIBERATE command.

Wo rogommend that you use Q_Liberstor with the working eopy in drive 1
nnd the programs which you are compiling on drive 2. You may wish to
wrila protoct the working copy to prevent aceidenta.

Nota Bt tho Mester will not operate correctly if it is write protected, or
If ANY of tha files on it are changed.

[.. ' -'Q. APPENDIX B
LiberKior
[' Appendix B File Contents

. Q110__BIN
‘I'hls contains phase 1 of the compiler, LIBERATE, and the extensions for
; loading object programs, QX, QW and QX_JOB{. It must be loaded by a
BOOT program if you intend to compile programs.

QLIB_RUN
. : This is the run time syatem. It must be present to run object programs
except for those programs which heve had the rmm time system lnked at
complie time, The second phase of the compiler itsclf requires this file.

. QLIB_OBJ
do

This is the second phase of the compiler, It is loaded by the LIBERATE
command and requires that QLIB_BIN and QLIB_RUN are present.

QLEB_EXT
This contains the following SuperBASIC extenaions:

QJ, QP, GR, Q_MYJOB, Q_CURSON, @ CURSOFF, Q_PIPE, @ ERR_ON,
Q_ERR_OFF, §_ERR_LIST and Q_ERR.

This file is optional; 1t 1s not required by the compiler. You may choose not
to load it by amending the BOOT program.

3

r_—

QLIB_BOOT

I'hls flle is aiready renamed as BODT on the Working copy which you
roceive, In its stendard form it loads QLIB BIN, QLIB_RUN and
QLIB_EXT. You can create other BOOT programs {(eg to load only phase 1)
by editing this one.

QID_PATRCI_oug

This {e s utility in object form for changing certain runtime perameters
withgut having to recompile.

[

B1

= omE YT W T T g = = T - T

i[_ .] 4%, APPENDIX C
Libe .
[1

Appendix € Summary of Syntax
(]

¥ Tha myrminx of nll BuparBASIC oxteneions supplied with @ Liberator is
[l sumrnrined horo. The conventlon for syntex description is :
i

{ 1 indientes an optional parameter
[1. Indicates that the lest paremeter can be repeated as necessary

t[I.] LIBERATE

LIBERATE filename [, option_list]

L] QX objectname [, command_string] [, #chamnel] ...

QW objectname [, command_string]{, #chameli] ...
QX_JOBD cbjectname [, command_string 1 [, fchannel] ...
; O [#chamel] [, jobnumber)
L] QI [échannel] [, fobname]
: QF jobname {, error_codel]
QR jobnumber [, error _codel

] Q_MYJOB
Lo
i

Q _CURSON [#channell
Q_CURSOFF [#channe!]

i] Q_ERR_ON I"procedure"] ..
Q_ERR _OFF {*procedure”] ...

B Q_ERR_LIST

l Q_RRR

i

Q_PIPR fchannel [TO Fchannel]

Ci

Sy S EET= L S FTT T R F Ty e sse - — - Ty

..
i |
Il
&) - ' INDEX
Libe ; ﬂ LibevWitor
— -
. Anlibyoan name 5.4
Ay [hwat 1, B.6
Ajpay 6.5, 6.6, B.8
P] Amprtb ey ontans|onn 4.6, 5.4, 9.1,
LS 9.3, 8.5
" i By Clb .2
' HY dyieAn 9.2
N ! Hy Hib 9,2
i BV THbAS v,
n X FALE Lidad
Thmpie s L TLIPIL P PR -
[RULLYI SRt d:d: 4.4, 4.7,
- Unbilops [l 1iHu 1.4
ot e Pl ot FAR
LT LRV SINTY IE ST 111
4 VoAt bbby (U
Vompelbw | bl 1|
Il l Vo h Tae [P
T FLNT TNIE L PO
. Frdphb e] i
1 LT YR TR I L N 1Y) BT 1.0, Al
l'r [RTTEE] T
t 1 bl w wpen Iy #ad
I] e 042
DM HIHL T i
DRM BLRRER D W

T Mo R

M a0y

AH e

LIEANE

RN TR NETY]
Hlyludr

-

4.2, 2.2

[

- . .

s e om - —SE oo

O o D
[}
wr

WP AN RN D UDUMIRGE S8 20 e o T o

- KNy .3, 8.5
4)
KNiY DRFLhe -1, 5.2
. MNP Fon .3
Il II LLTIY 4 .3, 8.5
HND RHpant -4, 8.4
HHL AFlar -4
firroes bt ruatime .1 - 6.7
) Breor teapping 1.1 - 11.5
Brrore whén compiling -1 - 5.4
l l Breor window .1
— nxie .2, 10,1, 0.2
LXLT -3

. . nn T m T TeERTE UTT T s s : .!!!?f;isifii’fﬁf*r -

" INDEX
Liberator
File handling 3.4
Filter program ig.5, 10.6
Floating peoint 8.6
FOR 8.3
Function 5.1, 5.3, 8.2, B.5, 8.6
GO TO 4,3, 6.7, 8.5
Heap 4.6, 6.4, 7.2
IF B.5
Illegal progedure 5.3, 8.5, 8.4
Inactive 3.2
Index 6.5, 8.8
Initialisation £.1
INKEYS 3.4
INPUT 3.4, 12.3
Integer 8.6
Internal error 6.7
Interpreter 3.1, 8.1
Job 3.2
Job control 3.2y 12.1¢ 12.2
Job name 4.3, 7.4
Job O 3.2
Keyboard 3.4
KEYROW 3.4
LIBERATE 2.1, 2.3, 4.1, 4.2, Cl
Line numbera 4.3, 5.2, 6.3
Linking assembler 4.6, 2.3
Linking runtimes 4,3
LIST 5.3, B.5
Liat device 4.3
LOAD 5.3, 8.6
LRUN 5.3, 8.6
Maater copy 1.2, Al
Memory 7.1
MERGE 5.2, B.G
Hessages
Messages at runtime .1 - 6.7
Messages when compiling 5.1 - 5.4
Microdrives 13.1
MISTake 5.3
MRUN 5.3, 8.6
Multitaaking 2.1, 3.2, 3.3, 3.4
Hame 4.3, 7.4
Name table 3.1
Nesting 5.3, 5.4
NEW 5.3, 8.8
NEXT 8.3
B, = B - LN

l ﬁ
A
|m
e

Pl [we b g gl A
RN

Plpab bvingd

Iakis Fhop

Vauuig 1 hapnp s
Famwmirgg o ommind diwn
Easmabiay gt A1 binge
Fliaa.)

Flhaaw ¢

Fiy

Felowdnry

Proelebam mobubiyg
[LPRTTRS YT H

W O
[T Y ERTRY N 4

v EbHR
[L]
LI L N
oo FhpE gk

LU o L LT T
(S F LT

[ER YN
Glitl: He v b H
Ut

YHIN mEF kA
Wkl BIH
(Y1 N I TN
bl maet
A et
ubdl PR
bt ptin
Ly

[Fl

LW

Ui

(VLR

HEAD
Hatmi oty e
[T
LLGLEY R
LLETE]
fTHyY
Helty
BT
ROM

Hulan

Ry thng syatem
Aurk img

(L)

By Ny LY, 0.6

40 04 1
L T YR

I 1L P |

faly Tad, 1002, 01

balde 1a%, 404, 6,2, B]
Pdod, €1

1dads €1

6.2, 1

.3, 4.8, 10.2, 10.3, C1
l10.2, ¢1

e o ox

A e o m o

(Rt D N T I N
R W e ad b]

Liberator

-k

]

EAYE

Screen handling
SELect

Size af program
Slice

Sort program
Source program
Stack
Statisties
String

String array
Structure
System requirementa

oo moe

;

-t N,
L

Lol R R N . - PN)

. o4

LS SLCRLS RSP RG BT R A SNy)

Toelkit
Translation

-
0.5 Ilg
b !

[
h
—

Ondefiped wvariable
Uncesclved reference
Unsupported keywords

P
w b

8.5, 8.6

Warnings
WHEN ERROR
Windows
Workfile
Woerking copy

5.3
11.1

3.4, 8.9
4.2y 4.5, 5.3 i
2,1y Al

R balAtn o

.o
Rl SN X

