DATAdesign

Application Programming Interface

Joachim & Nathan Van der Auwera
PROGS
PROfessional & Graphical Software
(©1990-1993

1

June 22, 1993

Contents

1 Introduction 5
1.1 Concepts e e 5
2 Interfaces 9
2.1 SuperBASIC interface L. 9
211 paramelerso e e e e 10

2.2 Assembler “interface”™ oL 0oL Lo 11
221 paramelers L. e i2

2.3 Cinterface e e 13
231 parameters Lo e e e e 13

3 Commands 15
3.1 Creatingabufferffile L 0 15
3.1.1 NEWF?tile e e e e 15
3.1.2 USEfile: P 16

3.2 Buffer malntenance L. e 17
321 UNUSebuffer 17
3.22 CYCle Buffers for thisjob 17

33 TFilermaintenance e i7
331 GARBagecollectiono 18
3.3.2 Set lnter-Record-Space Lo 18
338 Set TleSTatus o e 19

3.34 Set ViewSTatus oo v oo 1%
335 CY¥YCQlefiles o 20

3.4 Fienavigation Lo oo 21
341 TiRSTrecord 21
342 LASTrecord 21
343 NEXTrecord v i 21
344 PREViousrtecord 22
345 Get RECord 22
346 TORWard o 23
347 BaCKWardo 23

3.5 Filemnformation. 24
3.5.1 TleNAMe L L e 24
352 TieDDEVice e 24
303 CouNT Alrecords S
3.54 Get Inter-Record-Space . . . - e 25

3.6

3.7

3.8

3.9

310

3.11

3.12

3.13

3.14

CONTENTS

3.5.5 Get WleSTatus 25
3.5.6 Get ViewSTatus, 25
Fesavingo 26
3.6.1 bkntire file (SAVE) 26
362 BACKup 26
3.6.3 Saverecord sequence 28
3.6.4 Merging another file 29
Field manipulation 30
371 ADDField 30
372 FiwelDClear. 31
373 FielD Delete 31
3.74 Field Rename a2
Field information 32
3.8.1 Gemeral 32
382 Extractingdata., 36
3.83 Settingdata. L 39
384 Changing 42
Record mampulation, 43
3.9.1 DELEterecord 43
39.2 DUPLicate record 44
3.9.3 IMPLementrecord 44
394 NEWRecord 45
Record information 45
3.10.1 DATE of last change torecord 45
3102 IDof current Record 45
3.10.3 LENgthof Record_. 46
Marking of records L, 46
311E Get MaRK status 46
3112 Set MaRK status 47
3.11.3 Clear all MaRK statusses 47
Searching 47
3.12.1 FIND String 18
3122 FiND Integer 48
3.12.3 FIND Double, 19
3124 Replace L 50
Defaults 50
3.13.1 Default buffer 50
3.13.2 Default field, bl
3133 Defaunltindex 51
Index manipulation L oL L 52
3341 SORT b2
3142 FILTer a3
3.14.3 Index UPDate, h4d
3.144 Get Index Sort Level 55
3.14.5 Set Index Sort Level Ah
3.34.6 Gei Index Filter Level 56
3.14.7 Set Index Filter Level b6
Index maintenance h7
3151 Index DELete A7

1 CONTENTS

f CHAPTER 1. INTRODUCTION

engine know which file is affected or queried by a certain operation (but there are
defaults}.

Each bufler has a special property, a bufferid which is unique and defines every
bufler. Buffers can only be accessed by the job who created them.

Please note that if you create a buffer (by using or creating a file), you also
have to release it, as it will otherwise clog up some part in memory. Even when the

Job which uses the buffer is released, the buffer will keep existing (and nobody can

access i1s). This can be solved with garbage collection.

index An index is a special entry-point to a buffer, and thus a file. Indexes arc
used only for file navigation and fast searching. Indexes are the only way in which
you can sort a file, or filter it, that is, specify an order in which the record are
available, and/or select which records are available and which are not. Indexes are
however restricted by memory. This should not be a big problem as each eniry in
an index uses a maximum of 94 bytes?, and usually much less.

Fach index has a special property, an inderid which is unique and defines every
index. Indexes always define the buffer which was passed when they were created,

and can’t be shared by buffers. Some commands may be passed an indexid instead
of a bufferid.

record Records are parts of a file which combine related data. If yon go to a
library and you want to find a book, you search the register, which is a database.
In those libraries where vou still have to find them manually, there will be a place
where you can find a card for each book. Each of these cards is a record, and al}
the cards together are the file.

All record have a special property, a recordid® which is unique and defines every
record. No two records in a file can ever have the same recordid, and a recordid
never changes, even if the record is changed. Furthermore, even after a record has
been deleted, the recordid won’t be assigned to another record for a long while?.
This ensures that a recordid is the safest way (o make links between records of
different files.

More informatjon on the programming approach {o records can be found under
buffer and in the explanation of the specific commands.

field Fields are subdivisions of records, and these subdivisions are available in all
records. To use the example of the index at the library, the fields are the subdivisions
of the cards, like author, title, publisher,...

field type In the DATAdesign engine, all fields are typed. Five basic types are
provided and these types should allow you to put any kind of data you want in a
field. It is up to the author of a program to determine what a certain value in a
field is supposed Lo mean.

2that is 14 bytes plus the bytes need for each sort level, being 2 bytes for char or word, 4 bytes
for long, and & bytes for text or double

it may be important Lo say that a recordid is an unsigned long, all value are possible except
-1, which is used to denote *not found” or other problems

Ytypically only one record per each cycle of 4%10° — records exristing will get the same recordid

it A AR o s

8 CHAPTER 1. INTRODUCTION

lock As DATAdesign is a fully mulli-user database, il is necessary that records
whicli are edited by a read-write buffer can’t be accessed by other read-write buffers.
50 each record which is accessed by another read-write buffer is locked, unless this
buffer is view only. View only records can always access all existing records.

10 CHAPTER 2. INTERFACES

e The {act that this variable is set at each call to any of the routines in the
DATAdesign engine SuperBASIC interface is a side-effect. So the line

PRINT dd_err, recordID

will print the error generated by the call to record]D and its return value, and
NQOT the value dd_err had before the line was executed.

2.1.1 parameters

The SuperBASIC interface aliows for some parameters to be lefl out, or just not
specified, or to have several types. If there are default values for a parameter, then
the default will be mentioned after the name in square brackets. If there is no
defanlt, but the parameter doesn’t have to be specified, then the type will be put
I square brackets. The possible parameter types are:

bufferid always has to be a float. Can he left out {like with channel id’s). If not
stated the default will be used.

indexid always has to be a float. Can be left out (like with channel id’s). If not
stated the default index of the default buffer will be used. If the given id was
actually a bufferid, then the defaull index for that buffer will be used.

field This parameter can be specified either as the fieldid, or as the fieldname.
Fieldnames are case relevant. An error will be reported if the fieldname does
not exist. The fieldid can be passed as an integer or as a float. If no value is
given for this field, then the default will be used.

compare This parameter can be passed either as an integer or float, or as a string.
When passed as a numerical value, you have to add the values you want
together. When passed as a string you just combine the specific characters.
So “-C" or 48 would give the same resuit: reverse order and case dependant.

string This parameter always has to be specified between quotes. If uo string is
specified, than a NULL string? will be used.

short This parameter can always be specified either as an inleger or as a float.
If this parameter is not optional and is not specified, then an error will be
reported.

long This parameter can ouly be passed as a float. If this parameter is not optional
and is not specified, then an error will be reported,

char This parameter is always specified as a string. The first character in the given
string is the passed character.

float This parameter has to be passed as a float, and will internally be converted
to an IEEE double.

double This parameter is passed as a pointer to 8 bytes in memory which should
contain an IEEE double,

2that is ¢, the empty string

12 CHAPTER 2. INTERFACES
-any other error

Free DATAdesign e¢ngine DDE_FRER
no paramcters, 1o return

Call DATAdesign engine extension jsr $18(a0)

entry exit,
do return
al) address of thing extension
al ptr to parameter list

The address of thing extension is the return value of the call to DDE_USE and can
also be placed in any other address register.

These routines can be found in the library file engine 1ib.

Naturally, it is also possible to use the C-interface directly from assernbler if you
prefer to do so.

2.2.1 parameters

The standard extension thing protocol is used.

bufferid always passed in two long words. The second long word is the actual
bufferid. If the MS” word of the first long word is zero, then the default buffer
will be used, and the second long word becomes irrelevant.

indexid always passed in two long words. The second long word is the indexid.
If the MS word of the first long word is zero, then the default index of the
default buffer will be used, and the second long word becomes irrelevant. If
the given id was actually a bufferid, then the defauit index for that buffer will
be used.

The engine will automatically regognise whether the given parameter was an
indexid or a bufferid.

field always passed as a long word. Only the LS word is important. If the value -1
15 passed then the default field will be used.

string strings are always passed as two long words. There are two possibilities. 1f
you want to pass a standard QL string, then the MS word of the first long
word has to be $0100, and the second long word is the pointer to the string.
If you want to pass a substring®, then the MS word of the first long word has
to be $0200, and the LS word has to be the length. The second long word
contains the pointer to the substring.

short this parameter is passed in a long word. The value is in the LS word.
long this parameter is passed in a long word.

char this parameter is passed as the LS byte of a long word.

¥

most significant
jusi a series of chars

n A e R

L e X iy

14 CHAPTER 2. INTERFACES

sliort short_par;
short char_par,;
double double_par;

};

It may also be interesting io have a look at the spectal data type in the Assembler
interface, and at the source of the C interface.

Furthermore, bufferid and indexid parameters are passed as a long. If a zero is
passed, then the default bufler- or indexid will be used.

All C interface functions return the error which occurs during the execution of
ihe engine.

16 CHAPTER 3. COMMANDS

errors, code, meaning
imem -3 insufficient memory

3.1.2 USEfile

This command creates a new buffer for a file with the given name. If there is no
file in use with the given name®, then the file will be loaded from the given device,
or from the DATA USE device if the file can’t be found. If there already was a file
with given name, then another buffer o access that file will be created.

There is also a view parameter which can be set (# 0). If it is set, then the
buffer will be read only, and no writing can be done through that buffer. Also ihe
records that are viewed through such a buffer won’t be locked by that buffer, and
even record which arc locked by another buffer can be viewed (you will get the
version in the file, not the version in that other buffer).

The new buffer will immediatly be the default buffer for the current job, and
there will be no record in the baffer (as after NEWrec).

The medium-file which is Joaded needs the _ddf extension. This extension should
not be specified or it will be included in the filename.

If a bufferid is passed, then a new buffer which accesses the same file will be
created.

SuperBASIC
USEfile #bufferid, filename, filedevice, view
filename : string
filedevice : [string]
view : short[0]
Assembler
USE
bufferid
filename : string
filedevice : {string]
view : short

long uscfile{long buflerid, char *filename{], char *filedevice]], short view);

errors, code, meaning
mmem -3 ont of memory
fdnf -7 file not found
maybe you just forgot to give a filename
isyn -21 this is not a DATAdesign file
iexp -17 the given DATAdcsign file is too old
. any other file error

'names are comparcd case dependant. If there is more than one file in memory with the same
naine, then you will probably get the last crealed one.

18 CHAPTER 3. COMMANDS

3.3.1 GARBage collection

Garbage collection can be quite important when using the DATAdesign enginc. 11
always makes sure that any buffers whose owning job is no longer present will be
removed fromn memory, possibly also releasing the file that this buffer was using?.
In SuperBASIC it can be used together with the rontine to release all buffers which
may not have been unused by SuperBASIC programs that were in memory before
the currenl one.

It can be important not only to release the memory which is occupied by the
buffer, but also hecause such buffers may keep a record locked. The only way to
nuake sure no records are Jocked by buffers from jobs which no longer exist is exactly
by collecting garbage.

If you pass a bufferid and the file that the given buffer accesses is disk-based,
then any unnecessary whitespace between records will be rermnoved. ¥f there was
more whitespace between two record than the IRS, then it will be made shorter.
Garbage collection never increases the space between records.

Please note that this command is not as safe as the others. If a power failure
would occur during garbage collection, then it would probable be very difficult to
recover your filel

SupcrBASIC
GARBAGE ##bufferid
or if you want to call it for the default buffer
GARBAGE #bufferID, and not just GARBAGE

Assembler
GARB
bufferid

C

long garbage(long bufferid};

errors, code, meaning
itaf -7 invalid bufferid
any file i/o error (should not occur)

3.3.2 Set Inter-Record-Space

You can set the inter-record-space for a certain file with this command. Note that
only records which are implemented after this call will be imbedded in the given
wnler-record-space. As inter-record-space can never grow, not even with garbage
collection, it is best to set the inter-record-space immediatly when you create a file.
The inter-record-space is also considered when saving.
The inter-record-space has (o be a value between zero and 255.

SuperBASIC
SET_IRS #bufferid, irs
irs : short
Asgseinbler
SIRS
bufferid

2if it was the only buffer for that file

20 CHAPTER 3. COMMANDS

Tt will always clear the curreut record (as in NEWrec).

SuperBASIC
SETVIEWstatus #bufferid, status
stalus : short
Assernbler
SVST
bufferid
short staius
C
long setviewstatus(long bufferid, short status);
errors, code, meaning
itnf -7 invalid bufferid

3.3.5 CYC(Cle files

If you want to find out which files are in use on your system, then you can cycle
through ilem with this command. To get the first file in the list, you have to call
1L with zero as seed. In any other case, the updated value should be used. If you
have reached the last file, then the seed will be updated to zero, and the string will
be unchanged (nuli string for SuperBASIQ).

The filename is always returned, so that you can USE the file if you want. A
filename is maximum 32 characters long and enough space has to be provided for
the return string (no problem in SuperBASIC).

In SuperBASIC you can print the filenames of all files like this -

seed = 0

REPeat loop
name$= CYCLEfile$ (seed)
IF NOT sced THEN EXIT loop
PRINT nameS

END REPeat loop

SuperBASIC
filename$= CYCLLEfile$ (seed)
seed : long
Assembler
CYCL
npdate long seed
retury string filename

long cyclefite(long *seed, char *return());

1

errors, code, meaning
itnf -7 seed mvalid

22 CHAPTER 3. COMMANDS

SuperBASIC

NEXTrec #indexid
Asgembler

NEXT

indexid

long nextrec{long indexid);

errors, code, meaning
itnf -7 invalid index- or bufferid
no next record found
tmem -3 insufficient memory (only possible with indexes)

3.4.4 PREVious record
(et the previous record in ihe list which s not locked.

SuperBASIC

PREVrec #indexid
Assembler

PREV

indexid

fong prevrec(long indexid},

errors, code, meaning
itnf -7 invalid index- or bufferid
no previous record found
imem -3 insufficient memory (only possible with indexes)

3.4.5 Get RECord

Considering that recordid’s are the safest way to make links between files, there
must be a way to get a record with a specified recordid. And thal is exactly what
GETrec does. View only files always get the requested record (unless it was deleted
or never existed). When the current record is requested, then nothing happens (no
error, but the record is not ‘truncated’ either).

SuperBASIC
GETrec #bullerid, recordid
recordid : long
Assernbler
GREC
buflerid
long recordid

C
long getrec(long bufferid, long recordid);

errors, code, meaning
itnf -7 invalid baufferid

24 CHAPTER 3. COMMANDS

imem -3 imsufficient. memory (only possible with indexes)

3.5 File information

These commands can give you the information you may need on a certain file.

3.5.1 FileNAMe

Get the filename of the file this bufler has access to.
A filesame is maximum 32 characlers long, and enough space has to be provided
for the return string {no problem in SuperBASIC).

SuperBASIC

name$= FILEname$ (#bufferid)
Assembler

FNAM

bulerid

return string filename

0

long filename(long bufferid, char *return[]};

errors, code, meaning
inf{ -7 invalid bufferid

3.5.2 TFileDEVice

Gel ihe filedevice of the file this buffer has access to.
A filedevice is maximurn 32 characters long, and enough space has to be provided
for the return string (no problem in SuperBASIC).

SuperBASIC

deviceS= T'ILEdevice$ {F#buflerid)
Asscmbler

FDEV

bufferid

return string filedevice

long filedevice(long bufferid, char *return[]};

errors, code, meaning

itnf -7 invalid bufferid

3.5.3 CoulNT All records

Find out how many records are in this file. This function returns the total amount
of records, and doesn’t take any index into consideraiion.

SuperBASIC
number= COUNTall {#buflerid}
Assembler

26

bufferid
return short status

C

long viewstatus(long bufferid, short, *return);
errors, code, meaning
itnf -7 invalid bufferid
3.6 File saving

3.6.1 Entire file (SAVE)

CHAPTER 3. COMMANDS

This command can only be used if your file is memory-based. It makes sure that
there is an up to dale version of your fiie on disk. The record in the buffer is
irmplemented first. The filename and devicename are changed if passed. If no
filedevice passed and no defauit filedevice exists, and saving to just the filename
doesn’t work, then the file is saved to the DATA_USE device.

You can also state the overwrite status (over). If this is zero and the medium-file
already exists, an error will be reported. If over is set, then Lhe medium-file will be

overwrilien.

The mediun-file will get the _ddf extension. This extension never has to be

specified.

SuperBASIC
SAVEfile #bufferid, filename, filedevice, over
filename : {string]
filedevice : [string]
over : shori[0]
Assemnbler
SAVE
bufferid
optional string filename
oplional string filedovice
short overwnte status

tong savefile(long bufferid, char *filenamef],
char *filedevice[], short over):

errors, code, meaning

itnf -7 invalid bufferid
drfi 11 drive full
fex -8 file already exists

any other file i/o error

3.6.2 BACKup

This command can be used to make a backup of a file. There are two reasons for
this: making a backup of a disk-based file, or to preserve the filenarne and filedevice

(which SAVE overwrites when changed).

28 CHAPTER 3. COMMANDS

{die -9 Save Record Sequence channels still open
any other file i/o error

3.6.3 Save record sequence

Save record sequence is very important as is can be used to save only a part of a
fite, with preservation of recordid’s, and also as it is the only way in which you can
make a backup of a disk-based file without remmoving all buffers for that file.

Note that there can only be one save record sequence for each buffer at any given
moment. If you waut to start another save record sequence on the same buffer, then
the previous save record sequence has to be finished.

SAVe record sequence Initialise

Open the file for the save record sequence for the given buffer. If no filedevice
passed, and opening just the filename doesn’t work, then the medium-file is opened
on the DATA_USE device.

You can also state the overwrite siatus (over). Tf this is zero and the medium-file
already exists, an error will be reported. If over is set, then the medium-file will be
overwritten.

The medium-file will get the _ddf extension. This extension never has to be
specified.

SuperBASIC
SAVEinit #bufferid, filename, filedevice, over
filename : string
filedevice : [string]
over : short{0]
Assembler
SAVI
buflerid
string filename
optional string filedevice
short overwrile status

long saveinit(long bufferid, char *filename|],
char *filedevice[], short over);

errors, code, meaning

itnf -7 invalid bufferid

drl -11 drive fuli

fex -8 file already exists

fdiu -9 in use, there is still a channel open, should call SAV Efinish
any other file i/o error

SAVe Record

The current record will be saved. You have to make sure that every record is only
implemenied once, or you will have problems when loading. A record has to have
been tmplemented if you want to save 1t (it has to have a recordID).

30 CHAPTER 3. COMMANDS

RECUP buffer

So here is the actual routine:

dd_err=1
nri=NRfclds(#merge)
REMark array with fieldid in cld [ile, fieldid in current file
dim ref(urf,2): ref(0,1}=0 : ref((,2)=0
REMark add the fields
=0
FOR i=1 TO nrf
name$=CYCLEfields(#merge,j i)
ADDfield name$.t
ref(i,1)=] : ref(i,2)=fieldID(name3)
END FOR 1
REMark copy all the fields
FIRSTrec #inerge
REPeat loop
NEWrec
FOR i=0 to nrf
length=GETfield(#merge, ref(i,1), maxlen, buffer)
SETfield ref(i,2), length, buffer
END FOR i
IMPLEMENT
NEXTrec #inerge
IF dd_err THEN EXIT loop
END REPeat loop

3.7 Field manipulation

3.7.1 ADDField

At any given time, you can add a field with a certain name and type. Note that all
fieldnames have to be unique®.

The possible value for the fieldiype are :

[type [code [element size | usage |

raw 1§ 1 byte graphics, fonts, ...

char 2 | 1 byte text

short, 3 | 2 bytes stall integer values
selections, statusses, ...

jong 4 | 4 bytes large integer valuies
dates, ...

ieee 5 | 8 bytes ieee double
any numerical value

SuperBASIC
ADDfield #tbufferid, name, type
name : siring

?but comparing is case dependant, so “Name” is not the same as “name”

32 CHAPTER 3. COMMANDS

“MEMO” ficld.
The record will be implemented first. [t is impossible to know which record will
be in the buffer afier this command has finished.

SuperBASIC

field DELETE #buflerid, field
Assembler

FLDD

bafferid

ficld
C

long fielddelete(long bufferid, short field);

crrors, code, meaning

itnf -7 invalid bufferid

fdiu -9 this is not the only buffer using this file
any error from IMPLemenl

3.7.4 TField Rename

This command can be used to change the name of a field in the file. You can’t
rename the “MEMO” ficld.

SuperBASIC

fieldRENAME #bufferid, field, newname
Assembler

FLDR

bufferid

field

newpame : string

Q

long fieldrename{long bufterid, short field, char *newnarme(1};

errors, cade, smeaning

itnf -7 invalid bufferid

ipar -15 field doesn’t exist

inam -12 invalid name (null name nor accepted)
fex -8 ficldname already exists

3.8 Field information

3.8.1 General
CouNT Fields

(let the number of fields in the file.

SuperBASIC
number= NRfields (#bufferid)
Assembler

34 JHAPTER 3. COMMANDS
long fieldtype(long indexid, short field, short *result);

crrors, code, meaning
itnf -7 invald bufferid or indexid
ipar -13 ficld doesn’t exist

FieLDName

Get the name of a field with given id.
A fieldname s maximum 16 characters long and that amount of space hias to be
available in the return string (no problem in SuperBASIC).

SuperBASIC

name§= fieldNAMES$(#buflerid, field)
Assembler

FLDN

bufferid

field

return string ficldname

R

C
long fieldname{long bufferid, short field, char *result{]};

errors, code, meaning
itnf -7 invalid bufferid
ipar -15 fieldid doesn’ exist

ID of Fleld

Get tlie id of the ficld with the given name {case dependant).

SupcerBASIC
id= fieldID(#buflerid, name)
name : string
Assembler
IDFI
bufferid
string fieldname
return short fieldid

long fieldtype(long bufferid, short field, short *result);

errors, code, meaning
itnf -7 invalid bufferid

or ficldname not found
inamm ~-12 numil name invalid

LENgth of Field

Gel the length of the given ficld, that is the number of elements in the field.

36 CHAPTER 3. COMMANDS

long nrlines(long bufferid, short field, long *result);

errors, code, meaning
itnf -7 invalid bufferid

or field not present (i.e. field is clear)
ipar -15 field doesn’t exist

or 1sn’t a character field

3.8.2 Extracting data

This is probably the most important part of the DATAdesign engine. These are the
commands you need (o examine the contents of a record. Of course you have o be
able to find out what information is contained in your file, and here is the way to
do so.

Get FieLD

Get the contents of an entire field at once. This is also the only way you can get
the contents of a ‘ram’ field.

If the field is not found {that is cleared or invalid), then zero is returned as
length.

The pointer to the place where the contents of the field has to be filied in doesn’t
have to be even. You have Lo indicate the size of the buffer as it is used Lo prevent a
buffer overflow. If the buffer is not long encugh, then it will be filled and the length
of the buffer will be returned.

SuperBASIC
length= GETfield {#bufferid, field, length, place)
length : short
place : long, ptr to buller
Assembler
GFLD
bufferid
field
long length of buffer
pointer to buffer
return Jong length of field

long getficld(long bufferid, short field, long length, char *bulfer,
long *return};
errors, code, meaniug
itnf -7 invalid bufferid
field not found (cleared or invalid}
bl -5 buffer fuil

Get CHaRacter

Get. a character from a character field.

SuperBASIC

48 CITAPTER 3. COMMANDS

long clement
return long
C
tong gettong(long bufferid, short field, long element, long *return};
eyrors, code, meaning
itnl -7 invalid buffend
or field not present in this record
ipar -15 invalid fieldid
or field has wroug type
orng -4 element has to be > 1, but may not exist

Get DouBLe

(et a double Trom a field of ieee doubles.

SuperBASIC
value= GETHoat (#tbufferid, field, element)
element : short[i]
or if you want to get the value as an ieee double :
GETdouble #bufferid, field, element, place
element : short{1]
place : long poiunter to 8 byte space to fill in double
Assembler
GDBL
bufferid
field
long element
return 1eee double
C
Jong getdouble(long bufferid, short field, long element, double *return);
errors, code, meaning
itnf -7 invahd bufferid
or field not preseni in this record
ipar -15 invalid ficldid
or field has wrong type
orng -4 element has to be > 1, but may not exist

Get STRing
Get a line from a character field.

SuperBASIC
line$= GETline$ (#buflerid, field, line)
line : short{i]
Assembler
GSTR
bufferid
field
long line
return string

44 CHAPTER 3. COMMANDS

buflerid

field

char value

long element
C

long sctchar(long bufferid, short field, long line, char value);
errors, code, rneaning
itnf -7 invalid bufferid
ipar -15 invalid fieldid

or field has wrong Lype

orng -4 eleruent has to be > 1
iern -3 insufficient memory
rde -20 read only buffer

Set SHoRt

Set, a short in a field of shoris. If the field was not present, it will be created. If the
element already existed, it will be overwritten. If there were fewer elements in the
ficld, then new zero elements will be created as filling.

SuperBASIC
SETshort #bufferid, value, field, element
value : short
clement : short{1}
Assembler
SSHR
bufferid
field
short value
long element
C
long setshort (long bufferid, short field, long line, shorl value);
errors, code, meaning
itnf -7 invalid bufferid
ipar -15 invalid fieldid
or field has wrong type
ornig -4 element has to be > 1
imern -3 insufficient memory
rdo -20 read only buffer

Set LoNG

Set a long in a field of long. If the field was not present, it wilt be created. If the
element aiready existed, it will be overwritten. If there were fewer elements in the
field, then new zero elements will be created as filiing.

SupcrBASIC
S5ETlong #bufferid, value, field, clement
value : long
element : short[1]

12 CHAPTER 3. COMMANDS

sotile empiy lines will be created for filling.

SuperBASIC
SETline #buflerid, linet, field, line
hne$: siring
line : short[1]
Assembler
SSTR
buflerid
field
string lme to fill in
long line
C
jong setline{long bufferid, short field, loug line, char *string|[]);
errors, code, meaning
itnf -7 invalid bufferid
ipar -15 invalid fieldid
or field has wrong type
orng -4 linehasiobe > 1
imem -3 insufficient memory
rdo -20 read only buffer

3.8.4 Changing

As you may have noticed, you can think of a field as an array of a certain type. This
artay can grow or shrink without limitation (except memory of course}. However,
it ;may be necessary to remove a part of this array, or insert a part, and this either
at the end, or somewhere in the middle of this array.

INSert Elements

This command allows you to inser{ some array elements in a field.
Inserted elements will be cleared to zero. The clements will be inserted BEFORE
the element given as place.

SuperBASIC
INSERTe! #hufferid, fickd, place, number
place : short[1]
numnber : short[1]
Assembler
INSE
bufferid
field
short piace
shorl number

long insertel(long bufferid, short ficld, short place, short number);

errors, code, meaning

itnf -7 invalid bufferid

441 CHAPTER 3. COMMANDS

long delrec(fong bufferid);
errors, code, meaning
itaef -1 invalid buflerid
rdo -20 read only buffer
any file i/o error (only when disk-based)

3.9.2 DUPLicate record

This command can be uged if you need a new record which iz similar to the current
record. The record in the buffer will be treated as a new one. However the buffer
will stay the samc. But when you implement, the old record will be the same, and
you will have a new record with another recordid and any changes you made to the
record.

SuperBASIC

DUPLICATE #bufferid
Assembler

DUPL

bufferid
C

long duplicate(long bufferid);
errors, code, Meaning
itnf -7 invalid bufferid

3.9.3 IMPLement record

Trnplement the given buffer in the file. Necessary if you want the changes you made
in a the buffer to appear in the file. The contents of the buffer isn’t changed, but
the newly created record will get a place in the file and a recordid.

If the file is disk-based, then the record will immediatly be written to disk Lo
ensure complete safety in case of a power {ailure or a system crash.

1f the file is disk-based and a “drive full” error may oceur, then the record is
NOT (re-)implemented, and a an error is reported.

Note that other file-errors may cause problems.

SupcrBASIC

IMPLEMENT #bufferid
Assembler

IMPL

buflerid
C

long implement{long bufferid);
errors, cade, meaning
itnf -7 invalid bufferid
imem -3 insufficient memory
Arfi -11 there was risk of a “drive fll”

too many records (impossible, indicates problems)

nimp -19 not implemented, only occurs when using the demo version
any file ifo error (should not occur)

418 CHAPTER 3. COMMANDS

return long 1d
Jong recordid(long buflerid, long *result);

errors, code, meaning

wnf -7 invalid bufferid

3.10.3 LENgth of Record

Giet she length of the enrrent record. This is the length in bytes, it is the added
length in byles of the field which are not cleared and their fieldheader. Such a
ficldheader contains the fieldid and the length of the field (6 bytes).

The recordlength should only be uscd for comparing, this is not a very usefull
routine.

SuperBASIC
len= record LEN(#bufferid)
Assembler
LENR
huflerid
return long length
C
long recordlen(long bufferid, long *result);

errors, code, meaning
itnf -7 invalid bufferid

3.11 Marking of records

All records have a special mark statys. This status is the same for all buffers which
have access Lo that record, and can have a value belween zero and 255, I a mark
slatus is zero, we say it is cleared.

3.11.1 Get MaRK status

SuperBASIC

value= GETmark(#bufferid}
Assembler

GMRK

huflerid

return byte value

long getmark(iong bufferid, char *result);

errors, code, meaning
itnf -7 invalid bufferid

]

48 CHAPTER 3. COMMANDS

DFEFindex #hbid 1d

FINDxxx #bid,. ..

DETFindeb #bid keep

for any given indexid iid, and bufferid bid. Of course you don’t hve to specify 1he
buflerid in all commands.

When a matching record is found, it will be in the buffer. If no such record
is found, then the last record will be in the buffer (or the first when searching
backwards).

These commands also need a “compare” value which determines how they search
and where they starl to search. Here are the possible values. You just have to
add the values together to get combinations, or combine the characlers in a string

{SuperBASIC only).

| name [bit | value | char | meaning |
agal] 1 | aAmM | start searching from next/prevous record
instead of first/last record
case 4 16 <C compare case dependant {find string only)
| rvrs 5 32] -rR | reverse order (search backwards)

3.12.1 FiND String

Find a string.

SuperBASIC
FINDsiring #buflerid, field, compare, value$, riield, rplace
value$: string
vfield ; [short), updated if passed
rplace : [short], updated if passed
Asscmbler
FNDS
indexid
ficid
short compare
string value to find
update short ficldid where found
update short place in field where found

long findstring(long indexid, short ficid, short cmp, char *valie,
short *rfield, short *rplace);
etrors, code, meaning
itnf -7 invalid bufferid or indexid
or not found
ipar -15 invalid fieldid (wrong type or doesn’t exist)
imem -3 insufficient memory for FRST/LAST/ NEXT/PREV

3.12.2 FIND Integer

Find an integer. If the integer fits in a short, then both short and long fields can
be searched. 1f not then only fields of longs can be searched.

50 CHAPTER 3. COMMANDS

long finddouble(long indexid, short ficld, short cmp, double value,
short *rfield, short *rplace);
errors, code, meaning
itnf -7 invalid bufferid or indexid
or not found
ipar -15 invalid fieldid (wrong type or doesn’t exist)
imem -3 insallicient memory for FRST/LAST/NEXT/PREV

3.12.4 Replace

Although there is no specific command 1o replace some value by another in the
DATAdesign engine, you can do it by combining some commands. This can be
doue because the find commands can return where they found the item.

So if you want to replace the value 10 by 100 in all occurences in the default
bufler with the default index, in all integer fields, it can be dene hke this:

dd_err= 0
FINDinteger ,,10.fp
REPeat loop
IF dd_err THEN EXIT loop
IF fieldTYPE(f)=3 THEN
SETshort 100,{p
ELSE
SETlong 160.f,p
END IF
FINDinteger ,1,10,i,p : REMark or FINDinteger ’a",10,fp
END REPeat loop

When replacing strings you may also need to use the REMOVEel or INSERT¢l
commands when the length of the two strings is different. Note that the string will
probably have to be set character by character.

3.13 Defaults

The DATAdesign engine allows you to nse defaults for bufferids, indexids and ficl-
dids. There is however no guarantee that any default is actually valid.

3.13.1 Default buffer

You can always set or get the bufferid of the default buffer. Reading is done like
this (but you don’t know if that buffer still exists) :

SuperBASIC

id= buflerlD}
Assembler

INBT

return long bufferid

72 CHAPTER 3. COMMANDS

errors, code, meaning
iwnf -7 invalid bufferid

Or you can set 1t like this :

SuperBASIC
DEFindex #buflerid, id
id : long
Assembler
DEF]
bufferid
jong indexid

lostg defindex(long bulferid, long indexid};

errors, code, meaning
itnf -7 invalid buflerid or indexid

3.14 Index manipulation

Mere are the commands Lo create indexes and/or find out how they are sorted or

filtered.

3.14.1 SORT

Routine to determine how the records in an index have to be sorted.

Indexes can be sorted with up to ten levels. If you don’t need thatl many Jevels
a compare value of -1 indicates that ouly previous levels have to be taken into
consideration (Assembler only).

If an indexid is passed, than the sort data will be overwritten. If a bufferid
is passed or default used, then a new index will be created. This new index will
automatically become the default index. The index itself has to be built with a call
to iIndexUPDATE.

Default fields are not accepted by this command.

Possible values for compare:

[name | bit [value [char | meaning]
mark H 1 | mMaA | mark records if equal (get value 25h)
line 2 4 1L place 1s a line nuinber
text 3 8 (T sorted as text (character field only)
case 4 16 <C compare case dependant (character field only})
VTS 5 321 -rR | reverse order (sort backwards)

T “text’ is set in compare, then eight characters are used with place as offset in
the character array (consided as groups of eight characters). The characters will be
sorted properly {not by tlLeir character code). If line’ is also sct, then the place will
be the start of the given line.

When a character field is sorted an ‘text’ is not indicated, then the text is
considered as raw data and sorted by the character code (no case conversion).

it A

o4 CHAPTER 3. COMMANDS

e a ficld is or is not cleared {present)

e acertain char (any of eight per level) is or 1s not present in the field (place = 0).
Zero bytes are not evaluated.

e or is present at a certain place in the field (place > 0}

o whether the mark status <, »,=.,<, >, # the given value (byte, left justified
in special) (unsigned compare)

¢ whether a valuein a nnmerical field <, >, =, <, >. # the given value (if place =
0 or element doesn’t cxist — levelstaius = false)

e whether a string {max eight, characters) is or is niot present in the field{place =
0). Zero bytes are not evaiuated. The string can be compared case dependant.

e or is present at a certain place in the field (place > 0)

SuperBASIC
FILTER #indexid, compare, field, place, value,. ..
place : short{l]
field : short
value : ‘special’, used to compare
the last four parameters can be repeated up to ten limes
fields can’t be passed by name
Assembler
FILT
indexid
ten times:short compare
short field
short place
‘special’ value to compare
return long indexid

long filter(long indexid, short number, short compare, short field,
short place, char *value[8],...);
the Tast four paraeters have to he repeated ‘pumber’ times

errors, code, meaning
iinf -7 invalid buflerid
imem -3 insufficient memory

3.14.3 Index UPDate

This command is nsed to actually build the index. It can also be nsed to re-build
it if there already is one.

Records which are locked when the index is being updated are not included in
the index.

Please note that it can not be pedicted which record will be the current after
execution of this command. This also means that it is possible that the current
record is actually not visible (meaning not m the index).

56 CHAPTER 3. COMMANDS

short level

ptr to short compare
ptr to short field

ptr to short place

long setsort(long indexid, short level, short *ernp, short *fid, short *place);

errors, code, meaning
itof -7 invalid indexid (or bufferid}
orng -4 level not in 1-10 range

3.14.6 Get Index Filter Level

Get the filier data for one specific level.

SuperBASIC

GETRlter #indexid, level, cmp, fld, place, value

ievel : short

cinp : short, updated compare

fid : short, updated field

place : shorl, updated

value : pointer to ‘special’, contents updated
Assembler

GIFL

indexid

short. level

update short compare (always updated)

update short field (always updated}

update short place (always updated}

update ‘special’ value {always updated)

long getfilter(long indexid, short level, short *cinp, short. *fid,
short *place, char *value{8]);

errors, code, meantug
itef -7 invalid indexid {(or bufferid)
orng -4 level not in J-10 range

3.14.7 Set Index Filter Level
Set the sort filter for one specific level. Should be followed by an indexUPDATE.

SuperBASIC
SETHlter #indexid, level, compare, fld, place, value
level : short
fld : short
place : short

value : ‘pointer’ lo special
Assembler
STFL

a8 CHAPTER 3. COMMANDS

errors, code, meaning
itnf -7 invalid indexid {or buflerid)

unew -3 insufficieni, memory

3.15.2 Index IMPlement

If you have a new record, or a record that you have {hopefully) deleted from the
index before you changed it {or wanled 1o}, then you can pul it {back) in the index
wilh this cornmand.

This command will only work if the record has already been IMPLEMENTed in
the file. So a new record is created and implemented in the current file and index
like this :

NEWTree : REMark take a new {empty} record
e : REMark fill in the record
IMPLEMENT : REMark implement 1n the file
indexIMPLEMENT : REMark implement in the index
SuperBASIC

indexIMPLEMENT #indexad
Assembler

ITMP

indexid
C

long indeximplement(long indexid);

errors, code, meaning
itnf -7 invalid indexid {or bufTerid)
imerr -3 insuflicient memory

3.15.3 Index ReMoVe

This command is used to entirely remove an index from memory.

SuperBASIC

indexREMOVE #tindexid
Assembler

IRMV

indexid
long indexremove(long indexid);

errors, code, meaning
itnf -7 invalid indexid (or bufferid)

3.16 Index information

3.16.1 <CouNT Records

This is the cormands which tells you how many entries there are in the given index.
If there is no index, it will give the number of records in the main file.

] CHAPTER 3. COMMANDS

errors, code, meaning

itnf -7 invalid bufferid

imem -3 insufficient memory

fdof -7 file or device not found

isyn -2 this is not a DATAdesign mdex file

any other file ifo error

3.17.2 Index SAVe

This command makes sure that there is an up to date version of your index on disk.
If no device is passed, and saving to just the medium-file-name doesn’. work, then
the file is saved to the DATA_USE device.

You can also state the overwrite status (over). If this is zero and the medium-file
already exists, an error will be reported. H over is set, then {lie medium-file will be
overwritten.

The medium-file will gel the ddi extension. This extension never has to be
specified.

SuperBASIC
indexSAVE #buflerid, filename, device, over
filename : [string]
device @ [string]
over : short{0]
Assembler
ISAV
hufferid
string filenaine
optional string device
short overwrite status

long indexsave(long buflerid, char *filename|],
char *device[], short over);

errors, code, meaning

ital -7 invalid bufferid

drfl -il drive full

fex -8 file already exisis
any other file 1/0 error

3.18 Index searching

3.18.1 Index FiND

The maiu reason for sorling files with indexes is that it allows for very f{ast searching
on the field of the first sort level,

This routine needs a ‘special’ parameter, which has to be of the iype defined by
the first sort level, It returns the indexid of the first record which equals the given

(32 CHAPTER 3. COMMANDS

3.19.2 [Edit string

The given string will be cdited in the given window. The entire window width can
be used. The striug is printed at the current cursor position, and can only use the
space between the current cursor position and the right hand side of the window.
Only ihe part to the right of the cursor posilion is cleared. READstring returns on
reading ENTER, ESC, UP arrow, DOWN arrow, tab, shift tab, any function key.
The cursor is posilioned at the end of the given string so that the string can he

edited.

SuperBASIC
EDITstring #ch, string
ch : SuperBASIC channel id (1]

string : updated string

errors, code, meaning
| >1{) termination character
; any i/o system error

4
:

e meSEG e —.

e AR L

=g

fi1

v.}3.04

v3.05

4.3

If vo
distr
have

CHAPTER 4. APPENDICES

FTILT on numerical fields didn’t work.
SORT/FILT/IFND now compare doubles correctly.
Problem when converting QL floats to doubles solved.

UNUS also closed the SAVI/SAVF channel when there was none. This caused

bad problems on Minerva rom. The engine now fully works on Minerva.
{18/04/1993)

FILT problem when compartng both positive and negative numbers solved.
IUPD did not Gl the fieldids in the index data.

FI.DT now accepts an indexid. This caused problewns when passing an indexid
to the FILTER command in SuperBASIC. (29/04/1993)

Licensing

u have written a program which uses the DATAdesign engine, and you want o
ibuie it eithier as public domain, shareware or commercial software, then you
two oplions

You can distribute tlie program without tlie DATAdesign engine, which puls
the obligation of buying DATAdesign or another program which inchudes the
engine on ihe user.

You can include the DATAdesign engine in the distribution. This would cost
you as distibutor BEF 100 for each program sold. We would have to be
nolified abhout this in advance, and payments should be handled at the end
of each quarter. You are nol allowed to give any comments on how to use
ihe DATAdesign engine excepl for loading and initialising. No part of this
manual may be included.

No other files may be copied then engine_rezt. The basic condition is a written
permision from PROGS.

If your application only extract data [rom a DATAdesign file, you can also
inctude the demo version of DATAdesign in your distribution. This allows
vou to include on-line help systems in ihe form of a database, and the user
can replace the demo version by the full version il he owas il.

So vou are allowed to copy the ¢ngine_demo_rext, DATAdesign_demo, and
DATAdesign.demo_tzt files frec of charge. You are not allowed to rename
these files, and the DATAdesign_demo_tzt should always be included. We
would like to be informed of projects which include the DATAdesign demo
version.

4.4 Overview of extensions

ADDF ADD Ticld
BACK BACKup of file
BCKW BaCKWard sonie records {= fast x times PREV)

ti-4

v1.04 FILT on nurnscoes! fislds didn’t work
SORT/FILT /15

Problem whe: -0

sonaw compare doubles correct [y

erting QL foals to donbles solved

UNUS a]so f_']’/f ore SXV]/SJ\VI')
Y . " channel wh N

bad problem: <. Mirerva rom. The en rineen there was Wy,

(18/04/1993 ngme now fully

305 FILT problers <o oo nn
JUPD did oo & -« Seldids in the index data
FLDT uow arvs o or panyid)

1ng boik positive and negadi
Al “'1-|.|

o o O

to the FILTE5 cem i his eansed problems whe, I

] Supr:rHAS](:v (29/04X1991) e

i

4.3 Licensing

If vou have writter = Zrgone o
3 W) e A N AT Iz i
distribute it either = - - . - oL Adesien o

. sunain. sharevare of il
have two optlons

COMTIETCEal 4,4 v
MR fll

e You can dists -, s s o et

0 digte e e =L Without the TATS —eo

the chligatior -7 - - o e DALAZaszs o
gatle SR LA TAdemgn OF anethes - —mames e

engine on the e ' TITTITR gy,

e You can inelise -e
vou as distii- :
notified abow - -
of each quare
the DATAde ;-

manual may -

Noother file -0 0 oo L
permision fro- ¥>7,72

o If your appl - -
include the - — . -
you to neluss - o - -
cap replace "o o L

So you are s e oeo- ool B
DATAdesigr com o =~ o o T ‘_i""’_ DT,
these files, = - . .- . _ .. TeE s s
would Yike . - - e <o o - "':-' —_ T
VErsion. T vIm o Zn sl

4.4 Overves -7 o

i I O e

ADDF AL 7 -
BACK Ba’: -
BOKW Ba' « oo e

66 CHAPTER 4. APPENDICES

INSE INSerl. array Elements

IRMY Tndex ReMoVe

[SAV Index SAVe

TUPD Index UPDate

LAST go o LAST editable record
LENF get LENgth of & feld

LENR get LENgih of the current record
LENS get LENgth of a String as a line
NEWF NEW File creation

NEWR NEW Record stari

NEXT go to NEXT editable record
NRLN get NumbeR of LiNes in a text field
PREV go to PREVious editable record
RMVE ReMoVe array Elements

SAVE SAVE file to mediun

SAVI 5AVe record sequence Initialise
SAVE 5AVe record sequence Finish
SAVR SAVe record

SCHR Set CHaR in a character array {string}
SDBL Set DouBLe (fp8&) array element
SFLD Set FielD contents

SFST Set FileSTatus {memory or disk-based)
SIFL Set Index Filter Level parameters
STRS Set Inter Record Space

SISL Set Index Sort Level parameters
SLNG Set LoNG integer array element
SMRE Set MaRK status

SORT set SORT parameters

SSHR. Set SHoRt integer array elernent
SSTR Set STRing as a jme

SVST Set View STatus

UNUS UNUSe a buffer

USE USE a file

4.5 Problems

We have noticed some problems thal may occur when using DATAdesign. These
problems can easily be prevented, but can cause major problems when you forget
them.

write protect 1f vou have a disk-based file, and the medium the file is stored
on is write protecled, thea problems have been known to occur. The fact that
your medium is wrile protected can sometimes not be reperted or only much too
late, and can sometimes even crash the computer. This problem may be hardware
dependant.

removing disk If you remove a medium on which a disk-based file is hased, and
vou try to read another medium from that drive, the computer will report a not

4.5. PROBLEMS 67

found error. You will have to re-insert the original disk. The problem can then be
solved by unusing all the buffers 1o all disk-based files on that mediuvm.

Problems may also occur if you try lo write to a disk-based file il the medium
is not present. The medium-file should however not be corrupted.

not found this crror may be reported when you still have disk-based files on a
medium in a drive where you have inserted another medinm. Try replacing the
medium with the original and remove alil buffers which access that file. Also sec:
retuoving disk.

1.4

OVERVIEW OF EXTENSIONS

CMRK
CNTA
CNTF
CNTR
CYCB
CYCF
CYCL
NATE
DEFB
DEFF
DEFI
DELE
DUPL
FDEV
FILT
FLBO
FLDD
FLDN
FLDR,
FLDT
FNAM
FNDT)
FNDI
FNDS
FOBW
FRST
GARB
GCHR
GDBL
Gr1L.D
GFST
GIFL
GIRS
GISL
GLNG
GMRK
GREC
GSHR
GSTR
GVST
IDBF
1DEL
IDFI
IDIN
iDRE
[FND
1IMP
ILOA
IMPL

Clear all MaRK statusses

CouNT Al records

CouNT all Tields

CoulN'T visible Records

CYCle through Buffers for this job
CYCle through Fields

CYCLe through files being edited /vicwed
get, DATE when record was last implernented
DEFault Buffer setting

DEFault Ficld setting

DEFaalt Index setting

DELEte current record from [ile
DUPLicate record

FileDEVice we are working on

set FILTer parameters

FieLD Clear (buffer or all)

FieLD) Delele

FieLDName when id given

FieLD Reaname

FieLDType when id given

FileNAMe we are working on

FiND Deouble

FiND Integer

FiND String

FORWard some records (fast x times NEXT)
go to FiRST editable record

GARBage collection

Get CHaR in a character array (string)
Get DouBLe (ip8) array element

Get FieLD contents

Get FileSTatns {memory or disk-based)
Get Index Filter Level parameters

Get Inter Record Space

Get Index Sort Level parameters

Get LoNG integer array clement.

Get MaRK status

Get RECord with given id and put it in buffer
Get SHoRt integer array element

Get STRing as a line

Get View STatus

ID of default BuFfer

{ndex DELele

1D of Fleld with given name

1D of defanlt INdex

1D of REcord we are editing

index FIND

Index IMPlement
Index LOAd
IMPLement record in file

4.4, OVERVIEW OF EXTENSTONS i)

CMRK
CNTA
CNTV
CNTR
CYCB
CYCF
CYCL
DATE
DEFDB
DLFF
DEFI
DELE
DUPL
FDEV
FILT
FLBC
FLDD
FLDN
FLDR
FLDT
FNAM
FNDD
FNDI
FNDS
FORW
FRST
GARB
GCHR
GDBL
GFLD
GFST
sIFL
GIRS
GISL
GLNG
GMRK
GREC
GSHR
GSTR
GVST
IDBF
1DEL
IDFT
IDIN
IDRE
IFND
IIMP
ILOA
IMPL

Clear all MaRK statusses

CouNT All records

CouNT ali Fields

CouNT visible Records

CYCle through Buffers for this job
CYCle through Fields

CYClLe through files being edited /viewed
get DATE when record was last implemented
DEFault Bufler setting

DEFault Field sctiing

DEFault Index setting

DELEte current record from file
DUPLicate record

FileDEVice we are working on

set FILTer parameters

FieL.D Clear {bufler ot all)

FielL.[} Delete

FieLDName when id given

FieLD Rename

FieLDType when id given

FileNAMe we are working on

FiND Donble

FiND Integer

FiND Striag

FORWard some records (fast x times NEXT)
go to FiRST editable record

GARBage collection 5

Get CHaR in a character array (string)
Get DouBLe (fp8) array element

Get FieLD contenls

Get FileSTatus (memory or disk-based)
Get Index Filter Level parameters

(Get Inter Record Space

Get Tndex Sort Level paramelers

Gel LoNG integer array element

Get MaRK status

Gel RECord with given id and put it in buffer
(et SIIoR(integer array elemenut

Get STRing as a line

Get View STatus

1D of default BuFfer

Index DELete

ID of Fleld with given name

ID of default INdex

ID of REcord we are ediling

Index FIND

Index IMPlement

Index LOAd

IMPLemeni record in file

Chapter 4

Appendices

4.1 Compilation

It may be interesting for speed reasons to contpile SuperBASIC programs which use
the DATAdesign engine. But because the intelligence of the SuperBASIC interface
depends on internal structures of SuperBASIC, it is not possible to use Turbo. The
programs can however easily be compiled by Qliberator.

When compiling a program using Qliberator, you should think of one thing.
Qliberator is an intelligent, optimising compiier, throwing out all code which 1s
useless. Qitbrator does however assume that routines Lave no side-effects. Th
problem is that setting the dd_err variable is actually a side effect, so all tests for
dd_err will be thrown out of the program. For this reason you should introduce
some lines, preferably lines which are never execuied. Something like this will do:
IF string$="xyw(©’ THEN print dd_err
where the variable preferably will never get that value, so the dd_err is never actually
printed, and where the variable should not have a value which can be predicted (or
at leasi not bu Qliberator}.

4.2 Versions

v3.00 current version, not compatible with previous versions {vlxx}.

v3.01 NEWR adjusted to work on read-only files.
NEXT/PREV/LAST/FRST has problems with indexes without sort.
FILT could not AND levels together properly.
FILT compare as string added.
FORW/BCKW added. (02/03/1993)
v3.02 UNUS had a bug, the current record remained locked. This also solves this
problem in GARB.
v3.03 There was a very bad incompatibility with Minerva rom.

SAVF forgot to allow access for new SAVI. This made it impossible to BACKap
more Lhan once.

63

J.19. DATA INPUT 61

item which has to be found. Subsequent records with the same value can be lound
with the NEXTree command.

SuperBASIC
record= indexFINTD (#buflerid, item)
item : ‘special’
Assembler
TFND
bufferid
‘special’ 1lem 1o find
return long recordid

long indexfind{long bufferid, char *special[8], long *return);

errors, code, meaning
itnf -7 invalid bufferid
or not found (return = —1)

3.19 Data input

Tor the SuperBASIC programmers we have added two routines in the SuperBA-
SIC interface to make the input and editing of sirings somewhal easier. 1n fact
these routines are similar to some Window MANager routines, which are however
not available through the QPTR interface. These WMAN routines were already
available in C and Assembler, and so only the SuperBASIC interface is explained
here. We have however implemented slightly different routines, which can be exited
by some more keypresses, and there is alse a small difference in the parts of the
window that are cleared.

3.19.1 Read string

The given string will be edited in the given window. The entire window width can
be used. The string is printed at the current cursor position, and can only use the
space between the current cursor position and the right hand side of the window.
Only the part to the right of the cursor position is cleared. READstring returns on
reading ENTER, ESC, UP arrow, DOWN arrow, tab, shift tab, any function key.

The cursor is positioned al the starl of the given siring. 1f the first typed
character is printable, then the okl string is thrown away. However if {he first typed
character was SPACE then READstring will treat this as ENTER.

SuperBASIC
READstring #ch, string
ch ¢ SuperBASIC channel 1d [1]
string : updated siring

errors, code, meaning
>0 termunalion character
any i/o system error

3.17. INDEX LOADING/SAVING 09

Please note that you have to mainlain your index property if you want to get a
reliable result from this command. If vou don’t, there may even be meore records 1n
your index as there are records in the file.

Another important remark is that this command should not be used o know
how many records there are if you want to access all of them. In that case you
should use some code like:

dd_err=0

F1RSTrec

REPeat loop
IF dd_err THEN EXIT ioop
REMark do whalever yon want with the record
NEXTrec

END REPeat loop

SuperBASIC

number= COUNTrec (#indexid)
Assembler

CNTR

indexid

return long number
C

long countrec(long indexid, long *return);

errors, code, meaning
itnf -7 invalid indexid (or bufferid) -

3.17 Index loading/saving
3.17.1 Index LOAd

Naturally, it may be necessary to load indexes from disk. This needs a medium-
file-name and a device.

The file which is loaded needs the _ddi extension. Tlis doesn’t have to be
specified.

The newly created index will become the defaull one.

SuperBASIC
indexLLOAD #bufferid, filename, device
filename : string
device : [siring]
Assembler
1ILOA
bufferid
siring filename
oplional string device
return indexid

long indexload(long bufferid, char *ilename(], char *device{});

3.15. INDEX MAINTENANCE D

=1

indexid

short level

ptr to short compare
ptr to short feld

ptr to short place
pir to ‘special’

fong setfilter(long indexid, short level, short *emp, short *{ld,
short, ¥place, char *value[&]);

errors, code, meaning
itnf -7 invalid indexid (or bufferid)
orng -4 level not In 1-10 range

3.15 Index maintenance

This section contains some commands which are quite crucial to the proper opera-
tion of ail commands related {o indexes. There is the command to remove an index,
but also some commands to assure index integrity.

When a record which is in an index is changed in a crucial place (any of the
places which are relevant for the sorting or filtering of the record in the index), then
the record can’t be retrieved in the index any more, However the reference in the
index will still exist. There are two methods to overcome this problem. You either
have to update the index occasionally®, or you have io preserve index integrity with

the indexDELETE and indexIMPLEMENT commands.

3.15.1 Index DELete

If you want to remove a record from the file, or you may change a record, ihen it is
best Lo delete it from the index.

This command will only work if the record you want {o remove is still identical
{o the one thal was put in the index® as records in indexes can only be retrieved by
their contents (and not by recordid).

So if you want to delete a record from the current bufler and the current index
you should use a line like :
indexDELETE : DELrec

SuperBASIC

indexDELETE #indexid
Assembler

IDEL

indexid
C

long indexdelete(long indexid};

5actnally, it is always intersting to do this from time Lo time. Records which are changed (or
created) by other buffers can’t preserve the integrity of your index
€which means that critical paris of the record have 1o be unchanged

3.11. INDEX MANIPULATION 35

SuperBASIC

indexUPDATE #indexid
Asscmblier

TUPD

indexid

long indexupdate{long indexid};

errors, code, meaning

wnf -7 invalid indexid (or buffend)

imem -3 imsufficient memory

ipar -15 something in the sort or filter data is impossible
any error returned by GETrec (except fdin)

3.14.4 Get Index Sort Level

Get the sort data for one specific level.

SuperBASIC
GETsort #indexid, level, cnp, ild, place
level : short '
emp : short, updated compare
fld : short, updated field
place : short, updated

Assembler
GISL
indexid
short level
update short compare (always updated]
update short field (always updated)
update short place (always updated)

long getsort{long indexid, short level, short *emp, shorl *fid, short *place);

errors, code, meaning
itnf -7 invalid indexid (or bufferid)
omng -4 level not in 1-10 range

3.14.5 Set Index Sort Level
Set, the sort data for one specific level. Should be followed by an indexUPDATE.

SuperBASIC
SETscrt #indexid, level, compare, fid, place
level : short
fld : short
place : short
Assembler

SISTL
indexid

3.14. INDEX MANIPULATION 53

If an element is not provided, it will be pul at the end, except when ‘text’ is
indicaled, then 1t will be put at the start (so that “Jo” will come before “Jona”).

Equal records can be marked with mark value 255 is ‘mark’ is st in compare
for the first level.

SuperBASIC
SORTile #indexid, compare, field, place,. ..
field : short
place : shori[1]
the last three paramcters can be repeated np to ten times
ficlds can’i be passed by name
Assembler
SORT
indexid
ten times:shorl compare
short field
short place
return long indexid
C
long sortfile(long indexid, short number, short compare, field, place,...);
the last three parameters have to be repeated ‘number’ times

errors, code, meaning
itnf -7 invalid bufferid or indexid
imem -3 insufficieni memory

3.14.2 FIlLTer

Routine to determine which records should be in the index and which not.

Indexes can be filtered with up to ten levels. If you don’t need that many levels
a compare value of -1 indicales that only previous levels have to be taken into
consideration (Assembler only}. The levels are evaluated from left to right.

If an indexid is passed, than the filter data will be overwritten. If a bufferid
is passed or default used, then a new index will be created. This new index will
automatically become the default index. The index 1tsclf has to be built with a call
to indexUPDATE,

Defanlt fields are not accepted by this command,

Possible values for compare:

| name [bit | value [char | meaning

mark 0 1 | mMaA | filter on mark status

and 2 41 &IL | AND (bit set) or OR (bit clear) this level to the previous
empty 3 8 { eEtT | the field has to be cleared

case 4 16 cC compare case dependant (character field only)

not 5 32 R not {char field only, or in combination with ‘empty’}

equ 6 64 = value in field has o be equal (not char/raw)

smal 7 128 < value in field has to be smallter (not char/raw)

larg 8 256 > value in field has to be larger {(not char/raw)

str 9 512 87 string has to be in field

These compare codes allow vou to test whether

3.13. DEFAULTS 51

long bufferid(long *result);

errors, code, meaning
nane

Or you can sel it like this :

SuperBASIC
DNEFbufler 1d
id : long
Assembier
DEFB
long bufferid
C
long defbuffer(fong bufferid);

errors, code, meaning
inf -7 invalid bufferid
jjob -2 this buffer is owned by another job

3.13.2 Default field

Every buffer can have a default field. You liave {0 keep track of this, as you can’t
find out what the default field is ai a given moment,

SuperBASIC

DEFficld #buflerid, field
Assembler

DEFF

bufferid

short field

long deffield(long bufferid, short field);

errors, code, meaning

itnf -7 invalid buflerid

3.13.3 Default index

Every bufier also has a defanit index for it. Reading is done like this :

SuperBASIC

id= index1D (#tbufferid)
Assembler

TIN

bufferid

return long indexid
C

long indexid{long bufferid, long *resuit);

3.12. SEARCHING 19

SuperBASIC
FIN Dinteger #bufferid, ficld, compare, value, rfield, rplace
value : short
rlield : [short], updated il passed
rplace : [short], updated if passed
Assembler
FNDI
mdexid
field
short. compare
long valne to find
long 0 (unused)
update short fieldid where found
update short place in field where found

!

long findinteger{iong indexid, short ficld, short cmp, long value,
short *rfield, short *rplace);
errors, code, meaning
itnf -7 invalid bufferid or indexid
or not found
ipar -15 invalid fieldid (wrong lype or doesn’t exist)
imem -3 insafficient memory for FRST/LAST/NEXT/PREV

3.12.3 FiND Double

Find a double. .

This is a fragile command as the doubles have to match exactly. This can
however not be guaranteed because of rounding errors, and because some programs
use real ieee donbles (most C-programs written for DATAdesign, unless they were
read {rom ascii in which case they usually convert ieee floats to doubles), and some
programs convert QL floats to doubles, thus joosing accuracy (mainly SuperBASIC
programs, and also the DATAdesign main program). Actually in SuperBASIC it is
even worse as you can only pass the value to find as a float which is converied 1o
a double. This should not be a problem as you will probably do everything with
converted floats.

SuperBASIC
FIN Dfloal #bufferid, field, compare, value, rfield, rplace
value : float
rfield : [short], updated if passed
rplace : [short], updated if passed
Assembler
FNDD
indexid
field

short compare

double value to find

update short fieldid where found
update short place in field where found

3.12. SEARCHING 47

3.11.2 Set MaRK status

The mark status will only be changed in the file after implementing !
The mark status is air unsigned byte, so a value between (0—255, and is called
clear when it is zero.

SuperBASIC
SETmark(#buflerid, value)

value : short

Assembler
SMRK
bufferid
byte value

C

long setmark(long bufferid, char value);

errors, code, meaning
itnf -7 invalid bufferid

3.11.3 Clear all MaRK statusses

You can also clear the mark status for all records in the file. Note that locked
records may not he affected when they are re-implemented.

SuperBASIC
CLEARmark{#buflerid)
Assembler
CMRK
bufferid

long clearmark{long buflerid};

errors, code, meaning

itnf -7 invalid bufferid

syn -2l internal file structure corrupted (should not oceur)
any file 1/o error (should not occur)

3.12 Searching

This section describes how you can search your file in a slow, linear, but flexible
way. The following commands can search in one field only if you give a fieldid, or
in all fields with a suitable type if vou don’t specify a field. The value which is
searched can be anywhere in the field(s), and the place where the value was found
can be returned on request.

The FIRSTrec, LASTrec, NEXTrec, PREVrec commands are used internally for
navigation, so the default indexid is important! However, these commands only
accept a bufferid as parameter. So if you want to use a given indexid you should
use some code like:
keep = indexID{#bid)

3.10. RECORD INFORMATION 45

3.9.4 NEW Record

Make sure the record in the bufler is a new one. This means that the current record
will be empty (all fields cleared), and without recordid just yel.

SuperBASIC

NEWree #bufferid
Assembler

NEWR

buflerid
C

long newree(long bufferid);

errors, code, meaning
itnf -7 invalid buflerid

3.10 Record information

3.10.1 DATE of last change to record

Get the date and time when the curreni record was last implemented.

This routine returns zero if the current record hasn’t been implemented just yet.
The returned value is a long word which is derived from the internal clock of the
QL. So the date of the current record in the default buffer can be printed like this

PRINT DATES(record DATE)

SuperBASIC

date— record DATE(#tbufferid)
Assembler

DATE

bufferid

return long date
long recorddate(iong bufferid, long *result});

errors, code, meaning
itnf -7 invahd bufferid
any file 1/o error

3.10.2 1ID of current Record

Get the recordid of the current record.
This routine returns -1 if there is no recordid for the curreat record just yet*.

SuperBASIC

id= recordID{#bufferid}
Assembler

IDRE

bufferid

1.1 is an impossible recordid

3.9, RECORD MANIPULATION 43

ipar -1b field doesn’t exisi
place has to be > 0
number has to be > 0
mnem -3 insuflicient memory
rdo -20 read only buffer

REMove Elements

This command allows you to remove some array elements from a field.
The first elements to be removed is given in place.

SuperBASIC
REMOVEe! #bufferid, field, place, number
place : short{1]
nutnber : shori[1]
Assembler
RMVE
bufferid
field
short place
short nuimber

long removeel(long bufferid, short field, short place, short number);

crrors, code, meaning

itaf -7 invalid bufferid

ipar -15 field doesn’t exist

orng -1 place has to be > ()
number has 1o be > 0

imem -3 insufficieni memory

rde -20 read only buffer

3.9 Record manipulation

Now that we know how we can change the data in a record, we also have to be ahle
to copy them back into the file (implement them}, to create new records, ...

3.9.1 DELEte record

Delete the current record from the file. The record will remain in the buffer, but
the recordid will have changed if you re-implement it! When followed by a NEWrec
or GETrec or similar command, the record can’t be retrieved.

SuperBASIC

DELrec #bufferid
Assembler

DELE

bufferid

3.8. FIELD INFORMATION

Assembler

C

SLNG
hufferid

field

long value
long clement

long setlong(long buflerid, short field, long line, long value);

errors, code, meaning

Hnf -7 invahlid builerid
ipar -15 invalid fieldid

or field has wrong type
orng -4 element has to be > 1
imem -3 insufficient memeory
rde -20 vead only buffer
Set DouBLe

11

Set a double in a field of doubles. If the field was not present, it wiil be created. I
the element already existed, it will be overwritten. If there were fewer elements in
the field, then new zero elements will be created as filling.

SuperBASIC

SETfloat #bufferid, value, field, element

value : float

element : short[1] i

or if you want to set the value as.an jeee double :

SETdouble #bufferid, place, field, element

place : fong, pointer to 8 bytes where the double can be found
element : short[1]

Assembler

C

SDBL
bufferid

field

double value
long elernent

long setdouble(long bufferid, short field, long line, double value);

errors, code, meaning

itnf -7 invalid bufferid
ipar -15 invalid fieldid

or field has wrong type
orng -4 element has to be > 1
imem -3 insufficient memory
rdo -20 read only buffer
Set STRing

Set a line in a character field. If the field field was not present it will be created. If
the line already existed it is overwritten. If there were fewer lines in the field, then

3.8. ITELD INFORMATION 39

C
long getline(long bufferid, short field, long line, char *return]
short space);
space : the space which is available for the string
errors, code, meaning
itnf -7 invalid bafferid
or field not present in this record
ipar -15 invalid fieldid
or field has wrong type
orug -4 line has to be > 1, bul may not exist
bl -5 buffer full (line is longer than return string can contain,
the return buffer will be fiiled)

L]

3.8.3 Setting data
Set FielLD

5el the contents of an entire field. The type of the field is not considered. This is
the only way you can set the contents of a ‘raw’ field.

SuperBASIC
SETfield #buflerid, field, length, place
length : short
place : long, ptr to buffer

Assembler
SFLD .
bufferid \
fickd
long length of data in buffer (in bytes)
pointer to buffer

C
long setfield(long bufferid, short field, long lenglh, char *buffer);

errors, code, meaning

itnf -7 invalid bufferid

ipar -15 invalid fieldid

mmem -3 insufficient memory

rdo -20 read only buffer

Set CHaRacter

Set a character in a character field. If the field was no{ present, it will be created.
If the element already existed, it will be overwritten. If there were fewer elements
in the field, then new spaces will be created as filling.

SuperBASIC
SETchar #buflerid, char$, field, element
char$: character
element. : shortfi]

Assembler

SCHR

3.8 FIELD INFORMATION 37

char$= GETchar$ (#bufferid, field, clement)
element : short[1]
Assembler
GCHR
bufferid
field
long element
return char
C
long getchar(long buflerid, short field, long element, char *return);
errors, code, meaning
itnf -7 invalid bufferid
or field not present in this record
ipar -13 invalid fieldid
or field has wrong type
orng -4 element has to be > 1, bul. may not exist

Get SHoldt
Gel a short from a field of shorts.

SuperBASIC
value= GETshort (#bufferid, field, element}
clement : short[1]
Assembler
GSHR
buflerid
field
long element
return short
C
long getshort{long bullerid, short field, long element, short *return);
errors, code, meaning
itnf -7 invalid bufferid
or fiekd not present in this record
ipar -153 invalid fieldid
or field has wrong type
orng -4 element has to be > 1, but may not exist

Get LoNG

Get a long from a feld of longs.

SuperBASIC
value== GETlong {#hufferid, field, element)
element : short]1]

Asgembler

GLNG
bufferid
field

3.8. FIELD INFORMATION

SuperBASIC

len= fiel dLEN(#buflerid, field)
Assembler

LENF

bufferid

field

return long length

long fieldlen(long bufferid, short field, long *result);

errors, code, meaning
itnf -7 invalid bufferid
or field not found

LENgth of String in field
Get the fength of a line in a character field.

SuperBASIC
length= lineLEN(#buflerid, field, line)
line : short{1]
Assembler
LENS
bufferid
field
short line
return long length

long linelen{long bufferid, short field, long *result};

errors, code, meaning
itnf -7 invalid bufferid
: or field not present (i.c. field is clear)
or line not present
ipar -15 field doesn’t exist
or 1sn’t a character field
orng -4 line has to be > 0, but has {o exist

NumbeR. of LiNes in field
Gel the number of lines in a character field.

SuperBASIC

number= NRlines(#hbuflerid, field}
Assembler

NRLN

bufferid

field

return long number of lines

C

3.8 FIELD INFORMATION 33

CNTF
bufferid
return short number of ficlds

)

long nrfields{long bufferid, short *result);

errors, code, meaning
inf -7 invalid bufferid

CYCle Fields

This command allows you to find cut al you want Lo know about all the ficlds in as
few calls as possible. Given a seed fieldid, you can get fieldname, type and fieldid
all in one go.

A fielduame is maximum 16 characters long and that amount of space has to be
available in the return string {no problem in SuperBASIC).

This cormpand can’t give any information about fieldid zero, but that is no
problem as that field ALWAYS is the “MEMO” ficld.

SuperBASIC
name$= CYCLEfield$ (F#bufierid, seed, type)
seed : short, updated with fieldid
type : updated short
Assembler
CYCF
bufferid
short seed, can be updated
short type, can be updated
return string fieldname

Jong cyclefield(long bufferid, short *sced, short *type,
long *return[]);

errors, code, meaning

inf -7 invalid bufferid

orng -4 a fieldid always has Lo be in the 0-255 range
eof -10 no fields left (seed updated to zero)

FieLD Type
Get the type of the given field.

SuperBASIC

type= field TYPE{#indexid, field)
Assembler

FLDT

indexid

field

return short field type

C

3.7. FIELD MANIPULATION 31

iype : shortf2]
Assembler

ATIDF

buflerid

string fieldname

short fieldtype

long addfield(long bufferid, char *fieldname[], shorl type);
*fieldname[] doesi’t have to be at an even address

errors, code, meaning

ienf -7 invalid bufferid

orng -4 {icldiype has to be in the 1-5 range

tnam -12 invalid fieldname (uull name not accepted)
fex -8 fieldname already exists

drfl -11 too many fields already (max 256 felds)

3.7.2 FieLD Clear

This command can be used to clear a field in Lhe current or in all records. A field
is considered as cleared when it is not present in the record. An empty field is not
considered as cleared, i.e. all non-existing ficlds are cleared, while a field is emnpty
when it is in the record, but there is no data in it. Tf you try to read a value from
an empty field, the engine gives an out of range error, but when you try to read
from a cleared ficld, an not found error 1s returned. All fields in a record are cleared
until somebody puts same data in if.

When you select all, and the requested field exists, then the record will be
implemented first. It is impossible 1o know which record will be in the buffer after
this command has finished. The given field will not be cleared in Jocked records
{except the current record).

SuperBASIC

fieldCLEAR #buflerid, field, all

all : short {(# 0 — all, 0 — current record only)
Assembler

FLDC

bufferid

fieid

short all status

long fieldclear(long bufferid, short field, short all);
errors, code, meaning

ttaf -7 invalid bufferid
any error {rom IMPLement

3.7.3 TieLD Delete

This comeand can be used to remove a field from a file. It can only be called if
the given bufler is the only bufler which has access to the file, Yon can’t delete the

1.6. FILE SAVING 29

This routine also takes the IRS into account. Also note that the channel should
be closed with SAVEfinish if au error occurs.

SuperBASIC

SAVErece ##bufferid
Assembler

SAVR

bufferid

tong saveree(long bufferid);

errors, code, meaning

itnf -7 invalid bufferid

drfi -11 drive full

orng -4 this is a new record, not accepted
any other file i/o error

SAVe record sequence Finish

Close the file for the save record sequence for the given buffer,

SuperBASIC

SAVEfinish #bufferid
Assembler

SAVF

bufferid

long savefinish(long bufferid);

errors, code, meaning
nl -7 invalid bufferid

3.6.4 Merging another file

On some accasions it may be necesary {0 inerge in another file to the current one, and
although there is no extension to do this, we hereby supply a routine which should
do the trick. It is the routine which was actually incorporated in the DATAdesign
main program.

This routine has the advantage of putting fields which already existed {same
name) at the same place, and creating new fields for the others. So you should take
care with the fieldnames (even inore hecause they are case dependant).

On the other hand the routine we present here lacks some error trapping, and
it also doesn’ check whether the ficlds in the different files have actually got the
same fieldtype. This may cause some strange effects.

Only the actual merging is handled here. The file ‘merge’ is merged in with the
current file. Two more variables have to be set: "buffer’ which contains the address
of some memory which can be used to copy the fields, and ’maxlen’ which is the
length of this buifer. This buffer can be allocated and released with the lines
buffer=ALCHP(maxlen)

3.0, FILE SAVING 27

The other way to make a backup of your files is by closing the file and copying
it manually, this is however not as easy as using this command. When making a
backup of a disk-based file, it is impossible to put the backup on another disk in
the same drive,

This routine always makes a backup of the entire file, and is actually just an
mnplementation of this SuperBASIC program:

DEFie PROCedure backup (bid, name, dev, over}
keep=bufferID : DEFbuffer=bid
keepi=indextD : DEFindex=0
keepv=VIEWstatus : SETVIEWslatus 1
dd_err=0
SAVEinit name, dev, over
IF dd._err THEN RETURN
FIRSTrec
REPeat loop
SAVErec : T¥ dd_esr THEN EXIT loop
NEXTrec : IF dd_err THEN EXIT loop
END REPeat loap
SAVEfinish _
SETVIEWSTATUS keepy : DEFbuffer keep : DEFindex keepi
END DEFine backup

Tlis program changes the viewslalus to view only as this makes sure that all
records are actually saved. This program does however not return any error, con-
trary to the routine in the engine. Tt doés show how to make sure that all statusses
are preserved when the routine ends.

A similar routine could be implemented if you want to save all the record in a
certain index, or if you wani. to save only certain fields.

SuperBASIC
BACKIfile #bufferid, filepame, filedevice, over
filename : [string]
filedevice : [string]
over : short{0]
Assembler
BACK
buflerid
optional string filenarue
optional string filedevice
short overwrite status

long backfile(fong bufferid, char *filenamef],
char *filedevice[], short over);

errors, code, meaning

itnf -7 invalid bufferid
defl -11 drive full

fox -8 file already exists

3.5. FILE INFORMATION 25

CNTA
bufferid
return long number

long countali(long bufferid, long *return);

errors, code, mcaning
itnf -7 invalid bufferid (or indexid actuatly)

3.5.4 Get Inter-Record-Space

Find out the current value for the inter-record-space.

SuperBASIC

irs= GET_IRS {F#hufferid)
Assembler

GIRS

bufferid

return short irs

long get_irs{long bufferid, short *return);

errors, code, meaning
itnf -7 invalid bufferid

3.5.5 GGet FileSTatus

Find out whether ihe file this buffer works on is memory-based (status = 0), or
disk-based (status = 1}.

SuperBASIC

status= FTLDstatus (#bufferid)
Assembler

GI'ST

bufferid

return short status

long filestatus(long bufferid, short *return);

errors, code, meaning
itnf -7 invalid bufferid

3.5.6 Get ViewSTatus

Find out whether this buffer is read/write (status = 0), or view only (status = 1}.

SuperBASIC

status= VIEWstatus (#bufferid)
Assembler

GVST

3.4 FILE NAVIGATION 23

or record not found (invalid recordid)
imem -3 insufficient memeory (record too long)
fdin -9 record iu use by another buffer {rcad/write buffers only)

3.4.6 FORWard

Get a certain following record. This command allows you to skip some records, that
is to move through the file with a relative displacement. When given a displacement
of one, this comnmand is the same as NEXTrec.

If the requested record was locked, it will take the NEXT record.

The displacement should always be positive. Any value smaller than one will be
treated as il it was one.

SuperBASIC
NEXTrec #indexid, displacement
displacernent : short
Assembler
FORW
indexid
short, displacement

long forward(iong indexid, short displament);

errors, code, meaning
itnf -7 invalid index- or bufferid
no next record found :
imem -3 insufficient memory {ounly possible with indexes)

3.4.7 BaCKWard

Get a certain preceding record. This command allows you to skip some records, that
1s to move through the {ile with a relative displacement. When given a displacement
of one, this command is the same as PREVrec.

If the requested record was Jocked, it will take the PREVious record.

The displacement shounld always be positive. Any value smaller than one will be
treated as if it was one.

SuperBASIC
PREVrec #indexid, displacernent
displacement : short
Assembler
BCKW
indexid
short. displacement

C
long backward(long indexid, short displament};

errors, code, meaning
wnf -7 invalid index- or bufferid
no next record found

3.4. FILE NAVIGATION 21

3.4 File navigation

All these commands (except Get RECord) only require one parameter, an indexid.
If you specily an indexid, then the order of the records in that index will be used.
If you specify a bufferid, then the order of the records in the defsult index for that
buffer will be used. If there is no index for that buffer or the default indexid is zero,
then the order of the records in the file will be used. That is the order specified
by the recordid. Not specifying an indexid is the same as specifying the default
bulferid.

3.4.1 FiRST record

Get the [irst available record. That is the first record if the given buffer is view
oaly, or if the first record is not locked, else it is the first, record which is not locked.

SuperBASIC

FIRSTrec #indexid
Assembler

FRST

indexid

long firstree{long indexid);

errors, code, meaning
itnf -7 invalid index- or bufferid
no first record found
imem -3 insufficient mermory {only possible with indexes)

3.4.2 LAST record

Get the Jas{ available record. That is the last record if the given buffer is view only,
or 1f the fast record is not locked, else it is the last record which is not locked.

SuperBASIC

LASTrec #indexid
Assembler

LAST

indexid

long lastree(long indexid};
errors, code, tneaning
itnf -7 invalid index- or bufferid

no last record found
imem -3 insufficient memory {only possible with indexes)

3.4.3 NEXT record

Get the next record 1n the list which is not locked.

3.3, FILE MAINTENANCE 19

short irs
("1
long set.irs{long buflesid, short irs);

errors, code, meaning
itnf -7 invalid bufferid

orn -4 inter-record-space not in 0-255 range
o g

3.3.3 Set FileSTatus

This routine allows you o determine whether the file is to be disk-based or memory
based. You can give a filenaine and filedevice in case yon want 1o inove the file to
disk.

When vou make a file disk-based (sfatus = 1}, then the file is overwritten, so
be carefull when giving the filename and filedevice.

When you move the file to memory (status = 0), then the file-status is not
changed on the medium-file. So if you don’t save the file afterwards, and you load
1t again later (with a USEfile command), then the file wiil still be disk-based.

When an crror occurs during the moving of the file from disk to memory (or vice
versa), then BIG problems may occur. This can be tested by comparing the record
count before and after the move. The buffer will be unused if problems occur when
making the file memory-based.

The medivm-file will get the _ddf extension. This extension never has to be
specified. When it is specified, it also be included in the filename.

SuperBASIC *
SETFIlEstatus #bufferid, status, filedame, filedevice
status : short
filename : [string]
filedevice : [string]

Assembler
SFST
hufferid
short status
optional string filename
opticnal string filedevice

long setfilestatus(long bufferid, short status, char *filenamel],
char *device[]);

errors, code, meaning
itnl -7 invalid bullerid
ipar -15 status hastobe O or 1
no filename
any file 1/0 error (see SAVE and USE)

3.3.4 Set ViewSTatus

This rontine allows you to change ihe view status of the given buffer.

32 BUFFER MAINTENANCE 17

3.2 Buffer maintenance

3.2.1 UNUSebuffer

When you don’t need a certain buffer any more, you have to call this command to
remove it from memory. If the given buffer was the only buffer with access to a
certain file, then the file will be closed as well.

Note that all buffers have to be removed before removing a job, as the buffers
will otherwise remnain in memory uniil the next garbage collection,

SuperBASIC

UNUSEbuffer #buflerid
Assembler

UNUS

bufferid
C

long unusebuffer{long bufferid};
errors, code, meaning
no errors possible

3.2.2 CYCle Buffers for this job .

If you want to find out which buffers are in use by your job, you can cycle througl
tlem with this command. To get the first bufler in the list, you have to call it
withoul specilying the bufferid. In any olher case, the bufferid of the next buffer is
returned, or zero if there is no next buffer.

In SuperBASIC this can be used to remove all buifers like this :

dd_err= 0
REPecat loop
UNUSEbuffer #CYCLEbufler
IF dd_err THEN EXIT loop
END REPeat loop

SuperBASIC

return= CYCLEbuffer (#buflerid}
Assembler

CYCB

buiterid

return long bufferid
long cyclebuffer{long bufferid, long *return);

crvors, code, meaning
itnf -7 invalid bufferd

3.3 File maintenance

These commands are all specific to the file. You only have Lo specify a bufferid so
that the engine knows which file you want to change something for. The changes
are however relevant for all buffers which use that file.

Chapter 3

Commands

Here is a list of all the commands. They are all listed with a complete explanation
of what they do and what the parameters mean. That is then foliowed with the
specific language commands which have to be used.

3.1 Creating a buffer/file

Althouglt the commands in this section are called NEWfile and USEfile, these are
the commands which actually create new buffers, and which may —if that is the
case— create a new file,

3.1.1 NEWTFile

This command always creates a new file. The new file will be empty (no records
in it), memory-based, and won’t have any fields, except one. All files always have
a “MEMO" field. This is a character field, which is supposed to be invisible. Tt
always has fieldid zero, and can never be deleted. 1t is included to make sure a file
always has a ficld, and so you can have “invisible” notes.

When a file is created, yon immediatly have the possibility to set the filename.
You don’t have to do this, but it is always inleresting to do so. It makes sure
that you haven’t got several un-named files flying about in memory, which can’t be
accessed by another job. You can create a file with a name that is already used by
another file which is used, so be careful.

The new buffer will immediatly be the defaunlt buffer for the current job.

SuperBASIC
NEWIile filename
filename : [string]
Assembler
NEWF
filenanie : [string)
bufferid : return long

C

long newfile(char *filenamel]);

2.3 CINTERFACE 13

double this parameter is passed as an 8 bytes IEEE double.

return/update string the returned string can be either a QI string, or a C string
{null terminated). The C string is treated as return substring. The parameter
is passed as two long words. The second long word is a pointer to the place
where the string must be filled in. The first long word contains the type in
the M5 word, $a100 for QL string, $a200 for substring, and the maximum
number of characters in the LS word.

return/update xxx passed as two long words. The MS word of the first long
word 1s $a000, the second long word must be a pointer {o the place where
the return value must be filicd in, or where the value can be read and written
after processing. If the update parameter doesn’t have to be passed, and you
don’t want it updated, you should clear the first long word.

special there is also a parameter which can have any of the types string, long,
short, char, double. The actual type is then dependant on some other part
of the parameter parsing. It is passed in two long words, and the value is
left justified. Char is then considered as a unsigned word. A string is max 8
chars, unused byles must be zero.

pointer to special this parameter is passed as a pointer to & bytes in memory
which should contain either 8 characters?, a long {in the first four bytes}, a
short {in the first 2 bytes), a char (also the second byte, first byte), or an
IEEE double {all eight bytes}. It is passed as two long words, the pointer has
to be in the second long word.

2.3 C interface

There 1sn’t much which has to be said about the C interface except all the com-
mands. But before any of the commands can be called, you have to initialise the
DATAdesign variable which contains the address of the DATAdesign engine thing
and which is used by all the other commands and macros. This can be done with
the engine_init () routine. This also makes sure that your job uses the DATAde-
sign.engine thing. The thing can also be released with a call to engine_free().

To be able to use the C interface in your C program files you have to include
the “DATAdesign.h” file. You will also have to link the DATAdesign 1ib file with
your own source code files,

2.3.1 parameters

All parameters arc of a standard C data-type. There is however one exception.
Some routines require a pointer to a special 8 byte parameter. This parameter can
be considered as a union like this:

union special {
char string_par[8];
long long_par;

“each in one byte, value O used for filling when less than 8 chars used

2.2. ASSEMBLER “INTERFACE™ 11

pointer This is a parameter, passed in a float, which has to point to a piece of
memory which can be written into, i.e. a piece of memory which was allocated
with a call to ALCHP or RESPR or similar.

special There is also a parameter which can have any of the types string, long,
short, char, float. The actual type is then dependant on some other pari of
the parameter parsing, or some internal siructures of the DATAdesign engine.
Parsing these parameters will cause an error when the wrong type is used (not
in dd_err), so you should be carefull.

pointer to special This parameter is passed as a pointer {c 8 bytes in MEmory
which should contain cither 8 characters®, a long {(in the first four bytes}, a
short (in the first 2 bytes), a char (also the second byte, first byte 0, or an
[EEE double? (all eight bytes).

If a paratseter is followed with updated, then the value of the parameter will be
changed according to the command. If the parameter is not passed as a variable,
and is not a pointer, then nothing is updated.

2.2 Assembler “interface”

The entire DATAdesign engine is provided as an extension thing, and so you can
hardly discuss an assembler interface. Al the actual interfacing can be done with
the standard thing system. I you want more information about this, you should
buy “QDOS Reference Manual”, available from Jochen Merz (and probably some
others as well). ;

But we have also provided a few routines which are actually very similar to
the access routines for the Menu Extension®. These routines are used to call and
release one specific extension at a time. It is however adviceable to keep one of
the extensions “in use” during the execution of your program, as this prevents your
buffer(s} from getting Jost during execuntion of your program®. You could use the
“INFO” extension for this. This is an empty extension, which only contains some
data which is used by the engine itself, and which is always the first exlension in
the list. Never actually call this extension!!

So here are the access routines:

Use DATAdesign engine DDE _USE

eniry exit
dg return
d2.] extension id
al address of thing extension

erroy return:
-thing not implemented
-engine not found

3each in one byle, value 0 used for Glli ng when less than & chars used
conversion of a float to & double can be done with the SETfloat and GETdouble commands
on a field in an empty record

Yalso from Jochen Mers; also an extension thing

Sthis can only happen if someone gets the stupid idea to either remove the PJATAdesign files
job or DATAdesign.engine thing.

4

Chapter 2

Interfaces

There are three language interfaces for the DATAdesign engine. You should onty
read about those interfaces that you are going to use. Howcver it may sometimes
be inleresting to read aboul the other interfaces as well, as this may give you some
additional information (especiily for assembler programiners}. The source code for
the C interface is provided on disk, so that may also be interesting to have a look
at, and this for both C and Assembicr programuners.

The commands are all treated together, explaining what they do, and giving the
specific details for each of the interfaces.

2.1 SuperBASIC interface

Actually, there isn’t much which has to be mentioned before listing all the com-
mands. You just interface through the SuperBASIC commands. But you have to
know this:

All routines which need a buffer- or indexid have an optional parameter at the
start. If you explicitly specify this buffer— or indexid, then it has to be preceeded
by a hash (#). This is similar to the passing of channel ids to the i/o commands
like print. If you don’t pass a buffer— or indexid, then the default bufferid and/or
indexid will be used.

You also have to know how errors are dealt with. All of the routines will only
imterupt the program in either of two occasions, that is if the DATAdesign engine is
not imtialised, or when a bad parameter! is encountered. Parameters can only be
bad when the type of the parameter is conapletely wrong, or in the case of a fieldid,
when it 1s passed as the fieldname and no field with the given name exists. Do note
that fieldnames are case dependant.

In all other cases that errors are encountered, they will be returned in a special
variable called dd_err. Three important remarks have to be made about this.

e This variable has to be spelled exactly like that, in lowercase.

» This variable has to be initialised, preferable before any call to the DATAde-
sign engine, i.e. at the start of the program.

V'T'iat is errors which are encountered duri ng perameter parsing, All errors which occur during
execation of the DATAdcsign engine don't interrupt your program and can be deali. with

9

1.1, CONCEPTS 7

All field types can be sorted except one. It is impossible to sort raw fields, as
these can represent just about anything.
| type | code [element size | usage |

raw 1 | 1 byte graphies, fonts, ..

char 2 | 1 hyte text

short, 3 | 2 bytes small integer values
seleclions, statusses, ...

long 4 | 4 bytes large integer values
dates, ...

lece 5 1 8 bytes ieee double
any numerical value

initialisation As you probably noticed in the manual of the main prograim, it is
not enough just to load the DATAdesign engine, as this only loads the engine and
links the new SuperBASIC commands. The engine itself is not initialised as this
creates a special job which contains all the actual data. This is for safety feasons,
to make sure that no data can be released by accident. There are two small hitches
to this approach. First you have o explicitely initialise the engine. This can be
done with the SuperBASIC cominand ENGINE_INIT, Secondly, if you remove the
DATAdesign files job, then the engine and all the data will be removed. You should
never do this. For memory protection reasons, when you delete the DA TAdesign
files job, all jobs which use the DATAdesign engine will also be removed.

file-status This is a special property which each file has. It indicates whether a
file is disk-based (1) or memory-based (0}. By default ali files are memory based
when you create them. But that can be changed. There is no automatic switching
belween the two statusses.

disk-based This file-status is included for two reasons. Firstly to allow for very
long files to be used, even files which are much longer than memory will permit.
However there is always an index with references to the place which has to fit in
memory®. Secondly it is the safest way you can work on afile. Even if a system-crash
would occur for sore reasen, then a saximum of one record will be lost. There are
a few commands which are actually not that safe, but it will be mentioned when
they are discussed.

inter-record-space When a file is disk based and a change to a record makes
that record grow a bit, then it would have to be moved to the end of the file as it
would not fit in the medium-file at the old place. To prevent this from happening
too often, you can make sure that there is always a bit of empty space after each
record. This space is called the inter-record-space. This is not relevant when a file
is memory-based.

Even when a large inter-record-space® is used, it may not be always be enough.
That way large empty gaps will be created in the file. These gaps can be removed
with garbage collection.

5This shouldn’t be a problem, every record only takes 18 bytes in this index
8This is not adviceable as it can waste a lot of disk space. We advice small values, e.g. 10

Chapter 1

Introduction

This 15 the manual for the third version of the DATAdesign engine (actnally the
second version never existed). The idea behind writing the DATAdesign engine was
to gel a powerful, multi-user database management system. The current version
contains more than 80 extensions in a DATAdesign.engine thing which shouid do
Just that.

Please note that this manual does presume some programming expertise from
the reader.

DATAdesign is what some people would call a free-form database. This means
that no restrictions' are posed upon the creator and user of database files which
are manipulated with the DATAdesign engine.

1.1 Concepts

file A file is the entity which includes a set of related data to be used by the
DATAdesign engine. When we use the word file in this manual, we don’t mean
a file as in “a file on disk”, but we mean a file which is used by the DATAdesign
engine:. The conventional usage for file won’t be used a lot in this manual, and the
conventional usage will be called medium-file. A file may be on disk (disk-based),
or it may be completely in memory (memory-based}). When a medium-file is not
used by any job in memory (so there are no buflers using the file (see later)), then
this medinm-fite will not be called a file. Files are referenced by (hopefully) unique
filenames. These filenames are case-dependant.

buffer A buffer is an entry-point to a file. It contains a copy of the current
record, I the bufler is not a read-only buffer then the record will be locked, that is,
unavailable to all other buffers using this file. All operations which read or change
records are done throungh a buffer. This means that you don’t actually change the
record in the file. To copy a record back inio the actual file, you have Lo implement
it. This makes sure that the record in the file is an exact copy of the record in the
buffer if you had changed it. Il doesn’t change anything to the buffer, only to the
file. The buffer can also be cleared, so as Lo oblain a new record ete. Last but not
least all operations need a bufferid as this is the only way to let the DATAdesign

Lthat is as few as possible

M}

CONTENTS 3

3.15.2 Index TMPlement L 58
3.15.3 Index ReMoVe o a8

3.16 Index information e 58
3.16.1 CouNT Records« . 0 v i i i e 58
3.17 Index loading/saving Lo 59
3171 Index LOAd - 5%
3.17.2 Index SAVe o 60

3.18 Index searching 60
3181 Index FIND e 60

319 Datainput oL 61
3.10.1 Readstring 61
3192 Edit string 62

4 Appendices 63
41 Compilation e 63
4.9 Versions o i e e e e e e e e e e 63
43 Licemsing e e 64
4.4 Overview ol extensions Lt o oo 64
45 Problems e e 66

DATAdesign software and documentation are copyrighted with all rights reserved.
No part of this documentation or the DATAdesign software may be copied, repro-
duced or stored on any electronic media except for personal use.

In no circumstances will PROGS, PROfessional & Graphical Software, be liable for
any direct, indirect or consequential damage or loss arising out of the use or inability
to use this software and its documentation.

