v

>

B AL TR
] it ST B CY
e LE sl A B
X AT
¥ ;; [f ‘Q P

EXPERT SYSTEM

Charles Dillon

A0
ADIGITGL FRECSION
L] [

Pubiished by Digital Prac.sion, 222 The Avenue, London £4 22T
Prograrm and Cocumentaiion & 1336 Dhgual Pracisian

[te; 3 ST

R

P

T

"\'iré/ £ &N .'r\c.i!uci.'n\sj P‘ff)a'fq_ms b:] an V“:«a‘«s,

ESATT DD TN

EAF\J b&dL\j-W“"{'—baﬂ
; Lm{j vidden, use Less

. {n
R LT U T IR
1Y

TTE/Q Bﬁsm
ExPERT System

FAST Bucs- FREE,
% INTELLIGENT, LsErFus .

1545/1)/ COMPILASLE |
_MASTED,D/ »CC =

/fL; & a.é'-oye‘ LS (&:;e[ﬁ) .{L(mos-é “rue,

St g b ond T, T b e TR TGS e T T T R W e A W e e s

BetterBasic - SuperBAZIC program checker and reformatter

1. What does BetterBasic do

2. Getting started

3. Program dialogue

4. Program operation and screan layout
s, Concepts and terms

6. Changes made by BetterBasic

7. Source code added to the output

Chas Dillon - Copyright 1986

Jun 86

Page:

1

B R

nr AT Ay e L

R

O

BetterRasic - SuperBASIC program checker and reformatter Jun 86

(%3
e

EetlerBasic reads the source code of a SuperBASIC program and examines
the c¢ode for structural and cther faults.

It creates a new version o©f the source, having tidied up the program by
splitting long lines, indenting complex structures (REPeat loops, Ifs,

" SELects etc). In addition any errcrs ihat may have been detected are

either corrected or annotated.

The resulf is a program which is much easier to read, understanc and
maintain. In additicn, the new source code is much less iikely to give
rise to compiler errors when SuperCHARGEA.

‘Getting started

BetterBasic is written in SuperBASIC and compiled with SuperCHARGE from
Digital Precision. .

As such the program is capable of being multi-tasked (i.e. does not have
to be the only job running in the machine). It will be started with the
standard system command EXEC or EXEC W. BetterBasic uses some extensions
to standard SuperBASIC, so if these are not in the machine, the
extensions file on the supplied tape should first be loaded.

This start-up operation is accomplished using the supplied 'boot’
program. The 'boot' procedure should be used if the machine has just
been switched on, or if the system has been reset since the last time
that BetterBasic was run. Under any other circusstance, it is sufficient
to type "EXEC DVC_BetterBasic_bin", where DVC is the name of the device
containing BetterBasic - e.g. mdvi or flp2.

When the program has started, there is a short dialogue to establisk the (:}
program to be processed, and the manner in which the user wants the
program to be adjusted. After that, Better3asic just gets on with it.

-

Dillon - Cobyright 1986 ' Page: 2

o

P

e 2

it

R

e

o

BetterBasic ~ SuperBASIC program checker and reformatter Jun 86

3.1 "Enter input device type (E/wm/k/r/w}:"
A single key depression is reguired, and should be ¢ne of the letters
indicated. If the key pressed is nct one of these, then the Ifirst letter
in the list ('f') is assumed. The significance of the letters 1is as
foliows:
£ - £lp
m ~ mdv
k -~ f£dk
r - ram
w - win
3.2 "Enter input device number (1 - 6):"
A single kev depression is wuquired, and should be a number between 1
and 6. If the key pressed is none of these, then the value 2! is
assumead.
3.3 “"Enter input file name (_bas assumed):"
The file name of the program to be processed should be entered.
BetterBasic expects that the name will be suffixed by _bas, and this
suffi» need not be typed.
The indicated file is opened, using the combined responses to tne
revious three prompts. If the device or file can not be accessed, the
orogram reports an error {"rile not found”) and returns to the promgt at
3.1.
Having opened the input file, BetterBasic is able to establish hew much
workspace in memory will be needed to process the file. If the reguired
memory is not free, the program terminates with the message
"Insufficient memory avallable™.
I
Chas Dillon - Copyright 1986 Page: 3

Program dialogue

B e I

-

:

BaetterBasic — SuperBASIC program checker and reformatter Jun B6

P
Bté Output file identification

The same seguence of prompts is issuved for the output file details. The
l file nams prompt will allow a null response, in wnich case the same

"root® is used for the output file name as was given as the input file

name. The output file suffix is either "_rnm" or "_rfm" (see below).

| The user should ensure that there is sufficient space on the output

' device to accommodate the program, allowing for the likely increass in
program size {abhout 20%), and alsoc the fact that some work space may be
needed if the input program includes line number references {"Go TC"
type statements). If the output device does not have much space, or if
it is 'read only', the program will report "Make space on devize" oz

B "Can't open file". If the file already exists on the output device, it
[; will be overwritten. '

3r5 "Do you want input list (y/n):°®
[_ 1f the response is other than "n", the input source code will be
displayed as it is read during subsequent processing.
3L~ "Do you want output list (y/n):"
o If the response is other than "n", the output scurce code will be
displayed as it is read during subseguent precessing.
3.7 "Do you want to resequence (y/nj):"

If the response is other than *"n", the output source code will be
resequenced. In that case, the user is asked to respond to tha two
subordinate prompts, as below.

357.1 "Enter start line no (default 100):"

i Either a positive integer, or simply the ENTER key to accept the
[defaulz, should vpe entsred by the user.

Ch s Dillon - Copyright 19856 Page: 4

e e e

e A o

DetterBasic — SuperBASIC program checker and reformatter Jun 86

S e

[3.7.2 VYEnter line interval {default 10):"

Either a positive integer, or simply the ENTER keyv to accegt the
default, should be entered by the user.

BetterLBasic checks that the combination of start line number and
interval w1ll not result in an invalid line number for anv of the
program lines in the output file. If check fails, an error message
results, and the user is reguired to re-enter the last two responses,

3.8 "Do you want to reformat {(y/n):"
[
If the response is other than "n", the output source code will be

A reformatted relative to the input source, :
.

A 3.8.1 YEnter wmax line length {default 70}:"

. This prompt occurs if the explicit or implicit recspcnse to the reformat
I: prompt was "y". The user is required to enter a positive integer less

- than 1000, or tc accept the default by pressing ENTER.

i 3.8 "Add warning text to program (y/n}:"

lh\r"

Chas Dillon - Copyright 1986

Where BetterBaslic introduces new statements in the output source zods,
these statements mav, at the user's choice, be accompanied by a compment.
The comment will be of the form "rem *~* Added during reformat". Error
messages ~ which have the form "mistake *** some descriptive text" -

included in the cutput will not he suppressed whatever the response to
this prompt.

Page: S

e et e

b e s b

B B R T

B

i;}

strerbBasic - SuperBASIC program checker and reformatter Jun 86

JE

Program operaticn and screen layout

Having c¢ompleted the initial dialogue, the main program activity
COMMENCes.

The screen is cleared and & new heading displayed. This heading shows
the size of the input file (in characters), the number of characters
that have been processed, the number of warnings in the ouiput source
and the number of errors detected in the input source and ccommented In
the output scurce. :

Depending on the start-up options selected, the lower part of the screen .
may contain the following: :

{a) Shown in white on red: A listing of each input line (?\ ;
t (b} Shown in black on red: A listing of each output line e [
The individual listings may be toggled on?off as the program is running, 55
using the keys TAB {input list} and ENTER (output list} . If tne screen o
gets corrupted (hy another job in the machine}, it may be redrawn by .
pressing the F4 key. .
1f any other key is pressed, the program will be suspended, with the §~
----- message: ' I

"0Oo you want to terminate now (n/y}:"

I

If the response is other than "y", the program continues, otherwiss the
run is abandoned.

——
L :
T

Depending on the nature of the input file and the start-up options
. selected, BetterBasic may need to make a sscond pass of the file. If so,
: the message "Second. pass - renumber phase" is displayed and the output
file is reprocessed by locating all "GO TO" type statements and
. O

adjusting the "old" line number reference to the correct value.

14
T e o

{' I1f this second vass is not required, the generated output will be in a
file with the suffix "_rnm". If the second pass is required, the ocutout
file will have the suffix "_rfm".
ll The program ends with the messace "End of reformat”.

" i R A T

i v

:r—l ¢ Dillon - Copyright 1986 Page: 6

ALY

——

BetterBasic - SuperBASIC program checker and reformatter Jun 86

Concepts and terms

SuperRASIC is a very powerful and flexible programming lancuage. It
differs from standard BASIC at least to the extent that completely
"structured" code may be written, without any requirement to make
explicit line number references.

Conversely, it is possible to write pregrams in SuperBASIC that take
advantage of none of these extra features offered by the languagse, and
toc continue using statements such as "GO TO", "GO SUB" and ignore the
power of PROCEDURES and FUNCTICNS, and the associated abilitv to pass
parameters, define LOCAL variables etc etc.

Because the SuperBASIC interpreter is trying to be all things to all
men, and in a limited amount of ROM .space in the QL, the interpreter
allows as valid many constructs that would normally e regarded as
invalid or illegal syntax. -

This is & mixed blessing to the new or undisciplined programmer, since
it permits the introduction of poorly written code which may contain
"hidden" loyic errors, resulting in mystifying behaviour of the program
at run time, _

BetterBasic is an attempt to "clean up" some of the most freguently

occurring types of syntax and structural errors.

BetterBasic views a SuperBASIC program as a "structure®,

A structure is an object that contains clauses. A clause is a collec+ticn
©f one or more program statements and/or structures.

The structures defined within the SuperBASIC language are introduced by
one of the following statements: :

IF, REPeat, FOR, SELect, DEFine, WHEN {not recommended)

Each structure which is introduced must also ke terminated by the
corresponding termination statement.

IND IF, END REFeat, END FOR, END SELect, END DEFine, END WHEN

These terminators should be regarded as svntactic slements without any
executive responsibility. It is simplest and safest to just believe that
they have "got to be there", purely to indicate (to the interprecer or
compiler and the programmer) where the structure ends. When it matters -
which 1s not right now = a slightly different view may be taken.

Chas Dillon - Copyright 1586 Page: 7

et g, AL

.o

A

Ck s Dillon ~ Copyright 19%6

General templates for the structures are:

IF condition
true_clause : ELSE : false _clause : END IF

REPeat icdentifier
repeated _clause : END REPeat identifier

FOR identifier = for_ range spec
for_clause : END FOR identifier

SELect ON variable
select _clause : END SELect

DEFine [PROCedure | FuNction | def_name
definition_clause : END DEFine

WHEN condition
when_clause : END WHEN

The mest obvious rule from these templates is that the definition of
each of the clauses i35 implied by the placement of the start of
structure statement and the end of structure statement.

The second thing to notice is SuperBASIC's restriction that the “DEF

sLcgerBasic - SuperBASIC program checker and reformatter Jun 86

|

ine"

structure statement may not appear in any structure other than the "top

level” structure - namely the program itself. Any of the other
structures may occur within any clause.

The third point is that for each start of structure statement there
only one end of structure statement possible - i.e. only one should
physically occur in the program. Many SuperBASIC programmers seem Lo
cenfuse the sxecutive statements "NEXT" and "EXIT® with -the syntax
element "END". Clearly, any {subordinate} structure which has bpeen
properly defined will be completely contained within one clause ({(of
another structure).

Page:

.

5
1S

]

A2, TR T g e

g, Wi

g

B

R ey S T e
B¢ AN

TR

—m

—

T

BetterBasic - SuperBASIC program checker and reformatter

Jun 86

Most of these structures have a “short form", which tends to have beeén
inrerited or basegd on the corresponding form in standard BASIC.

in the short form, the start of structure statement and the fellowing
clause occur on the same line. In these cases, unfortunately, the 2nd or
structurs statement is (syntactically) optional. The saddesgt part about
the SuperRASIC interpreter 1s that it actually allows mulciple short
form structures on the same line, although this was not a design
obiective, merely a freak of coding.

Proucams that utilise vhis freak are treading on thin ice, and are in
any case not examples of good coding practice. BetterBasic modifies the
output program to eliminate multiple short forms cn one line.

, then, are the structural principles that BetterRasic checks for,
here possible enforces. There arc sundry other effects achleved by
program, most of which are designed to enforce or enhancs tne basic
gram structure. The detaill of the chancvcs made is described in the
jowing secticn.

Chas Pillon - Copyright 1986 ' Page: 9

i s —————

AT S ST

Y
S

R o LT er Yo

L hh

:{ rBasic - SuperBASIC program checker and reformatter

Changes made by BetterBasic

Y

L Statements per line

If the start-up

option to reformat has been
cherk that input lines do net violate the stated maximum iine length.

Jun 86

selected, BetterBasic will

Lines found to be ip excess of the maximum will be split to either

minimise or eliminate

1f the reformatting
_ output, BetterBasic
E irrespective of the

e violation.

~heck results in extra lines being created in the
will automatically "switzh on* renumbering,
start-up option selected.

" If the line has to be split, BetterBasic also checks that where "short

form" structures are being used,
vshort form" to the “long form".
end of structure statement is automatically generated in the output

[i place, converting the

SCUrca.

the line is split in the appropriate
The corresponding

QE!

"
%ﬁ A further check for multiple short forms on the same line causes the
' line to be split even 1f it deoes not violate the maximum line length.

in the oubtput source, a start

2 Indenting
the statements comprising the

ru The indentation is reduced by
! statement has been written to
This is to enhance the visual
within the structure.

For similar reasons of visual
SELact structure are indented
{' the executlive

.3 Separation of statements " :

To further aid the wvisual clarity of the output,
on the same line are separated a colon between two spaces

P

he= Dillon - Copyright 1986

ks

statements require more than one line.

oi structure statement will always occur

as the first statement on a line.

Fach start of structure statement causes a two character indentation Of

clause(s} of the structure,.

two characters after an end of structure
the output.

e
-

cements

it
)

coherence of the associated

clarity, the executive statement:s within &
beyond the $ELect condition, assuming that

O

successive statemencs
(tl : I!}.

page: 10

v s,

T -

W

BetterBasic ~ SuperBAZIC program checker and reformatter Jun 86

! £.4
!l.
i h.5
L
[
LA;.. 5.6
[{._
{J
P
L
[6.7
L.
|

£.3

The noise word THEHR

The noise word THEN 1s eliminated from the output source. This worda is
optionally used in "IF" statements. If a "shert form" IF includes the
word THEN, it is remlaced by ceolon.

ELSE

The key word ELSE - If occurring as part of a statement - is generally
replazed with the statement .ELSE. Thig in effect standardises the use or
the ELSE key weord, such that 1if other statements follow on the same
line, the ELSE is always followed by a colon. (In many programs, the ey
word 1s sometimes used with a trailing colon and other times not}.

Null statements

Spare colens are removed from the output (computerised surgery -
whatever next). This covers situations where a line ends in one or mores
colons, and where successive statements on the same line are separated
by mores thin one colon.

Where a colon occurs as the sole iten on a line (2ffectively a comment
line), the line is preserved.

NEXT => endfor

When the end of structure terminator for a "FOR"™ structure is written as
"NEXT" {which is allowed but syntactically incorrect and is the cause of
a lot of confiusion), the output is amended to read "“endfor”.

Additicnal source c¢ode - Error checks

Varicus structure checks are made on the input source. If errors are
detected, zppropriats messages ars lncluded in the output source. The
detall of the checks and the error messages is in the following section.

Chas Dillon - Copyright 1986 Page: 11

ae T A

P S e

JE—

|

[

ietterBasic - SuperBASIC program checker and reformatter Jun 86

S

Source code added to the cutput

The following text will be added to the output scurce prograr, under the
conditions incicated. A few of the tests are not relevant to a progran
properly developed using the SuperBASIC interpreter, since the syntax
checks in the interpreter will trap certain types of mistake. However,
BetterBasic is designed to process an input source file whatever its
origin. It could for example have been generated in a text editor,
without line numbers, and the kaywords may be all in lower case Or using
the acceptable (to the interpreter) keyword abbreviations, such as

rep short form for REPeat:

sel : SELect

endif, endfor, etc END IF, END FOR etc
deffn, defproc DEFine FuNction/PRCCedure
gote, gosub GO TO, GO SUB

Sach of these short forms is expanded when the program is loaded into
the interpreter, as may be seen via the LIST command.

Generally, BetterBasic will take SuperBASIC statements in a "raw" form
and generate code acceptable to the interpreter.

In the following sections, messages which start with Yrem *7*" gre
treated as warnings, and for each instance, the “warning" count at the
top of the run-time screen is incremented.

Equally, the "errors™ count on the run time screen i1s incremented for

. each instance of a message starting with "mistake *~*".

The "="*" ig to enable the user to have a characteristic 'search
pattern' to scan the output file - using an editor or similar.

Chus Dilion - Copyright 1986 Page: 12

o

e TR T N

e m e

RN

BetterBasic - SuperBASIC program checker and refcormatter Jun 8%

~r

[

"rem *"* Added during reformat®

1f the comment opticn was selected at start-up, this comment will be
appended to an end of structure statement which has been introduced Ltv
BetterBasic. :

End of structure statements are added to the output source if a
structure in the input has been split from a "short form" (single line)
structure to a multi-line structure.

This will happen if either ({a) the input source line contains nultiple
statements and is longer than the indicated maximum line length or

{(b) the input scurce line contains more than one structure. Wwhether
comments have been requested or not, the end of structure statement w1ill
occur in the output.

The statements added are of the form:

endif

endsel

endfor nnnn - where '‘nnnn' is the structure icdentifier
endrep nnnn

encdwhen

enddef

Example:
Input: REPeat drain:IF NOT LEN(INKEYS {%1)}:EXIT drain

Cutput: REPeat drain
IF NOT LEN{INKEYS$(%1l)) : EXIT drain
endrep drain : rem *~* Added during reformat

The same comment will occur as a separate line, assuming again that the
comment option has been selected at start~up, if the input source
concaing & statement including a 'literal slice'. This feature 1is added
because SuperCHARGE does not support sliced literals. BetterBasic does
not presently support lines containing multiple literal slices.

Example:
Input: day = (day-l) * 3 + 1 :
PRINT "SunMonTueWedThuFrisat" (day to day-+2}
Quzput: dav = (day-1l} * 3 + 1

REMT temp$S = "SunMonTueWedThuFriSat”

rem *~* Added during reiormat

PRINT RFMT_temps$ (day to day+2)

Chas Dillon - Copyright 1986 Page: 13

cume o AR ST T LT T A

JRTUR N W S

B

e e T e 1T

e e She ek

3¢ terBasic — SuperBASIC program checker and reformatter Jun 86

703 "mistake *7* Word in followinyg statement too long"
i In the present release of BetterBasic this message will not appear. It
is essentially the same test as in 7.2, relative to ancther internal
limit. At present, the maximum statement size and the maximum word size
in BetterBasic are set to the same value (300), so 7.2 will occur.
Tl "mistake *7* DUPLICATE 'ELSE' STATEMENT®
l” This messages occurs 1f the input source contains an "IF" structurs
within wiich there i1s more than one "ELSE" statement. The "ELSE"
. statements after the first will be flagged with this message.
|
! Example:
: Input: IF condition
y_ perform proc_A:ELSE
: EL3E:perform proc B:END IF
: Qutput: IF condition
I- perform_proc A : else
-- else : mistake *"* DUPLICATE 'ELSE' STATEMENT .
perform_proc_B ¢ END IF _ _
;
Chms Dillon - Copyright 1986 Page: 14

"mistake *7* Following statement tooc long”

BetterBasic has an internal maximum of 300 characters £for & sing
Statement. 1If the input statement is in excess of this figqure, then th
statement 1s truncated at the maximum. The portion chopped off is
dispiayed after the "mistake" line as a "rem"™ line, so that noc sourcs
text is lost from the output file.

B i I

T i,

]

L

e e bt et

BelterBasic - SuperBASIC program checker and reformatter Jun 86

;7.5 "mistake *7* 'ELSE' STATEMENT NOT EXPLECTED"

The message will be included in the output where an "ELSE" statement is
encounctered 1n the absence of a current "IF" structure.)

Example:
Input: fi answer > £ : PRINT "Positive":ELSE PRINT "Zero/Neg"
a Qutput: £i answer > 0 : PRINT "Positive" : else : mistake *7%
'ELSE' STATEMENT NOT EXPECTEDR

PRIN™ "Zero/Neg®

7.6 "mistake *“* STATEMENTS AFTER 'GOTGC' CAN NOT BE REACHED"

or "RETurn® statewment is encountered as other than the last executive

i' If multiple statements are used on a program line, and a "GO TO", "NEXT"
statement in a clause, the message will be included in the output.

[‘ Example:

Input: IF n > max
- GO TO 1210:x=x+4:ELSE NEXT r_ loop:END IF

I_ ~ Cutput: IF n > max
GO TO 1210 : mistake *"* STATEMENTS AFTER 'GOTC' CAN NOT
BE REACHED

x=x+4 : else : NEXT r_loop : END IF
{ 7.7 "mistake *7* INCORRECT SYNTAX"

The word "END" has been encountered in The input source, without a
{" recognisabie gqualifier.

Example:
Input: 1IF NOT "key" INSTR inventorvs .
PRINT "You can't open the box" : end £
RETurn
i Cutput: IF NOT "key" INSTR inventorvs$s
[PRINT "¥You can't open the box" : end f
' mistake *7* INCORRECT SYNTAX
RETurn

| Chas Dillcn = Copyriuynt 1986 . Page: 15

N X PR

.

RS TR, I VR

o e

e

JR—

7.5

BetterBasic - SuperBASIC program checker and reformatter Jun 84

"mistake *"% 'ELSE' STATEMENT NOT E¥PEL1IoD"

The message will be included in the output where an "ELSEY stacement is
encountered in the absence cof a current "IF" structure.

Example:
Input: f£i answer > 0 : PRINT "positive" :ELSE PRINT "Zero/MNez"
output: £i answer > 0 : PRINT "positive™ : else : mistake *7*

"ELSE! STATEMENT NOT EXPECTED
' PRINT "Zero/Neg"

"mistake *~* STATEMENTS AFTER 'GQTO' CAN NOT BE REACHED"

If multiple statements are usad on a program line, and & "GO TO", "NEXT"
or "RETurn" statement is encountered as other than the last executive
~tatement in a clause, the message will be included in the ocutput.

Example:

Input: IF n > max
GO TO 1210:x=x+4:ELSE NEXT r_ loOp:END IF

Qutput: IF n > max
GO TO 1210 : mistake *~* STATEMENTS AFTER ‘'GOTO' CAMN NOT
BE REACHED

x=x+4 : else : NEXT r_loop : END 1F
"mistake *~* INCORRECT SYNTAX"

The word "END" has been encountered in the input source, without a
recognisable qualifier. ’

Example:

Input: IF NOT "key" INSTR inventorys$
PRINT "You can't open the pbox" : end f
RETurn

cutput: IF NOT "key" INSTR inventory$
PRINT "You can't open the box" : end £
mistake *~* INCCORRECT SYNTAX
RETUrn

Chas pDillon -~ Copyright 1986 Page: 15

iy

aa e arg e g et e md

e

T, T T R L

e A A

i ey YT e

terBasic ~ SuperBASIC program checker and reformatter

(e}

has Dillon - Copyright 1986

Jun 86

nmistake *~* UNMATCHED STRUCTURY IDENTIFIERS"

Thiz message occurs in the output when an "END FOR® or "END KEPeat”
sratement is encountered with a structure identifier different from the

current structure.
this message.

‘incorrect' statement will be displayed pricr to
another comment line is displayed,

The
After the message,

showing the expected identifier. The alteracion of indent assumes that
the current structurs has been ended.

Example:

input:

output:

i=0:REPeat num_scan

i=i+1:+IF i > LEN{str$):EXIT num_scan

IF NOT strs${i}) INWNSTR "(p1234567889":EXIT num_scan
END REPeat num_sSacln

i=9
REPeat num_scan
i=i+l
IF i > LEN(strs$) : EXIT num_scan
IF NOT str$(i) INSTR “0123456789" :
END REPeat num_sacn
mistake *“* UNMATCHED STRUCTURE IDENTIFIERS
rem *~* Expected: 'endrep num_scan'

EXIT num_scan

"mistake *~* UNMATCHED STRUCTURE TYPES"

2 legal end of structure statement has been read, but it does not
correspond to the current structure. The subsequent indentation implies
that the current structure has not been ended.’

Example:

Input:

Cutput:

FOR i=1 TO 10:
IF i>4:PRINT TO 20:a$ (i) :ELSE:PRINT a${i):END IF:END REPeat 1
j=12

FOR i=1 TO 10
IF iy4 : PRINT TO 20;e$i{i) : else : PRINT ags{i} : EMD IF
END REPeat i : mistake *7* UNMATCHED STRUCTURE TYPES
rem *~* Expacced: 'endfor i°
j=1Z

Page+ 16

R ¥ T

I B

oo T a2 p b

ol e e g

e

Fiaiwih Al

[P

7.10

BetterBasic — SuperBASIC program checker and reformatter Jun 86

"mistake *** CHANGED 'END' TO 'NEXT'; MAY NEED 'EXIT® INSTEAD

This message occurs if an end of structure statement ig detected within
a conditiocnzl clause. This construction is {should be) syntactically
invalid, but SuperBASIC allows it to be typed ... it will not
necessarily process it correctly.

What the programmer must mean is either cone of "NEXT" - most probable -
or "EXIT" - also possible.
Example:

Input: FOR n=1 TO 256
do_something
IF b <= 0 : END FOR n
do_something_else
NEXT n

output: FOR n=1 TC 256
do something
IF b <= 0 : next n : mistake *~* CHANGED 'END' TQ 'NEXT;
MAY NEED 'FXIT' INSTEAD
do_something_else
endfoer n .

"mistake *~* Line number not found: KUAX KKK K gaso

If the input program contains references to line numbers {God forbid),
then the generated source code is re-examined if and only if the line
structure of the output differs from the input - which is almost certain
to be the case, due to line-splitting, lines added by BetterBasic etc.

The message occurs if the input source has a line number reference which
refers to a line not found in the input program. In SuperBASIC, such
references will find their destination at the ‘next higher' line than
the one referred to. BetterBasic modifies the source such that the
destination line is explicit. '

"Example:

Input: 10 REMark Start of program : L

% 4w

a a8 e

124 GO TO 1

Qutput: 100 REMark Start of program

2010 GO TO 100 : mistake *7* Line number not found: 1

. Chas Dillon - Copyright 1986 Page: 17

o e

B L L T
. B - . _' : .

o ot e

e T e

i ke, WIS

R

3¢

1

terBasic = SuperBASIC program checker a2nd reformatter Jun 86

"rem *7* Not SuperCHARGEable®

These messages appear only if the comment start-up option was selected.
They are used to highlight program statements that are not supportecd by
the SuperCHARGE compiler. These are typically statements that refer to
the modification ¢r representation of program socurce lines - which is of
course not meaningful after the program has been compiled.

Commands such as RENUM, DLINE, AUTO, EDIT, LIST etc will be highlighted.

Equally, in the present release of SuperCHARGE, the commands LRUN and
MRUN are not supported - a similar effect being achieved in other ways.

If these statements are left in a program which is to be SuperCHARGEd,
the compiler will terminate, having reported

"Command meaningless if compiled"” ' <:}

Chas Dillon - Copyright 1986 Page: 18

%

[

T

B L L L L

o T AR

