APPROVED

This manual has been scanned, OCR'ed and
PFD'ed by Andy Dansby.
andydansby@yahoo.com. There are many
mistakes in the OCR'ing of the manuals,
please be patient and I'll try to correct

them one of these days. Though if someone
would like to edit it for me and email it

back. I'll give credit of course :)

anyway enjoy the manual.

Thank you Clive for the concept of the QL.

Thanks to Psion for the Brilliant QL
software.

sSirncis=ir-

Introduction
Beginner's Guide
Reference Guide
Keywords
Concepts
Applications Software
QL Quill
QL Abacus
QL Archive
QL Easel
Information

andy dansby

andy dansby
This manual has been scanned, OCR'ed and PFD'ed by Andy Dansby. andydansby@yahoo.com. There are many mistakes in the OCR'ing of the manuals, please be patient and I'll try to correct them one of these days. Though if someone would like to edit it for me and email it back. I'll give credit of course :)

anyway enjoy the manual.

Thank you Clive for the concept of the QL.

Thanks to Psion for the Brilliant QL software.

L

UsmGuide

PLEASE READ THIS BEFORE UNPACKING
THESE PAGES

Your QL User Guide is supplied unbound, to avoid damage in transit and to make rapid
updating easy In addition to this packet containing the pages of the Guide itself, you
should also find a ring binder and then divider cards packed wth your QL

Insert the dividers into the binder first The recommended order is as follows

Position Tab Label

Front Introduction
Begmniners Guide
Keywords
Concepts
QL Quill
QL Abacus
QL Archive
QL Easel

Back Information

This will put the divider tabs in a logical order If you wish, you may put the sections
in a different order, perhaps to put often used sections near the front, or even miss out

sections you do not expect to use

Now look through the pages to identify the various sections, each begins with a title
page with the Sinclair logo at the top The pages within each section will be packed
in the correct order, so be careful not to mix them up, the individual sections, however,
may be in a different order to that shown above if a section or sections have recently

been repnnted

Once each section is placed in the binder as you like it, this sheet may be discarded,
it does not form part of the Guide

Sinclair Research has a policy of constant development and improvement of their
products Therefore the right is reserved to change manuals, hardware, software and
firmware at any time and without notice

QL User Guide Second Edition
Published by Sinclair Research Limited 1984
25 Willis Road, Cambridge
Edited by Stephen Berry (Sinclair Research Limited)

©Sinclair Research Ltmited
©Psion Limited

Printed and bound in Great Britain by
William Clowes Limited, Beccles and London

Designed and typeset by
Keywords, Manchester

No part of this User Guide may be reproduced in any form whatsoever without the
written permission of Sinclair Research Limited

QL, QLUB, QL Net, Qdos and QL Microdrive are trade marks of
Sinclair Research Limited

Quill, Archive, Easel and Abacus are trade marks of Psion Limited

SirciEir

Intguction

©1984 SINCLAIR RESEARCH LIMITED

INTRODUCTION
TO THE QL

When you unpack your QL computer you will find:

The QL User Guide

Two wallets

one of which contains:

QL Abacus
QL Archive
QL Easel
QL Quill

and the other contains:
four blank QL Microdrive cartridges.

Three plastic feet

these can be fitted under the QL to tilt the keyboard for more comfortable typing. The
pips in the top of the legs should be fitted into the holes in the rubber feet, twisting them

to make them fit securely.

12/84

Introduction

An aerial lead

about two metres long with different connectors at either end It is used for connecting
your QL to your televisions aerial socket

A network lead

also about two metres long with identical connectors at ether end It is used to connect
your QL to other QLs so that data and messages can be sent between them

" vIUIL/di/ On the back and sides of the computer there are a senes of connectors

There are two slots on the right hand side of the computer the two QL Microdnves

The cartridges for these Microdnves are used for storing programs and data on the
QL Next to each slot there is a small light When the light is on the Microdrive is in
use and the cartridge should not be removed The yellow light on the front lefthand
side indicates whether the QL is switched on

Ay

microdrive slols

j.._

N S | SR L— =
AN (N) N 1N) [R 2l

= — T T S e el T Ty
e LT L L

= ;— — ﬂl-—-]— —iﬂﬁl'—\p:—\i—]ﬁlﬁ'—-)ﬂa——
—~,=QHL,§_~_I- S S EEEEEEETE S
S A | 1 !——Li._—-_| [, s .k»

.—-——~|""'\"—\| ‘ﬁlﬁl;_\i—_——'\

= e o ' s j ===

pawer light Microdmve ghts

On the right-hand end of the QL there is a slot covered by a plastic strip This siot is
for attaching up to six more QL Microdnves ZX Microdnves are not suitable for use
with the QL but blank Microdrive cartridges can be used on either machine

—

The connectors at the back of the computer are for attaching the following

NET - connector for the QL Network
NET - connector for the QL Network
POWER - power supply for the computer
RGB - connection to a monochrome or colour monitor
UHF - connection to the aerial socket of a television set

SER1 - RS-232 C serial port
SER2 - RS-232-C serial port

CTL1 - control port for joystick
CTL2 - control port for joystick
ROM - QL ROM cartridge software (use reversed one to 10}

ZX ROM cartridges are not compatible with QL ROM cartridges
and cannot be used in the QL.

T AR .. .

W crodimve expansion siot

The slot on the left hand side of the QL is used for adding peripherals (equipment to
expand the computer's capabilities} to the QL One peripheral can be plugged directly
into the expansion slot

The reset button is on the right hand end of the computer near the Microdrive expansion
slot Itis used to reset' the QL to its original 'switch on' state Any programs :n the machine
will be lost if reset is pressed and sometimes data already recorded on Microdrive
cartridges can be corrupted Use reset with caution and always remove Microdrive
cartridges before doing so.

To make the computer operate, various connections have to be made

Your QL power supply has two leads One is fitted with a small rectangular connector

with three holes in it The other is the mains lead and is supplied with bare ends to
which a suitable mains plug must be fitted

Please do not connect the power supply lead to the computer until all other leads
and peripherals have been connected Always connect the power supply lead to the
computer last of all

Connect the mams plug as follows

* The blue wire goes to the terminal marked N or neutral, or coloured blue or
black

* The brown wire goes to the terminal marked L or live and coloured brown or red
e The power supply is double insulated and does not need an earth connection
e If you are using a fused plug it must be fitted with a three amp fuse
e Make sure all connections are sound
If necessary, get someone with electrical experience to help you.
Although the QL will work once the power supply is connected, you will not be able
to see what it is doing until you add a television set or a monitor

A monitor has a screen like a television, but it cannot receive television signals It usually
has better resolution than a television set and so can display more text and is therefore
more expensive

A colour television or monitor will of course be required to make use of the QLs colour
display but the computer will work perfectly well in black and white representing colours
as shades of grey

12/84

OCTTINu UP
THE POWER

SUPPLY

THE DISPLAY

TUNING IN

Most television sets in current use will be suitable for the QL provided they are able
to receive 625 line UHF transmissions, le BBC2 and Channel 4

Locate the aerial socket at the back of your TV and remove the aerial cable that may
be plugged into it. If your set has more than one socket, use the one labelled UHF
or 625 Plug in the QLs aerial lead Use the end that looks similar to the original aerial
plug, and plug the other end into the socket marked UHF on the back of the computer.

Plug the power supply into a mains socket and switch on Remove any cartridges from
the Microdrive slots and push the small power supply connector into the three pin plug
marked POWER on the back of the QL The yellow power light below the F5 key should
now be glowing and your set up should look like this

Power
Supply

Telavision
UHF POWER

QL

When the computer has been on for a while, the case above the Microdnves will feel
warm, this is quite normal. The QL has no on/off switch but can be turned off by
unplugging the power supply connector Remember that any program or data in the
machine will be lost when it is turned off and should first be saved on a Microdrive
cartridge (for details of how to do this see the Beginner's Guide and Concept sections).
If the QL is not going to be used for a while you should also switch the power supply
off at the mains

The display signal to the television set is near channel 36. If your set has continuous
tuning, tune to channel 36 If your television has push buttons, choose an unused button
and tune this to the computer's signal You may need to consult your dealer or the TV
instruction manual to find out how to do this

Once you are correctly tuned in you should see the copyright screen

F1...MONITOR
F2...TV
1983 Sinclair Research Ltd.

The Copyright Screen

The QL doesnt use television sound because it has its own internal loudspeaker. You
can turn the television volume down if you wish

A coloured pattern will appear after you switch on or reset the computer, this ts the QL
testing its memory The pattern will disappear after a few seconds to be replaced by
the copyright screen

If you cannot get a picture at all first check that your television can receive the normal
broadcast stations If it can then try the computer with another television set

If you get a fuzzy or indistinct picture check that you are tuned in correctly it may be
possible to pick up the computers signal in more than one place in the tuning range
Also check that the aerial lead is firmly plugged in, and that you are using the correct
socket on your television set (if it has more than one)

If you wish to use a monitor instead of a television set the connections will depend on
whether tt is colour or monochrome details can be found in the Concepts section under
the heading Monitor A monitor lead with a plug to fit the QL's RGB socket is available
from Sinclair Research The order form is in the Information section of this guide

The QL needs to know if you are using a monitor or a television set Press

|[F1 | for a monitor
or
[F2J for a television

Microdrive 1 will run briefly and the red Microdrive light will glow, the QL is looking for
programs to load and run (this can be ignored for now) The computer will start up and
display its cursor a flashing coloured square, and the computer is now ready to accept
commands

Unlike previous Sinclair computers there is no single keyword entry on the QL However
various keys and groups of keys have special meanings

The ENTER key is used to indicate to the computer that you want it to do something
Perhaps you have typed in a command and want the computer to execute it or you
may want to teil the computer that you have finished typing in data

The keyboard has two SHIFT keys which perform the same function Pressing SHIFT
and an alphabetic key together will generate capital letters (upper case characters) On
non alphabetic keys SHIFT will cause the upper engraved character to be generated
For example

I SHIFT | & [5] will give %

Pressing the CAPS LOCK key once will force alphabetic keys to generate capital letters
regardless of whether the SHIFT key is pressed This wifl remain in effect unti CAPS
LOCK is pressed again

Hold down the CTRL key and then press the H™] key The character to the left of the
cursor will disappear and the cursor will move to the left Hold down CTRL and press
(he 1 -»| key The cursor will not move, the character it was on will disappear and text
to the right will move to fill the gap

The QL screen may be divided into different areas or windows, at will Once you have
switched on (or reset) and pressd F1 or F2 the screen will look like this

010 51 0 i 51t
2 1 1 & 2
0
o
256
0 1 0

Monilor Television

USING THE QL

KEYBOARD

Enter

Shift

Caps Lock

Delete

InC oUnbtN

The long thin window at the bottom is used to display commands typed into the computer
and initially will display the flashing cursor When the cursor is visible the QL is ready
to accept commands or data it disappears when the computer is busy As you type,
the cursor will move along the line showing where the next character to be typed will

appear
tf the machine ever fails to respond correctly or you want to force a SuperBASIC program
to stop hold down the CTRL key and press the space bar

The computer should then display its cursor If this doesnt work remove any Microdrive
cartridges and then press reset

The message Bad Line appearing in the command window means that the computer
doesn't understand a command that you have typed in Delete or correct the line using
the cursor keys

MIUNnUUNiVbo The two QL Microdnves are called mdvil___on the left and mdv2__on the right

Cartridges must be placed correctly into the Microdnves Hold the cartridge by the ribbed
plastic handle and remove it from its protective cover The cartridge's name label, or
the recess for its stick-on label, should face upwards

Cartridges should always be treated with care You should never turn the QL on or off
with a cartridge in the Microdnves Take care when inserting or removing cartridges,
wait until the Microdrive lights have gone out before removing the cartridge, be gentle
but firm Never touch the tape in the cartridge and always return the cartridge to its
protective cover

Before a blank cartridge can be used it must go through a process called formatting
This process erases any data or programs on a cartridge so always be sure that all
cartridges are clearly labelled with their contents and check that cartridges to be
formatted contain no useful data. Instructions for formatting cartridges are contained
in the Information section

All magnetic storage media including Microdrive cartridges eventually suffer from wear
Hence it is strongly recommended that all important programs and data should be
stored on at least two cartridges, that is 'backed up' This means that if a cartridge
is damaged and the data lost then at least part of the data can be recovered from the
relevant back up cartridge If you are continually adding data to a cartridge it must be
backed up often unless you do so you will lose everything that was added since the
last backup if the main cartridge is damaged Instructions for backing up cartridges
are contained in the Information section

O Inn | INo WUHK There are several ways of using your computer and the User Gutde You can use ready
made programs such as those supplied with the QL, or you can write your own programs
in SuperBASIC

To use the QL programs, first read the Introduction to the QL Programs later in this
introduction and then the relevant section for each program concerned

If you are a newcomer to computing and wish to write your own programs, you should
read the Beginner's Guide If you are familiar with BASIC programming, you may prefer
to read from Chapter 8 in the Beginner's Guide - From BASIC to SuperBASIC This
chapter describes the major differences between BASICS you may already be familiar
with and QL SuperBASIC Alternatively, if you are feeling confident, the Keywords and
Concepts sections should be useful

Introduction

If you have a problem using your QL or QL programs, then Ir YUU rlAVt
1 Refer to the appropriate sections in the QL User Guide A PROBLEM

2 Consider joining the QL Users Bureau for assistance on the QL programs Full
details of the services offered by QLU8 and instructions for joining are contained
in the Information section of the QL User Guide under the heading QLUB

3 Refer to books published about the QL

If your problems persist and you think they may be caused by a fault in either
your QL or in the QL program cartridges then refer to the Guarantee details
m the Information section of the QL User Guide

1284

INTRODUCTION

TO THE QL

r nv/\VV3lLAIVIw This introduction outlines the four programs supplied with the QL and describes their

MIUNODNIVES

LUNUIIMVI

oOnbbN LAYUU I

common features
The four programs are

QL Quill - a wordprocessor

QL Abacus - A spreadsheet

QL Archive - a database

QL Easel - a graphics program
Individual sections in this guide describe each of the four programs in detail Don't just
read them - try out the examples and experiment with each new idea

Before you use any of the QL programs you should make at least one backup on a
blank cartridge and use this copy only Keep tne original program cartridge in a safe
place and use it only for making copies Any accidents will not then cause permanent
loss of your programs

Each QL program has a built in duplicating routine which is used as follows
e Place the master cartridge in Microdrive 2

e Place the blank cartridge, or one containing nothing that you wish to keep, in
Microdrive 1 Type

I run mdv2_c Lone
* Press the ENTER key and the screen will display the message
FORMAT mdvl_type space to continue

e Press the space bar only when you are sure that the cartridge contains
nothing that you wish to keep as everything on it will be erased The
computer will format the cartridge and will then copy the program in sections,
displaying the name of each one as it does so

. Wait until the Microdrive lights go out before removing the master cartridge
from Microdrive 1

You should never use any of the original program cartridges except when making a
copy onto a blank cartridge

All the programs are loaded similarly There are two ways of doing this

Without cartridges in the Microdnves, press reset Place your copy of the program
cartridge in Microdrive 1, and then press either FI or F2 as prompted Microdrive 1
will automatically run and after a short pause a title display will appear on the screen
to confirm that the program is being loaded Once the program is loaded into the
computer the program will start up by itself

When you become more familiar with the programs and when using a printer or the
network you will sometimes find that commands need to be given to the computer before
the programs start You cannot switch off or reset the computer in this instance because
your commands would be lost Instead place the program cartridge in Microdrive 1 and
type

Lrun mdvl_ boot
press ENTER and loading will proceed as before

In both cases the program will occasionally need to load extra information from the
Microdrive so keep the program cartridge in the Microdrive slot until the program has
finished

The control area at the top of the screen will guide you through each program by
displaying the options that you will need most often and prompting you further if
necessary In many cases the program will suggest a suitable answer when it asks for
information Press ENTER to accept this suggestion or simply type in your own answer

and the computer's suggestion will disappear

12/84

Introduction

Pressing F2 will remove this area and will make the central area larger Pressing F2
again will restore the control area

The central area of the screen shows the information that you are working on, for example
the text of a document, the contents of a card index a graph or financial forecast It
is shown in the style most suitable for the particular application

The bottom of the screen shows the input line where for example commands that you
type in are displayed

Below this is the status area which reports on the current state of work It displays things
like the name of the data or document on which you are working how much unused
memory remains, etc

Three of the five function keys have the same meaning in all the QL programs These are FUNCTION KEYS

Key Function

F1 request help '
F2 remove or restore the control area

F3 call up the commands for selection

The remaining two function keys are used for actions particular to each program

The first option displayed at the top left of the control area, indicates that help is available HELP
by pressing F1

When you ask for HELP there will be a short pause before the display changes to show
the Help information

Help will suggest other topics for which help is available Type the name of the topic
and press ENTER You do not need to type in the whole name, just enough characters
for it to be distinguished from the other topics. You can repeat this as many times
as necessary

Pressing ENTER without selecting a topic will take you out to the previous level ESC
will take you right out of HELP and back into the program

Help is always available, provided that the program cartridge is in Microdrive 1 Press
F1 and the most appropriate Help information will be displayed

You can use the line editor to change or correct a line of text that you have typed in ~ THE LINE EUI lUn
All the QL programs use the same line editor, but each program uses it in a way most

suitable for that application In QL Qill you use the line editor, for example, for editing

the text in commands and QL Archive uses the editor extensively for editing database

programs

The line editor uses the four cursor keys, together with the CTRL and SHIFT keys

Keys Action

« Move the cursor one character to the left
— Move the cursor one character to the right

SHIFT & <- Move the cursor one word to the left
SHIFT & -* Move the cursor one word to the right
CTRL & <- Delete the character to the left of the cursor
CTRL & -» Delete the character under the cursor
CTRL& T Delete the line to the left of the cursor
CTRL &1 Delete the line to the right of the cursor
SHIFT & CTRL & — Delete the word to the left of the cursor
SHIFT & CTRL & — Delete the word to the right of the cursor

T2/84

Introducton

10

The & symbol indicates that the first key should be held down while the second is pressed
When SHIFT and CTRL are used together then hold them both down before pressing
the cursor key

MICRODRIVE USE The program is loaded from the cartridge th Microdrive You must always make sure

HLE NAMEDb

LIoTINu FILEo

that before using Help or using a print command that this cartridge is in Microdrive 1
Otherwise you can remove the cartridge at any time

Use a cartridge in Microdrive 2 - and in additional Microdnves - for storing information
for example Quill documents Archive data files, etc

Information can be stored on a cartridge in a file The file must be given a file name
to distinguish it from others on the cartridge Use a file name of not more than eight
characters long, without spaces It is a good idea to use a name which describes the
contents of a file for instance sales is obviously a better name for a file of sales figures

than fred

File saving and loading will use a data cartridge which is assumed to be in Microdrive
2 unless a different drive number is given The simplest way of replying to a file name
request is just to type in the name by itself, for example

sales

which automatically accesses Microdrive 2 If you wanted to access Microdrive 1 you
would type

mdvl sales

There is a third component of a file name which you do not usually see because it
is automatically added by the program This is an extension three letters long which
identifies which program saved the file The extensions used are

QL Quill _doc
QL Abacus aba
QL Ease! _orf
QL Archive (data file) _dbf
QL Archive (program file) prg or___pro
QL Archive (screen layout) sen

If you want to transfer information between programs, a special file is generated with
the extension___exp {for export) All the programs will recognise this extension More
information on this process is contained in the Information section under the heading
QL Program—Import and Export

You can direct printer output to a file instead of to a printer so that you can print the
text later This file has the extension__hs,

In all the programs except Archive you can request a list of the file names on a cartridge
whenever a command needs a file name This is useful if you cannot remember the
exact name that you gave to the file when you first saved it

Every time the program is waiting for you to type in a file name, you have the following
options
Press ENTER to accept the name the program suggests

Type in the file name followed by ENTER
Press ? followed by ENTER for a list of the files on Microdrive 2

If you type in a question mark (and ENTER) instead of the file name, the program
displays

mdv2_
suggesting that it should list the files on Microdrive 2 You can accept this suggestion
or you can edit the drive specifier to refer to a different Microdrive (mdvl) and then

press ENTER to list the files When the list is complete the program asks you to type
in the file name

Archive does not use this method Instead there is a command (dir) which lists the files
It allows you to type in mdvl , mdv2__and so on, to specify the drive for which the
list of files is needed

12/84

Introduction

In general, ESC cancels the current action and will restore you to a sensible point in toL/ArC
the program. You can also use ESC to cancel any numbers or text that you have typed
into the input line or abort a partially completed command.

Data can be loaded and saved on other devices besides a Microdrive The device is Ul rlihn DcVIC/Co
specified in the standard SuperBASIC way except that the device name is preceded
by an underscore (__) See the devices entry in the Concept Reference Guide

For example, to load and save via the network

Before loading a QL program, each computer on the network must be given a station
number. Switch the computer on but do not insert a program cartridges; press Ft or
F2 when prompted

To set the station number type the command NET followed by the station number of
your choice. For example, to set the QL to station 5 type the command

NET 5|ENTER
Place the program cartridge in Microdrive 1 and load the program by typing
1run mdvt_boot [ENTER]

Once the program is running, you can receive data sent along the network by typing
the load command in the normal way. If the data was being sent by station 12, you
would enter

LOAD _neti_12
This must be done before station 12 starts sedning

To send data, type in the save command. Assuming you were sending to station 23,
you would enter

SAVE _neto_23

Station 23 must be ready to receive before you press ENTER

SiNnci=ir-

Be; ner's Guide

© SINCLAIR RESEARCH LIMITED
by Roy Atherton (Bulmershe College Computer Centre)

CHAPTER 1
STARTING
COMPUTING

Your QL should be connected to a monitor screen or TV set and switched on Press | nt bUNttN
a few keys say abc and the screen should appear as shown below The small flashing
light is called the cursor

waf

he W8

Mon tor Telew 5 on

If your screen does not look like th s read the section entitled Introduction This should
enable you to solve any difficulties

The QL is a versatile and powerful computer so there are features of the keyboard which THE KEYBOARD
you do not need yet For the present we will explain just those terns which you need
for this and the next six chapters

This enables you to break out of situations you do not | ke For example BREAK

a line which you have decided to abandon

something wrong whch you do not understand

a running program which has ceased to be of interest
any other problem

Because BREAK is so powerful it has been made difficult to type accidentally
Hold down | CTRL | and then press | SPACE |

If nothing was added or removed from a program while it was halted with BREAK then
it can be restarted by typing

CONTINUE

This is not a key but a small push button on the right hand side of the QL it is placed RESET
here deliberately out of the way because ts effects are more dramatic than the break

keys If you cannot achieve what you need with the break keys then press the RESET

button This is almost the same as switch ng the computer off and on again You get

a clean re start

N

12/84 1

There are two SHIFT keys because they are used frequently and need to be available
to either hand

Hold down one SHIFT key and type some letter keys You will get upper case
(capital) letters

Hold down one SHIFT key and type some other key not a letter You will get a
symbol in an upper position on the key

Without a SHIFT key you get lower case (small) letters or a symbol in a lower position
on a key

CAPITALS LOCK E=

99

This key works like a switch Just press it once and only the letter keys will be 'locked'
into a particular mode - upper case or lower case

Type some letter keys
Type the CAPS LOCK key once
Type some letter keys

You will see that the mode changes and remains until you type the CAPS LOCK key
again

SPACE BAR

RUBBING OUT

The left cursor together with the CTRL key acts like a rubber You must hold down the
CTRL key while you press the cursor key Each time you then both together the previous
character is deleted

12/84

ENTER

The system needs to know when you have typed a complete message or instruction
When you have typed something complete such as RUN you type the ENTER key
to enter it into the system for action

Because this key is needed so often we have used a special symbol for it

o+

We shall use this for convenience, better presentation, and to save space Test the *»
(ENTER) key by typing

PRINT "Correct"-*'
If you made no mistakes the system will respond with

Correct

OTHER KEYBOARD

T maey i SYMBOLS OF
— underscore = becomes equal to (used in LET) lMMEDlATE USE
1 quotes ' apostrophe
, comma ! exclamation
: semi colon & ampersand
colon . decimal point or full stop
y backslash 8 dollar
(left bracket) right bracket

SuperBASIC recognises commands (keywords) whether they are in upper or lower case UPPEN AND LUWDbDbN
For example the SuperBASIC command to clear the screen is CLS and can be typed pAOC
H L.AOI:
in as
CLS*"
cLs*»
clS«««

These are all correct and have the same effect Some keywords are displayed partly
in upper case to show allowed abbreviations Where a keyword cannot be abbreviated
it is displayed completely in upper case

The usual use of quotes is to define a word or sentence - a string of characters. Try Uob Ur UUUI CO
PRINT "This works"*"
The computer will respond with

Thisworks

12/84

Starting Computing

COMMON TYPING

ERRORS

The quotes are not printed but they indicate that some text is to be printed and they
define exactly what it it is - everything between the opening and closing quote marks
If you wish to use the quote symbol itself in a string of characters then the apostrophe
symbol can be used instead For example

PRINT 'The quote symbol is " '
will work and will print

The quote symbol is "

T#e zero key is with the other numeric digits at the top of the keyboard and is slightly
thinner

The letter 0" key is amongst the other letters Be careful to use the right symbol

Similarly avoid confusion between one, amongst the digits and the letter T amongst
the letters

KEEP SHIFT DOWN """ using a SHIFT key hold it down while you type the other key so that the SHIFT

key makes contact before the other key and also remains in contact until after the other
key has lifted

The same rule applies to the control CTRL and alternate ALT keys which are used in
conjunction with others but you do not need those at present

Type the two simple instructions

CIS*
PRINT 'Hello'*"

Strictly speaking these constitute a computer program however, it is the stored program
that is important in computing The above instructions are executed instantly as you type
*« (ENTER)

Now type the program with line numbers

10 CLS«'<
20 PRINT 'HELLO*

This time nothing happens externally except that the program appears in the upper part
of the screen This means that it is accepted as correct grammar or syntax It conforms
to the rules of SuperBASIC but it has not yet been executed merely stored To make
it work, type

RUN—

The distinction between direct commands for immediate action and a stored sequence
of instructions is discussed in the next chapter For the present you can experiment with
the above ideas and two more

LIST*"

causes an internally stored program to be displayed (listed) on the screen or elsewhere
NEW—

causes an internally stored program to be deleted so that you can type in a NEW one

SELF TEST ON

You can score a maximum of 16 points from the following test Check your score with PHAPTER 1
the answers on page 105 V/nHr 1 tn |

1 In what circumstances might you use the BREAK sequence®

Where is the RESET button?

What is the effect of the RESET button?

Name two differences between a SHIFT key and the CAPS LOCK key
How can you delete a wrong character which you have just typed?

What is the purpose of the ENTER key’

N OO oA WN

What symbol do we use for the ENTER key’

What is the effect of the commands in questions 8 to 11

8 Cls*.
9 RUN*.»
10 LIST*
11 NEW*"

12 Do keywords have the proper effect if you type them in lower case®

13 What is the significance of the parts of keywords which the QL displays in upper
9
case

CHAPTER 2
INSTRUCTING
THE

WVIVII U Il Cn Computers need to store data such as numbers The storage can be imagined as pigeon
holes

Though you cannot see them, you do need to give names to particular pigeon holes
Suppose you want to do the following simple calculation

A dog breeder has 9 dogs to feed for 28 days, each at the rate of one tin of 'Beefo'
per day Make the computer print (display on the screen) the required number of tins

One way of solving this problem would require three pigeon holes for

number of dogs
number of days
total number of fins

SuperBASIC allows you to choose sensible names for pigeon holes and you may choose
as shown

dogs days tins

You can make the computer set up a pigeon hole name it, and store a number in it
with a single instruction or statement such as

LET dogs = 9*»
This will set up an internal pigeon hole named dogs, and place in it the number 9 thus

dogs 9

The word LET has a special meaning to SuperBASIC It is called a keyword SuperBASIC
has many other keywords which you will see later You must be careful about the space
after LET and other keywords Because SuperBASIC allows you to choose pigeon hoie
names with great freedom LETdogs would be a valid pigeon hole name

The LET keyword is optional in SuperBASIC and because of this statements like
LETdogs = 9*
are valid This would refer to a pigeon hole called LETdogs

Just as, in English, names, numbers and keywords should be separated from each other
by spaces if Jhey are not separated by special characters

Even if it were not necessary, a program line without proper spacing is bad style Machines
with small memory size may force programmers into it, but that is not a problem with

theQL

You can check that a pigeon hole exists internally by typing
PRINT dogs”i

The screen should display what is in the pigeon hole
9

Again, be careful to put a space after PRINT

12/84

To solve the problem we can write a program which is a sequence of instructions or
statements You can now understand the first two

LET dogs = 9*»
LET days = 28*

These cause two pigeon holes to be set up named and given numbers or values

The next instruction must perform a multiplication, for which the computer's symbol is
* and place the result in a new pigeon hole called fins thus

LET tins = dogs * days-*'

1 The computer gets the values 9 and 28, from the two pigeon holes named dogs
and days

2 The number 9 is multiplied by 28
3 A new pigeon hole is set up and named tins
4 The result of the multiplication becomes the value in the pigeon hole named tins

All this may seem elaborate but you need to understand the ideas, which are very
important

The only remaining task is to make the computer print the result which can be done
by typing
PRINT tins *i
which will cause the output
252
to be displayed on the screen

In summary the program

LET dogs = 9"

LET days = 28*»

LET tins = dogs * days*"
PRI NT tins*.

causes the internal effects best imagined as three named pigeon holes containing
numbers

dogs 9 x days| 28 = tin 252

and the output on the screen

252

Of course, you could achieve this result more easily with a calculator or a pencil and
paper You could do it quickly with the QL by typing

PRINT 9 * 28-*»

whtch would give the answer on the screen However, the ideas we have discussed are
the essential starting points of programming in SuperBASIC They are so essential that
they occur in many computer languages and have been given special nhames

1 Names such as dogs, days and tins are called identifiers
2 A single instruction such as
LET dogs = 9*»
is called a statement

3 The arrangement of name and associated pigeon hole is called a variable The
execution of the above statement stores the value 9 in the pigeon hole 'identified’
by the identifier dogs

12/84

Instructing the Computer

A statement such as
LET dogs = 9*»

is an instruction for a highly dynamic internal process but the printed text is static and
it uses the = sign borrowed from mathematics It is better to think or say {but not type)-

LET dogs become 9
and to think of the process having a right to left direction (do not type this)
dogs <= 9

The use of = in a LET statement is not the same as the use of = in mathematics.
For example, if another dog turns up you may wish to write

LET dogs = dogs + 1*»

Mathematically, this is not very sensible but in terms of computer operations it is simple.
If the value of dogs before the operation was 9 then the value after the operation would

be 10. Test this by typing

LET dogs = 9%u»

PRINT dogs*™

LET dogs = dogs + 1*»
PRINT dogs*»

The output should be.
9
10

proving that the final value in the pigeon hole is as shown:

dogs| 10

A good way to understand what is happening to the pigeon holes, or variables, is to
do what is called a 'dry run! You simply examine each instruction in turn and write down
the values which result from each instruction to show how the pigeon holes are set up
and given values, and how they retain their values as the program is executed

LET dogs = 9"
LET days = 28"
LET tins = dogs * days*
PRINT tins*"
The output should be'
252

You may notice that so far a variable name has always been used first on the left hand
side of a LET statement. Once the pigeon hole is set up and has a value, the
corresponding variable name can be used on the right hand side of a LET statement

Now suppose you wish to encourage a small child to save money. You might give two
bars of chocolate for every pound saved. Suppose you try to compute this as follows:

LET bars = pounds * 2*«
PRINT bars*«

You cannot do a dry run as the program stands because you do not know how many
pounds have been saved.

We have made a deliberate error here in using pounds on the right of a LET statement
without it having been set up and given some value. Your QL will search internally for
the variable pounds. It will not find it so it concludes that there is an error in the program
and gives an error message. If we had tried to print out the value of pounds, the QL
would have printed a * to indicate that pounds was undefined. We say that the variable
pounds has not been initialised (given an initial value). The program works properly
if you do this first.

12/84

Instructing the Computer

bars pounds

LET pounds = 7*» 7
LET bars = pounds * 2* 7 14

The program works properly and gives the output
14

Typing statements without line numbers may produce the desired result but there are A STORED

two reasons why this method as used so far, is not satisfactory except as a first PROGRAM
introduction rnvAJnnm

1 The program can only execute as fast as you can type This is not very impressive
for a machine that can do millions of operations per second

2 The individual instructions are not stored after execution so you cannot run the
program again or correct an error without re-typing the whole thing

Charles Babbage a nineteenth century computer ptoneer, knew that a successful
computer needed to store instructions as well as data in internal pigeon holes These
instructions would then be executed rapidly in sequence without further human
intervention

The program instructions will be stored but not executed if you use line numbers Try this

10 LET price = 15«

20 LET pens = 7*

30 LET cost = price * pens*"
40 PRINT cost««

Nothing happens externally yet but the whole program is stored internally You make
it work by typing

RUN*,
and the output
105
should appear

The advantage of this arrangement is that you can edit or add to the program with minimal
extra typing

Later you will see the full editing features of SuperBASIC but even at this early stage EDITING A
you can do three things easily PRDPRAM

replace a line
insert a new line
delete a line

Suppose you wish to alter the previous program because the price has changed to Replace a line
20p for a pen Simply re-type line 10
10 LET price = 20*»

This line will replace the previous line 10 Assuming the other lines are stil! stored, test
the program by typing

RUN*

and the new answer 140 should appear

Suppose you wish to insert a line just before the last one to print the words Total Cost' Insert a new line
This situation often arises so we usually choose line numbers 10, 20 30 to allow space
to insert extra lines

To put in the extra line type
35 PRINT "Total Cost"*™

12/84

Instructing the Computer

Delete line

OUTPUT-PRINT

INPUT- INPUT, READ

AND DATA

and it will be inserted just before line 40 The system allows line numbers in the range
1 to 32768 to allow plenty of flexibility in choosing them It is difficult to be quite sure
in advance what changes may be needed

Now type

RUN*"
and the new output should be

Total cost

140
You can delete line 35 by typing

35*.
It is as though an empty line has replaced the previous one
Note how useful the PRINT statement is You can PRINT text by using quotes or
apostrophes

PRINT "Chocolate bars"*

You can print the values of variables (contents of pigeon holes) by typing statements
such as

PRINT bars*«

without using quotes

You will see later how very versatile the PRINT statement can be in SuperBASIC It will
enable you to place text or other output on the screen exactly where you want it But
for the present these two facilities are useful enough

printing of text
printing values of variables (contents of pigeon holes)

A carpet making machine needs wool as input It then mates carpets according to the
current desi9n

desgn] program

Camet
, > »| Computer >
wool Machine | carpets nput dala pu output data

If the wool is changed you may get a different carpet
The same sort of relations exist in a computer

However, if the data is input into pigeon holes by means of LET there are two
disadvantages when you get beyond very trivial programs

writing LET statements is laborious
changing such input is also laborious

You can arrange for data to be given to a program as it runs The INPUT statement
will cause the program to pause and wait for you to type in something at the keyboard
First type

NEW*»

so that the previous stored program (if it is still there) will be erased ready for this new
one Now type

10 LET price = 15*.

20 PRI NT "How many pens?" *»

30 I NPUT pens *e

40 LET cost = price * pens *»

50 PRINT cost *«

RUN *»

12/84

The program pauses at line 30 and you should type the number of pens you want say
4«

Do not forget the ENTER key The output will be
60

The INPUT statement needs a variable name so that the system knows where to put
the data which comes in from your typing at the keyboard The effect of line 30 with
your typing is the same as a LET statements effect It is more convenient for some
purposes when interaction between computer and user is desirable However, the LET
statement and the INPUT statement are useful only for modest amounts of data We
need something else to handle larger amounts of data without pauses in the execution
of the program

SuperBASIC, like most BASICs, provides another method of input known as READing
from DATA statements We can retype the above program in a new form to give the
same effects without any pauses Try this

NEW—

10 READ price, pens*«

20 LET cost = price * pens*™
30 PRINT cost*"

40 DATA 15,4*»

RUN*

The output should be
60
as before

Each time the program is run, SuperBASIC needs to be told where to start reading DATA
from This can either be done by typing RESTORE followed by the DATA line number
or by typing CLEAR Both these commands can also be inserted at the start of the
programs

When line 10 is executed the system searches the program for a DATA statement It then
uses the values in the DATA statement for the variables in the READ statement in exactly
the same order We usually place DATA statements at the end of a program They are
used by the program but they are not executed in the sense that every other line is
executed m turn DATA statements can go anywhere in a program but they are best
at the end out of the way Think of them as necessary to, but not really part of, the
active program The rules about READ and DATA are as foliows

1 All DATA statements are considered to be a single long sequence of items So
far these items have been numbers but they could be words or letters

2 Every time a READ statement is executed the necessary items are copied from
the DATA statement into the variables named in the READ statement

3 The system keeps track of which items have been READ by means of an internal
record If a program attempts to READ more items than exist in all the DATA
statements an error will be signalled

You have used names for pigeon holes such as dogs bars You may choose words
like these according to certain rules

A name cannot include spaces
A name must start with a letter
A name must be made up from letters, digits, S, %,___ (underscore)

The symbols S, % have special purposes, to be explained later, but you can use
the underscore to make names such as

dog__food
month__wage_total

more readable

12/84

IUbN | Irlbnb
/INAMFN

1

SuperBASIC does not distinguish between upper and lower case letters so names
like TINS and tins are the same

The maximum number of characters in a name is 255

Names which are constructed according to these rules are called identifiers Identifiers
are used for other purposes in SuperBASIC and you need to understand them The
rules allow great freedom in choice of names so you can make your programs easier
to understand Names like total, count, pens are more helpful than names like Z, R Q

btLr Itbl ON You can score a maximum of 21 points from this test Check your score with the answers

CHAPTER 2 °"p2gei®

1
2

o g b~ W

10
11
12
13
14
15
16

17
18

How should you imagine an internal number store’

State two ways of storing a value in an internal ‘pigeon hole' to be created (two
points)

How can you find out the value of an internal pigeon hole"?

What is the usual technical name for a pigeon hole"’
When does a pigeon hole get its first value’

A variable is so called because its value can vary as a program is executed What
is the usual way of causing such a change®

The = sign in a LET statement does not mean ‘'equals’ as in mathematics What
does it mean’

What happens when you ENTER an un numbered statement’

What happens when you ENTER a numbered statement’

What is the purpose of quotes in a PRINT statement?

What happens when you do not use quotes in a PRINT statement’
What does an INPUT statement do which a LET statement does not?
What type of program statement is never executed®

What is the purpose of a DATA statement?

What is another word for the name of a pigeon hole (or variable)®

Write down three valid identifiers which use letters, letters and digits, letters and
underscore (three points)

Why is the space bar especially important in SuperBASIC®

Why are freely chosen identifiers important in programming®

1 Carry out a dry run to show the values of all variables as each line of the following rKUDULtIVIo UN
program is executed CHAPTER 2
10 LET hours = 40%"
20 LET rat e = 3*«
30 LET wage = hours * rate*»
40 PRINT hours, rate, wage*"

2 Write and test a program, similar to that of problem 1, which computes the area

of a carpet which is 3 metres in width and 4 metres in length Use the variable
names width length, area

3 Re-write the program of problem 1 so that it uses two INPUT statements instead
of LET statements

4 Re-write the program of problem 1 so that the input data {40 and 3} appears in
a DATA statement instead of a LET statement

5 Re-write the program of problem 2 using a different method of data input Use
READ and DATA if you originally used LET and vice-versa

6 Bill and Ben agree to have a gamble Each will take out of his wallet all the pound
notes and give them to the other Write a program to simulate this entirely with
LET and PRINT statements Use a third person Sue, to hold Bill's money while
he accepts Ben's

7 Re-write the program of problem 6 so that a DATA statement holds the two numbers
to be exchanged

12/84

CHAPTER 3
DRAWING ON

I nt OwvIllttIN Inorder to use either a television set or monitor with the QL two different screen modes
are available MODE 8 permits eight colour displays with a graphics resolution of 256
by 256 pixels and large characters for display on a television set MODE 4 allows four
colours with a resolution of 512 by 256 pixels and a maximum of eighty character lines
for which a monitor must be used for successful display However, it would be unfortunate
if a program was written to draw circles or squares in one mode and produced ellipses
or rectangles in another mode (as some systems do) We therefore provide a system
of scale graphics which avoids these problems You simply choose a vertical scale and
work to it The other type of graphics (pixel oriented) is also available and is described
fully in a later chapter

Suppose, for example, that we choose a vertical scale of 100 and we wish to draw a
line from position (50,60) to position (70,80)

/ {70 across 80 up)
(50 across B0 up)

100

Scale Graphics

A COLOURED LINE We need to specify three things

PAPER (background colour)
INK {drawing colour)
LINE (start and end points)

The following program will draw a line as shown in the above figure in red (colour code
2) on a white (colour code 7) background

NEW ««i

10 PAPER 7 : CLS «

20 INK 2 *

30 LINE 50,60 TO 70.80 *e
RUN «i

In line 10 the paper colour is selected first but it only comes into effect with a further
command such as CLS, meaning clear the screen to the current paper colour

Mcf’ﬁﬁﬁ iARN/II\) I§%f@'bt\§dj%9%°éﬁ8ﬁéero¥“hﬁ?6‘ dgcreen mode you are using but the range of colours

MODE 8 allows eight basic colours
MODE 4 atiows four basic colours

Colours have codes as described below

Code Effect
8 colour 4 colour

0 black black
1 blue black
2 red red

3 magenta red

4 green green
5 cyan green
6 yellow white
7 white white

For example, INK 3 would give magenta in MODE 8 and red in MODE 4

We will explain in a later chapter how the basic colours can be mixed in various ways
to produce a startling range of colours shades and textures

You can get some interesting effects with random numbers which can be generated
with the RND function For example

PRINT RND<1 TO 6) *<

will print a whole number in the range 1 to 6, like throwing an ordinary six-sided dtce
The following program will illustrate this

NEW *

10 LET die = RNDC1 TO 6) *
20 PRINT die «e

RUN e»«

If you run the program several times you will get different numbers
You can get random whole numbers in any range you like For example
RNDCO TO 100)

will produce a number which can be used in scale graphics You can re-write the line
program so that it produces a random colour Where the range of random numbers
starts from zero you can omit the first number and write

RNDd 0O)

NEW ««

10 PAPER 7 : QS «

20 | NK RNO(5) *»

30 LI NE 50, 60 TO RNDdOO) , RNDdOOQ) *«>
RUN *i

This produces a line starting somewhere near the centre of the screen and finishing
at some random point The range of possible colours depends on which mode is
selected You will find that a range of numbers 'something TO something' occurs often
in SuperBASIC

The part of the screen in which you have drawn lines and create other output is called
a window Later you will see how you can change the size and position of a window
or create other windows For the present we shall be content to draw a border round
the current window The smallest area of light or colour you can plot on the screen is
called a pixel In mode 8, called low resolution mode there are 256 possible pixel
positions across the screen and 256 down In mode 4 called high resolution mode,
there are 512 pixels across the screen and 256 down Thus the size of a pixel depends
on the mode

You can make a border round the inside edge of a window by typing for example
BORDER 4,2 ««

This will create a border 4 pixels wide in colour red (code 2) The effective size of the
window is reduced by the border This means that any subsequent printing or graphics
will automatically fit within the new window size. The only exception to this is a further
border which will overwrite the existing one.

12/84

Drawing onthe Screen

RANDOM hrruUIb

DUNnUbHo

15

Drawing on the Screen

A SIMPLu LUUr

Computers can do things very quickly but it would not be possible to exploit this great
power if every action had to be written as an instruction A building foreman has a similar
problem If he wants a workman to lay a hundred paving stones that is roughly what
he says. He does not give a hundred separate instructions

A traditional way of achieving looping or repetition in BASIC is to use a GO TO (or GOTO,
they are the same) statement as follows

NEW * «

10 PAPER 6 : CLS *»

20 BORDER 1,2 +<

30 I NK RNDC5) «i

40 LI NE 50, 60 TO RNDdOO) , RNDdOO) «»
50 GOTO 0 *n

RN *..

You may prefer not to type in this program because SuperBASIC allows a better way
of doing repetition Note certain things about each line

¥ Fixed part - not repeated

N i Changeable part - repeated
50 [Controls program

You can re-write the above program by omitting the GOTO statement and, instead, putting
REPeat and END REPeat around the part to be repeated.

NEW *»<

10 PAPER 6 : CLS *n

20 BORDER 1,2 *

30 REPEAT star «e

40 INK RNDC5) e«

50 LI NE 50, 60 TO RNDdOO) , RNDdOO) «*»
60 END REPEAT star *»

RUN ««

We have give the repeat structure a name, star The structure consists of the two lines

REPeat star
END REPeat star

and what lies between them is called the content of the structure The use of upper
case letters indicates that REP is a valid abbreviation of REPeat

This program should produce coloured lines indefinitely to make a star as shown in the
figure below.

The STAR program
You can stop it by pressing the break keys-

Hold down | CTRL | and then press | SPACE

Drawing on the Screen

SuperBASIC provides a consistent and versatile method of stopping repetitive processes
Imagine running round and round inside the program activating statements How can
you escape? The answer is to use an EXIT statement But there must be some reason
for escaping You might extend the choice of line colours by typing as an amendment

to the program (do not type NEW)

40 INK RNDCO TO 6) *»
so that if RND produces 6 the ink ts the same colour as the paper and you will not
see it This could be the reason for terminating the repetition We can re-arrange the
program as follows

NEW «. «

10 PAPER 6 : CLS *.

20 BORDER 1,2 «»

30 REPeat star <e»

40 LET col our = RND(6) «e

50 IF cotour =6 THEN EXIT star *<

60 I NK col our «.

70 LINE 50,60 TO RNDCI O0), RNDC100) «*

80 END REPeat star *»

The important thing to note here is that the program continues until colour becomes
6 Control then escapes from the loop to the point just after line 80 Since there are no
program lines after 80 the program stops

Another important concept has been introduced It is the idea of a decision
IF colour = 6 THEN EXIT star

This is another very useful structure because it is a choice of doing something or not,
we call it a simple binary decision Its general form is

IF conditon THEN statement(s)

You will see later how the two concepts of repetition {or looping) and decision-making
{or selection) are the main structures for program control You can stop the program
by pressing the break keys hold down CTRL and then press the space bar

You can score a maximum of 13 points from the following test Check your score with SELF TEST ON
the answers on page 107 CHAPTER 3

1 Whatis a pixel’

2 How many pixels fit across the screen in the low resolution mode’
3 How many pixels fit from bottom to top in low resolution mode®
4

What are the two numbers which determine the address' or position of a graphics
point on the screen’

How many colours are available in the low resolution mode’

6 Name the keywords which do the following

i draw a line

11 select a colour for drawing
in select a background cotour
iv. draw a border (5 points)

What are the statements which open and close the REPeat loop’

(&)

When does an executing REPeat loop terminate’
Why do loops in SuperBASIC have names’

17

12/84

PROBLEMS ON
PUADTPD 3

UMATr | tn

0

1

Write a program to draw straight lines all over the screen The lines should be

ofrandorn leniyin and giraction Each should start where the previous one finished
and ¢ch should have a randomly chosen colour

Write a program to draw lines randomly with the restriction that each line has a
random start on the left hand edge of the screen

Write a program to draw lines randomly with the restriction that the lines start at
the same point on the bottom edge of the screen

Write a program to produce lines of random length starting points and colour
All tines must be horizontal

As problem 4 but make the lines vertical

Write a program to produce a square spiral' in such a way that each line makes
a random colour

HINT First find the co ordmates of some of the corners then put them in groups
of four You should discover a pattern

CHAPTER 4
CHARACTERS
AND

Teachers sometimes wish to assess the reading ability needed for particular books or O | FlIIiA O
classroom materials Various tests are used and some of these compute the average
lengths of words and sentences We wtlf introduce ideas about handling words or
character strings by examining simple approaches to finding average word lengths

We are talking about sequences of letters, digits or other symbols which may or may
not be words That is why the term 'character string' has been invented It is usually
abbreviated to string Strings are handled in ways similar to number handling but, of
course, we do not do the same operations on them We do not multiply or subtract strings
We join them, separate them search them and generally manipulate them as we need

NAMES AND
PIGEON HOLES FOR

You can create pigeon holes for strings You can put character strings into pigeon holes oTHINvJO
and use the information just as you do with numbers If you intend to store (not all at
once) words such as

FIRST SECOND THIRD
and
JANUARY FEBRUARY MARCH

you may choose to name two pigeon holes

weekday$ month$

Notice the dollar sign Pigeon holes for strings are internally different from those for
numbers and SuperBASIC needs to know which is which All names of string pigeon
holes must end with $. Otherwise the rules for choosing names are the same as the
rules for the names of numeric pigeon holes

You may pronounce

weekdays as weekdaydollar
month$ as monthdollar

The LET statement works in the same way as for numbers If you type
LET weekdays = "FIRST" ««

an internal pigeon hole named weekdays, will be set up with the value FIRST in it thus

weekday$| FIRST

The quote marks are not stored They are used in the LET statement to make it absolutely
clear what is to be stored in the pigeon hole You can check by typing

PRINT weekdays *»
and the screen should display what is in the pigeon hole
FIRST
You can use a pair of apostrophes instead of a pair of quote marks

12/84 19

LENGTHS OF

oTHINub

PROGRAM DESIuN

Characters and Strings

SuperBASIC makes it easy to find the length or number of characters of any string. You

simply write, for example:
PRINT LEN(weekday$) *>»

If the pigeon hole, weekdays, contains FIRST the number 5 will be displayed. You can

see the effect in a simple program.

NEW «.'

10 LET weekdays = "FI RST" «e
20 PRI NT UEN(weekdays) «"
RUN *«

The screen should display
5
LEN is a keyword of SuperBASIC.

An alternative method of achieving the same result uses both a string pigeon hole and

a numeric pigeon hole.

NEW-*/

10 LET weekdays = "FIRST"-*"

20 LET Length = LEN(weekday*)*"
30 PRINT length*".

RUN*

The screen should display

5
as before, and two internal pigeon holes contain the values shown;

weekday$ LFIFIST length 5 |

Let us return to the problem of average lengths of words.
Write a program to find the average length of the three words:
FIRST, OF, FEBRUARY

When problems get beyond what you regard as very trivial, it is a good idea to construct

a program design before writing the program itself.

1. Store the three words in pigeon holes.
2. Compute the lengths and store them.
3. Compute the average.

4. Print the result.

NEW*,
10 LET weekdays - "FIRST"*"

20 LETwor dS="a"*"

30 LET monthS = " FEBRUARY" - *|

40 LET lengthl = LEN (weekdays)-*"

50 LET length2 = LEN (word$)*»>

60 LET Length3 = LEN(nonthS)-*"

70 LET sum= (.engthl + LengthZ + length3*»
80 LET average = sum3-*"

90 PRINT average-»iii

RUN¥ »

The symbol / means divided by. The output or result of running the program is simply:

5

12/84

and there are eight internal pigeon holes involved

weekday$ FIRST length? 5
ward$ OF length2 2
months |FEBRUARY length3 8
sum 15
average 5

If you think that is a iot of fuss for a fairly simple problem you can certainly shorten it
The shortest version would be a single line but it would be less easy to read A reasonable
compromise uses the symbol & which stands for the operation

Join two strings
Now type

NEW
10 LET weekday! = "FIRST"*.

20 LET wordS = "OF"«n

30 LET month$ = "FEBRUARY"*.

40 LET phraseS = weekdays 8 wordS 8 mont hs*
50 LET Length = LENCphraseS)*

60 PRI NT Lengt h/ 3*i

RUN* *

The output is 5 as before but there are some different internal effects

woekday$ FIRST length 15
word3 OF

month FEBRUARY

phrase$ FIRSTOFFEBRUARY

There is one more reasonable simplification which is to use READ and DATA instead
of the first three LET statements Type

NEW*.'

10 READ weekdays, wordS, month$*«

20 LET phraseS = weekdays & wordS & nont hs*.

30 LET Length = LEN(phrase$) *i

40 PRI NT Lengt h/ 3*n

50 DATA "FIRST","OF", " FEBRUARY" *

RUN¥i <
The internal effects of this version are exactly the same as those of the previous one
READ causes the setting up of internal pigeon holes with values in them in a similar
way to LET

12/84

21

22

IDENTIFIERS AND

STRING VARIABLES

HANUUM
PHARAPTFRA

nr\nrtUl L

no

Names of pigeon holes such as
Ll

word$
months
phraseS

are called string identifiers The dollar signs imply that the pigeon holes are for character
strings The dollar must always be at the end

Pigeon holes of this kind are called string variables because they contain only character
strings which may vary as a program runs

The contents of such pigeon holes are called values Thus words like FIRST and OF
may be values of string variables named weekdays and +word$

You can use character codes (see Concept Reference Guide) to generate random letters

N Upper c8S€ Ietters A to Z have the codes 65 to 90 The function CHR$ converts
tnese codes |nto letters The fOuowing program will pnnt a tetter B

NEW*

10 LET Letter-code = 66*»

20 PRINT CHRSCtettercode)*-
RUN*

The following program will generate trios of letters A B or C until the word CAB is spelled
accidentally

NEW

10 REPeat taxi

20 LET firsts = CHR$(RNO(65 TO 67))

30 LET second$ = CHR$(RND(65 TO 67))

40 LET thirdS = CHRSCRNDC65 TO 67))

50 LET word$ = firsts & seconds & thirds
60 PRI NT ' wordS '

70 |F wordS = "CAB" THEN EXIT t axi

80 END REPeat t axi

Random characters like random numbers or random points are useful for learning to
program You can easily get interesting effects for program examples and exercises

Note the effect the ' ' have on the spacing of the output

SELF TEST ON You can score a maximum of 10 points from the following test Check your score with

PHAPTFR 4 the answers on page 107

What is a character string'?
What is the usual abbreviation of the term character string"?
What distinguishes the name of a string variable"

How do some people pronounce a word such as VvordS®

1
2
3
4
5 What keyword is used to find the number of characters in a string®
6 What symbol is used to join two strings?
7 Spaces can be part of a string How are the limits of a string defined®
8 When a statement such as
LET meat$ = "steak"

is executed are the quotes stored’

9 What function will turn a suitable code number into a letter®

10 How can you generate random upper case letters®

12/84

Store the words 'Good' and 'day’ in two separate variables Use a LET statement PROBLEMS ON
to join the values of the two variables in a third variable Print the result. PHAPTFR d

Store the following words in four separate pigeon holes

light Let be there

Join the words to make a sentence adding spaces and a full stop Store the whole
sentence in a variable, sentS, and print the sentence and the total number of

characters it contains
Write a program which uses the keywords'
CHRSRNDC65 TO 90))

to generate one hundred random three letter words See if you have accidentally
generated any real English words Test the effects of

a) ; at the end of a PRINT statement
b) ! on either side of item printed

CHAPTER 5
KNOWN

A~ You have already begun to work effectively with short programs You may have found
PRACTICE e ™wWing practices are helpful

1 Use of lower case for identifiers names of variables (pigeon holes) or repeat
structures, etc

2 Indenting of statements to show the content of a repeat structure
Well chosen identifiers reflecting what a variable or repeat structure is used for
4 Editing a program by

replacing a line
inserting a line
deleting a line

PROGRAMS AS You have reached the stage where it is helpful to be able to study programs to learn

FYAIMPI PQ Arom themanclio try to ihgargigng Wnat AV 4o e mechanics of actually running
tANIVIrLCO them should now be well understood and in the following chapters we will dispense

with the constant repetition of

NEW before each program
*e at the end of each line
RUN to start each program

You will understand that you should use all these features when you wish to enter and
run a program But their omission in the text will enable you to see the other details
more clearly as you try to imagine what the program will do when it runs

If we dispense with the above details we may use and understand programs more easily
without the technical clutter For example, the following program generates random upper
case letters until a Z appears It does not show the words NEW or RUN or the ENTER
symbol but you still need to use these

10 REPeat Letters

20 LET letter-code = RNDC65 TO %)
30 cap$=CHR$(tetter-code)

40 PRINT cap$

50 IF cap$ = "Z" THEN EXIT letters
60 END REPeat Letters

In this and subsequent chapters programs will be shown without ENTER symbols Direct
commands will also be shown without ENTER symbols But you must use these keys
as usual You must also remember to use NEW and RUN as necessary

AUTUMAI v LINE It is tedious to enter line numbers manually Instead you can type
before you start programming and the QL will reply with a line number
100
Continue typing lines until you have finished your program when the screen will show

100 PRINT "Fi rst"
110 PRINT "Second"
120 PRINT "End"

To finish the automatic production of line numbers use the BREAK sequence

Hold down the CTRL and press the SPACE bar, This will produce the message
130 not complete

and line 130 will not be included in your program

1284

If you make a mistake which does not cause a break from automatic nhumbering you
can continue and EDIT the line later If you want to start at some particular | ne number
say 600 and use an increment other than 10 you can type tor an increment of 5

AUTO 600,5
Lines will then be numbered 600 605, 610 etc
To cancel AUTO press CTRL and the space bar at the same time

To edit a line simply type EDIT followed by the line number for example
EDIT 110

The line will then be d splayed with the cursor at the end thus
110 PRINT "Second"

You can move the cursor using

<J= one place left
< one place right

To delete a character to the left use
CTRL with <=
To delete the character in the cursor position type
CTRL with =s>
and the character to the right of the cursor will move up to close the gap

Before using a new Microdrive cartridge it must be formatted Follow the instructions
in the Introduction The choice of name for the cartridge follows the same rules as
SuperBASIC identifers, etc but limited to only 10 characters It is a good idea to write
the name of the cartridge on the cartridge itself using one of the supplied sticky labels

You should always keep at least one back up copy of any program or data Follow the
instructions in the Information section of the User Guide

WARNING

If you FORMAT a cartridge which holds programs and&r data,
* , ALL tha programs andtor data wrff be fost.

1

The following program sets borders 8 pixels wide in red (code 2) in three windows
designated #0 #1 #2

100 REMark Border
110 FOR k =0 TO2 : BORDER #k, 8,2

You can save it on a microdrtve by inserting a cartridge and typ ng
SAVE mdvl bord
The program will be saved in a Microdrive file called bord

If you want to know what programs or data files are on a particular cartridge place it
in Microdrive 1 and type

DIR mdvil_

The directory will be displayed on the screen If the cartridge is in Microdrive 2 then
type instead

DIR mdv2_

12'84

Known Good Practice

hUul I INb A LINh

UolNu MILInUUnNIVb
PARTRIDPE-"
Vat_a

Anne ik _y

SAVING PROGRAMS

CHECKING A
CARTRIDGE

25

Known Good Practce

COPYING Once a program is stored as a file on a Microdrive cartridge it can be copied to other
PROGRAMS AND files This is one way of making a backup copy of a Microdrive cartridge You might
FILES copy ail the previous programs and similar commands for other programs, onto another

cartridge in Microdrive 2 by typing

COPY mdvl_bord TO mdv2_bord

DELETING A Afile is anything, such as a program or data stored on a cartridge To delete a program
CARTRIDGE FILE called prog you type

DELETE mdvl_prog

LOADING A program can be loaded from a Microdrive cartridge by typing
PROGRAMS "PAAD mdv2” bord

If the program loads correctly it will prove that both copies are good You can test the
program by using

LIST to list it

RUN to run it

Instead of using LOAD followed by RUN you can combine the two operations in one
command

LRUN mdv2_bord
The program will load and execute immediately

MERGING Suppose that you have two programs saved on Microdrive 1 as progl and prog2

PROGRAMS 100 PRINT "grst”
110 PRINT "Second"

If you type
LOAD mdvl_progl
followed by
MERGE mdvl_prog2
The two programs will be merged into one To verify this, type LIST and you should see

100 PRINT "First"
110 PRINT "Second"

If you MERGE a program make sure that all its line numbers are different from the
program already in mam memory Otherwise it will overwrite some of the lines of the
first program This facility becomes very valuable as you become proficient in handling
procedures It is then quite natural to build a program up by adding procedures or
functions to it

GENERAL Be careful and methodical with cartridges Always keep one back-up copy and if you
suspect any problem with a cartridge or microdnve keep a second back-up copy
Computer professionals very rarely lose data They know that even the best machines
or devices wtll be occasional faults and they allow for this

If you want to call a program by a particular name, say square, it may be a good idea
to use names like sq1 sg2 for preliminary versions When the program is in its final
form take at least two copies called square and the others may be deleted by re-formatting
or by some more selective method

You can score a maximum of 14 points from the following test Check your score with

the answers on page 108

1

2
3
4

(&)

© O N o

12/84

Why are lower case letters preferred for program words which you choose?
What is the purpose of indenting?
What should normally guide your choice of identifiers for variables and loops”

Name three ways of editing a program tn the computers main memory (three
points)

What should you remember to type at the end of every command or program
line when you enter ii?

What should you normally type before you enter a program at the keyboard?
What must be at the beginning of every line to be stored as part of a program?
What must you remember to type to make a program execute?

What keyword enables you to put into a program information which has no effect
on the execution?

Which two keywords help you to store programs on and retrieve from cartridges?
(two potnts)

Re-write the following program using lower case letters to give a better presentation
Add the words NEW and RUN Use line numbers and the ENTER symbol just
as you would to enter and run a program Use REMark to give the program a
name

LET TWOS = "Two"

LET FOURS = "FOUR"

LET SIXS = TWOS & FOURS
PRINT LEN(sixS)

Explain how two and four can produce 7

Use indenting, lower case letters, NEW, RUN line numbers and the ENTER
symbol to show how you would actually enter and run the following program

REPEAT LOOP
LETTER_CODE = RNDC65 TO 90)

LET LETTERS* = CHR$(LETTER_CODE)
PRI NT LETTERS

IF LETTERS = '!I'" THEN EXI T LOCP
END REPEAT LOOP

Re-write the following program m better style using meaningful variable names
and good presentation Write the program as you would enter it

LET S =0
REPeat TOTAL

LET N = RNDd TO 6)
PRINT i Ni

LETS=S+N

IF n =6 THEN EXI T TOTAL
END REPeat TOTAL

PRINT S

Decide what the program does and then enter and run it to check your decision

obLr Itol U
CHAPTER 5

PROBLEMS 0
pu ADTCR C
wnnr I Cn 0

CHAPTER 6
ARRAYS AND
FOR LOOPS

WHAI lo AN AnnAY You know that numbers or character strings can become values of variables You can

Program 1

Program 2

picture this as numbers or words going into internal pigeon holes or houses Suppose
for example that four employees of a company are to be sentto a small village, perhaps
because oil has been discovered The village is one of the few places where the houses
only have names and there are four available for rent All the house names end with

a dollar symbol.
Westlea$ Lakestde$ RoselawnS Oaktree$

The four employees are called

VAL HAL J [MEL l DEL]

L

They can be placed in the houses by one of two methods

100 LET westieas = "VAL"
110 LET lakeside* = "HAL"
120 LET roselawnS = "MEL"

130 LET oaktreeS = "DEL"
140 PRINT ' westleaS ' LakesideS i roselawnS i oaktreeS

100 READ westleaS, lakesideS, roselawnS, oaktreeS
110 PRINT i westleaS ' lakesideS i roselawnS ' oaktreeS
120 DATA "VAL". "HAL", "MEL", "DEL"

Westiea$ Iakesg'fies rosel?wnS oaktr(ieS
[]

VAL HAL MEL DEL

As the amount of data gets larger the advantages of READ and DATA over LET become
greater But when the data gets realty numerous the problem of finding names for houses
gets as difficult as finding vacant nouses in a small village.

The solution to this and many other problems of handling data lies in a new type of
pigeon hole or variable in which many may share a single name However, they must
be distinct so each variable also has a number like numbered houses in the same street.
Suppose that you need four vacant houses in High Street numbered 1 to 4. In
SuperBASIC we say there is an array of four houses. The name of the array is high__st$
and the four houses are to be numbered 1 to 4

But you cannot just use these array variables as you can ordinary (simple) variables
You have to declare the dimensions (or size) of the array first The computer allocates
space internally and it needs to know how many string variables there are in the array
and also the maximum length of each string variable. You use a DIM statement thus.

DIM high_st$(4,3)
i————maximum length of string
number of string variables

After the DIM statement has been executed the variables are available for use. It is as
though the houses have been built but are still empty The four 'houses' share a common
name, high”stS, but each has its own number and each can hold up to three characters

There are five programs below which all do the same thing they cause the four ‘houses
to be 'occupied' and they PRINT to show that the occupation' has really worked The
final method uses only four lines but the other four lead up to it in a way which moves
all the time from known ideas to new ones or new uses of old ones The movement
is also towards greater economy

If you understand the first two or three methods perfectly well you may prefer to move
straight onto methods 4 and 5 But if you are in any doubt methods 1, 2 and 3 will
help to clarify things

100DIMhigh_st$(4,3)
110 LET high_st$C1) = "VAL"

120 LET high_st$<2) = "HAL"
130 LET high_st$<3> = "MEL"
140 LET rngh_st$<4) = "DEL"

150 PRINT i high_st$<1) ' high_st$(2) i
160 PRINT i high_st$(3) i high_st$(4) i

100DIMhigh_st$(4,3)

110 READ high 'st$(1),high_st$C2),high_st$C3),high_st$<4)
120 PRINT i high_st$(1) i high_st(2) <

130 PRINT ' high_st$(3) i Mgh_st<4> '

140 DATA "VAL", "HAL", "MEL", "DEL"

This shows how to economise on variable names but the constant repeating of high__st$
ts both tedious and the cause of the cluttered appearance of the programs We can,
again, use a known technique - the REPeat loop - to improve things further We set
up a counter number which increases by one as the REPeat loop proceeds

100 RESTORE 190

110 DI Mhi gh_st$(4,3)

120 LET number = 0

130 REPeat houses

140 LET number = number + 1

150 READ high_st$(number)

160 I[F num= 4 THEN EXI T houses

170 END REPeat houses

180 PRINT highest(1)! high_st(2)! high_st<3)! high_st(4)
190 DATA "VAL", "HAL", "MEL", "DEL"

This special type of loop, in which something has to be done a certain number of times,
is well known A special structure, called a FOR loop, has been invented for it In such
a loop the count from 1 to 4 is handled automatically So is the exit when all four items
have been handled

100 RESTORE 160

110 DI M hi gh_st $(4, 3)

120 FOR number =1 TO 4

130 READ high_st$(number)

140 PRINT i high_st$(number) i
150 END FOR number

160 DATA "VAL","HAL","MEL", " DEL"

The output from all four programs is the same
VAL HAL MEL DEL
Which proves that the data is properly stored internally in the four array variables

high__st$ VAL HAL MEL DEL

1 2 3 4

Program 1

Program 2

Program 3

Program 4

Arrays and For Loops

Program 5

Program 1

Method 4 is clearly the best so far, because it can deal equally well with 4 or 40 or
400 items by just changing the number 4 and adding more DATA items You can use

as many DATA statements as you need

In its simplest form the FOR loop is rather like the simplest form of REPeat loop The
two can be compared

100 REPeat greeting 100 FOR greeting = 1 TO 40
110 PRI NT "Hello" 110 PRI NT "Hello"
120 END REPeat greeting 120 END FOR greeting

Both these loops would work The REPeat loop would print 'Hello' endlessly (stop it
with the BREAK sequence) and the FOR loop would print 'Hello' just forty times

Notice that the name of the FOR loop is also a variable, greeting, whose value varies
from 1 to 40 in the course of running the program This variable is sometimes called
the loop variable or the control variable of the loop

Note the structure of both loops takes the form

Opening statement
Content
Closing statement

However, certain structures have allowable short forms for use when there are only one
or a few statements in the content of the loop Short forms of the FOR loop are allowed
so we could write the program in the most economical form of all

100 RESTORE uo : CLS

110 DIM high_st$(4,3)

120 FOR number = 1 TO 4 : READ high_st$(number)

130 FOR number = 1 TO 4 : PRINT ' high_st$<number) '
140 DATA "VAL", "HAL", "MEL", "DEL"

Colons serve as end of-statement symbols instead of ENTER and the ENTER symbols
of tines 120 and 130 serve as END FOR statements

There is an even shorter way of writing the above program To print out the contents
of the array high_st$ we can replace line 130 by

130 PRINT i high_st$ i
This uses an array siicer which we will discuss later in chapter 13

We have introduced the concept of an array of string variables so that the only numbers
involved would be the subscripts in each variable name. Arrays may be string or numeric,
and the following examples illustrate the numeric array

Simulate the throwing of a pair of dice four hundred times Keep a record of the number
of occurrences of each possible score from 2 to 12.

100 REMar k DKE1

110 LET two = O:three = 0:four = 0:five - 0:six =0

120 LET seven = 0:eight=0:nine =0:ten = 0:eLeven = 0:t welve =0
130 FOR throw - 1 TO 400

140 LET die! = RNDC1 TO 6)

150 LET di e2 = RNDC1 TO 6)

160 LET score = diel + die2

170 IF score = 2 THEN LET two = two + 1

180 |F score = 3 THEN LET three = three + 1
190 IF score = 4 THEN LET four = four + 1
200 IF score = 5 THEN LET five = five + 1
210 IF score = 6 THEN LET six = six + 1

220 IF score = 7 THEN LET seven = seven 1

+
230 |F score = 8 THEN LET eight = eight + 1
1

240 I|F score = 9 THEN LET nine = nine +
250 IF score = 10 THEN LET ten = ten + 1
260 |F score = 11 THEN LET eleven = eleven + 1
270 I|F score = 12 THEN LET twelve = twelve + 1

280 END FOR throw
290 PRINT i two ' three ' four ' five Six
300 PRI NT i seven i eight ' mne ' ten i eleven i twelve

In the above program we establish eleven simple variables to store the tally of the scores
If you plot the tallies printed at the end you find that the bar chart is roughly triangular
The higher tallies are for scores six, seven eight and the lower tallies are for two and
twelve As every dice player knows this reflects the frequency of the middle range of
scores (six.seven eight) and the rarity of twos or twelves

100 REMark oice2

110 DIM tal ly(12)

120 FOR throw = 1 TO 400

130 LET die_1 = RNDCL TO 6)
140 LET die_2 = RNDd TO 6)
150 LET score =die_ 1 +die_ 2
160 LET tal Ly(score) = taLly(
170 END FOR t hrow

180 FOR number = 2 to 12 : PRINT tal Ly (nunber)

In the first FOR loop, using throw, the subscript of the array variable is score This means
that the correct array subscript is automatically chosen for an increase in the tally after
each throw You can think of the array, tally, as a set of pigeon-holes numbered 2 to
12 Each time a particular score occurs the tally of that score is increased by throwing
a stone into the corresponding pigeon-hole

In (he second (short form) FOR loop the subscript is number As the value of number
changes from 2 to 12 all the values of the tallies are printed

Notice that in the DIM statement for a numeric array you need only declare the number
of variables required There is no question of maximum length as there is in a string array

If you have used other versions of BASIC you may wonder what has happened to the
NEXT statement All SuperBASIC structures end with END something That is consistent
and sensible but the NEXT statement has a part to play as you will see in later chapters

score) + 1

Program 2

Arrays and For Loops

You can score a maximum of 16 points from the following test Check your score with SELF TEST ON
PHAPTFP fi

the answers on page 109

1 Mention two difficulties which arise when the data needed for a program becomes
numerous and you try to handle it without arrays (two points)

2 If, in an array, ten variables have the same name then how do you know which
is which?
What must you do normally in a program, before you can use an array variable?

What is another word for the number which distinguishes a particular variable of
an array from the other variables which share its name?

5 Can you think of two ideas in ordinary life which correspond to the concept of
an array in programming? (two points)

6. In a REPeat loop, the process ends when some condition causes an EXIT
statement to be executed What causes the process in a FOR loop to terminate?

7 A REPeat loop needs a name so that you can EXIT to its END properly A FOR
loop also has a name but what other function does a FOR loops name have?

8 What are the two phrases which are used to describe the variable which is also
the name of a FOR loop? (two points)

9 The values of a loop variable change automatically as a FOR loop is executed.
Name one possible important use of these values

10 Which of the following do the long form of REPeat loops and the long form of
FOR loops have in common? For each of the four items either say that both have
it or which type of loop has it
a An opening keyword or statement

A closing keyword or statement

b
c A loop name.
d A loop variable or control variable (four points)

12/84

31

rnUbLhIVIo UN

CHAPTER 6

1

Use a FOR loop to place one of four numbers 1234 randomiy in five array
variables

card(1l) card(2). card(3), card(4), card(5)

It does not matter if some of the four numbers are repeated Use a second FOR
loop to output the values of the five card variables

Imagine that the four numbers 1 234 represent Hearts, Clubs; 'Diamonds; Spades!
What extra program lines would need to be inserted to get output in the form of
these words instead of numbers’

Use a FOR loop to place five random numbers in the range 1 to 13 in an array
of five variables

card(1), card(2), card(3) card(4) and card(5)
Use a second FOR loop to output the values of the five card variables

Imagine that the random numbers generated in problem 1 represent cards Write
down the extra statements that would cause the following output

Number Output

1 the word Ace'

2 to 10 the actual number
11 the word Jack

12 the word Queen’

13 the word King

CHAPTER 7

If you were to try to write computer programs to solve complex problems you might QIMDI p
find it difficult to keep track of things A methodical problem solver therefore divides a ~ wllwlr UUi
large or complex job into smaller sections or tasks, and then divides these tasks again DQO™Fni IDPQ
into smaller tasks, and so on until each can be be easily tackled I OwN/Cl/UNnCO

This is similar to the arrangement of complex human affairs. Successful government
depends on a delegation of responsibility The Prime Minister divides the work amongst
ministers, who divide it further through the Civil Service until tasks can be done by
individuals without further division There are complicating features such as common
services and interplay between the same and different levels, but the hierarchical structure
is the dominant one

A good programmer will also work in this way and a modern language like SuperBASIC
which allows properly named well defined procedures will be much more helpful than
older versions which do not have such features

The idea is that a separately named block of code should be written for a particular
task It doesn't matter where the block of code is in the program If it is there somewhere,
the use of its name will ,

activate the code
return control to the point in the program immediately after that use

If a procedure, square, draws a square the scheme is as shown below
procedure definition procedure call

DEFine PROCedure square
REMark Code to draw square| < —— square
END DEFine

!

draws a square

In practice the separate tasks within a job can be identified and named before the
definition code is written. The'name is all that is needed in calling the procedure so
the main outline of the program can be written before all the tasks are defined

Alternatively if it is preferred, the tasks can be written first and tested. If it works you
can then forget the details and just remember the name and what the procedure does.

The following example could quite easily be written without procedures but it shows how Example
they can be used in a reasonably simple context. AlImost any task can be broken down

in a similar fashion which means that you never have to worry about more than, say,

five to thirty lines at any one time If you can write thirty-line programs well and handle

procedures, then you have the capability to write three-hundred-line programs.

You can produce ready made buzz phrases for politicians or others who wish to give
an impression of technological fluency without actually knowing anything. Store the
following words in three arrays and then produce ten random buzz phrases.

adjecl$ adjec2$ noun$

Full fifth-generation systems
Systematic knowledge-based machines
Intelligent compatible computers
Controlled cybernetic feedback
Automated user-friendly transputers
Synchronised parallel micro-chips
Functional learning capability
Optional adaptable programming
Positive modular packages
Balanced structured databases
Integrated logic-oriented spreadsheets
Coordinated file-oriented word-processors
Sophisticated standardised objectives

Simple Procedures

ANALYDbIb We will write a program to produce ten buzzword phrases The stages of the program are

DESIGN

VARIABLES

1 Store the words in three string arrays

2 Choose three random numbers which will be the subscripts of the array variables
3 Print the phrase
4

Repeat 2 and 3 ten times

We identify three arrays of which the first two will contain ad|ectives or words used as
adjectives - describing words The third array will hold the nouns There are 13 words
in each section and the longest word has 16 characters including a hyphen

Array Purpose
adiec1${13,12) first adjectives
adjec2%$(13,16) second adjectives
noun$(13,15) nouns

PROCEDURES We use three procedures to match the jobs identified

MAIN PROGRAM

Program

store__data stores the three sets of thirteen words
get__random gets three random numbers in range 1 to 13
make__phrase prints a phrase

This is very simple because the mam work is done by the procedures.

Declare (DIM) the arrays
Store__data

FOR ten phrases
get__random
make__phrase

END

100 REMark kkkkkkkkkkkk

110 REMark * Buzzword *

120 REMark kkkkkkkkkkkk

130 DI'M adjecl1$(13,12), adjec2$(13,16),noun$(13,15)
140 store_data

150 FOR phrase =1 TO 10

160 get _random

170 make_phrase

180 END FOR phrase

190 REMark khkkkkkkkhkkkkkkhkdrhkhkkhxkkx

200 REMark * Procedure Definitions *

210 REMark kkkkkkkkkkkkkkkkhdkkkdkkkk

220 DEFine PROCedure store_data

230 REMark *** procedure to store the buzzword data ***
240 RESTORE 420

250 FOR item=1 TO 13

260 READ adj ed$(i tern), adj ec2$Ci tern) ,noun$Ci tern)
210 END FOR item

280 END DEFine

290 DEFi ne PROCedure get _random

300 REMark *** procedure to selLect the phrase ***

310 LET adl RNDC1 TO 13)

320 LET ad2 = RND<1 TO 13)

330 LET n = RNDC1 TO 13)

340 END DEFi ne

350 DEFi ne PROCedur e make_phrase

360 REMark *** procedure to print out the phrase ***
370 PRINT i adjed$(adl) i adjec2$(ad2> ' noun$(n)

12/ 84

380 END DEFine

390 RENlar k kkkkkkkkkkkkkkkx

400 REMark * Program Data *

410 RENlark *kkhkkhkkkkhkkhkhkhkkhkhkhkkkhx*k

420 DATA "Full™, "fifth-generation", "systens"

430 DATA "Systematic", "know edge-based", "machines"
440 DATA "IntelLigent", "compatible", "conputers"
450 DATA "Controlled", "cybernetic", "feedback"

460 DATA "Automated", "user-friendly", "transputers"

470 DATA "Synchronised", "parallel", "mcro-chips"
480 DATA "Functional", "learning", "capability"
490 DATA "Optional", "adaptable", "programm ng"

500 DATA "Positive", "modular", "packages"

510 DATA "Balanced", "structured", "databases"

520 DATA "Integrated", "logic-oriented", "spreadsheets"
530 DATA "Coordinated", "file-oriented", "word-processors”
540 DATA "Sophisticated", "standardised", "objectives"

Automatedfifth-generationcapability
Functional |earning packages

Full parallel objectives

Positive user-friendly spreadsheets
Intelligent file-oriented capability
Synchroni sed cybernetic transputers
Functional Logic-orientedmicro-chips
Positiveparallel feedback

Bal anced | earning databases
Controlled cybernetic objectives

Suppose we wish to draw squares of various sizes and various colours in various positions
on the scale graphics screen
If we define a procedure, square, to do this it will require four items of information

length of one side
colour (colour code)
position (across and up)

The square's position is determined by giving two values, across and up, which fix the
bottom left hand corner ot the square as shown below

ac,up+side ac+side,up+side

] ac+side,up
up

ac

The colour of the square is easily fixed but the square itself uses the values of side and
ac and up as follows

200 DEFi ne PROCedure square(side, ac, up)
210 LINE ac,up TO ac+si de, up

220 LINE TO ac+side, up+side

230 LINE TO ac. up+side TO ac, up

240 END DEFine

In order to make this procedure work values of stde,ac and up must be provided. These
values are provided when the procedure is called For example you could add the
following main program to get one green square ot side 20

12/84

rnOOINu
INFORMATION TO

PRNPFHI IRFQ

100 PAPER 7: CIS
110 INK 4
120 square 20,50,50

The numbers 20,5050 are called parameters and they are passed to the variables named
in the procedure definition thus

square 20,50,50
DEFine PROCedure square(side,ac,up)

The numbers 20,50,50 are called actual parameters They are numbers in this case but
they could be variables or expressions. The variables side,ac,up are called formal
parameters They must be variables because the 'receive’ values.

A more interesting main program uses the same procedure to create a random pattern
of coloured pairs of squares Each pair of squares is obtained by offsetting the second
one across and up by one-fifth of the side length thus

Assuming that the procedure square is still present at line 200 then the following program
will have the classical effect

100 REMark Squares Pattern

110 PAPER 7 : CLS

120 FOR pair =1 TO 20

130 | NK RNDC5)

140 LET side = RNOdO TO 20)

150 LET ac = RNDC50) : up = RNDC70)
160 square side,ac,up

170 LET ac=ac+side/5 : up = up+side/5
180 square side,ac,up
190ENDFORpair

The advantage of procedures are-
1. You can use the same code more than once in the same program or in others.

2. You can break down a task into sub-tasks and write procedures for each sub-task
This helps the analysis and design

Procedures can be tested separately. This helps the testing and debugging.

4 Meaningful procedure names and clearly defined beginnings and ends help to
make a program readable

When you get used to properly named procedures with good parameter facilities, you
should find that your problem-solving and programming powers are greatly enhanced.

You can score a maximum of 14 points from the following test Check your score with

the answers on page 110

1

10
11

How do we normally tackle the problem of great size and complexity in human
affairs'?

How can this principle be applied in programming™

What are the two most obvious features of a simple procedure definition? (two points)
What are the two main effects of using a procedure name to ‘call' the procedure’
(two points)

What is the advantage of using procedure names in a main program before the
procedure definitions are written®

What is the advantage of writing a procedure definition before using its name in
a main program’

How can the use of procedures help a thirty line-programmer' to write much bigger
programs’

Some programs use more memory in defining procedures, but in what
circumstances do procedures save memory space’

Name two ways by which information can be passed from a main program to
a procedure (two points)

What is an actual parameter’

What is a formal parameter’

Write a procedure which outputs one of the four suits Hearts,'Clubs!'Diamonds;
or 'Spades Calf the procedure five times to get five random suits

Write another program for problem 1 using a number in the range 1 to 4 as a
parameter to determine the output word If you have already done this then try
writing the program without parameters

Write a procedure which will output the value of a card that is a number in the
range 2 to 10 or one of the words Ace, Jack; 'Queen; King'

Write a program which calls this procedure five times so that five random values
are output

Write the program of problem 3 again using a number in the range 1 to 13 as
a parameter to be passed to the procedure If this was the method you used first
time, then try writing the program without parameters

Write the most elegant program you can, using procedures, to output four hands
of five cards each Do not worry about duplicate cards You can take elegance
to mean an appropriate mixture of readability, shortness and efficiency Different
people and/or different circumstances witll place different importance on these three
qualities which sometimes work against each other

SELF TEST ON
CHAPTER 7

PROBLEMS ON
PHADTPR 7

CHAPTER 8
FROM BASIC
TO

wUi triDAwIlw If you are familiar with one of the earlier versions of BASIC you may find it possible to
omit the first seven chapters and use this chapter instead as a bridge between what
you know already and the remaining chapters If you do this and still find areas of difficulty
it may be helpful to backtrack a little into some of the earlier chapters

If you have worked through the earlier chapters this one should be easy reading You
may find that, as well as introducing some new ideas it gives an interesting slant on
the way BASIC is developing Apart from its program structuring facilities SuperBASIC
also pushes forward the frontiers of good screen presentation, editing, operating facilities
and graphics In short it is a combination of user-friendliness and computing power which
has not existed before

So, when you make the transition from BASIC to SuperBASIC you are moving not only
to a more powerful, more helpful language, you are also moving into a remarkably
advanced computing environment

We will now discuss some of the main features of SuperBASIC and some of the features
which distinguish it from other BASICs

ALr nNAbh I'\(j The usual simple arithmetic comparisons are possible You can write

COMPARISONS LET p.t1$ ="CAT-
LET pet2$ ="DOG"
IF petl$ < pet2$ THEN PRINT "Meow"

The output wiil be Meow because in this context the symbol < means
earlier (nearer to A in the alphabet)

SuperBASIC makes comparisons sensible For example you would expect
‘cat’ to come before 'DOG'

and
'ERD98L" to come before 'ERD746L

A simplistic approach, blindly using internal character coding, would give the ‘wrong'
result in both the above cases but try the following program which finds the 'earliest'
of two character strings

100 INPUT itenl$, itenkS

110 IF iteml$ < item2$ THEN PRINT iteml$
120 IF iteml$ = item2$ THEN PRI NT "Equal"
130 IFiteml$ > item2% THEN PRI NT iten2$

I NPUT QUTPUT
cat dog cat
cat 00G cat
ERD98L ERD746L ERDISL
ABC abc ABC

The Concept Reference Guide section wiil give full details about the way comparisons
of strings are made in SuperBASIC

36 12/84

From Basic toSuperBASC

Most BASICS have numeric and string variables As in other BASICs the distinguishing VARIABLES AND
feature of a string variable name in SuperBASIC is the dollar sign on the end Thus MAMCC

numeric count string word$ inrTMTinrDO
sum high_st$ ILJtIN IINCHO
total day”.of_week$

You may not have met such meaningful variable names before though some of the more
recent BASICs do allow them The rules for identifiers in SuperBASIC are given in the
Concept Reference Guide The maximum length of an identifier is 255 characters Your
choice of identifiers is a personal one Sometimes the longer ones are more helpful in
conveying to the human reader what a program should do But they have to be typed
and, as in ordinary English spade is more sensible than horticultural earth turning
implement Shorter words are preferred if they convey the meaning but very short words
or single letters should be used sparingly Variable names like X.Z P3.Q2 introduce a
level of abstraction which most people find unhelpful

SuperBASIC allows integer variables which take only whole-number values We distinguish IN l uutn VAHIADLho
these with a percentage sign thus

count%
number%
nearest__pound°®/o

There are now two kinds of numeric variable We call the other type, which can take
whole or fractional values floating point Thus you can write

LET pnce =9
LET cost = 7.31
LET count% = 13

But f you write
LET countzZ = 5.43
the value of counWo will become 5 On the other hand
LET count*=5,73
will cause the value of count®/o to be 6 You can see that SuperBASIC does the best
it can, rounding off to the nearest whole number

The principle of always trying to be intelligently hefpfui, rather than give an error message @ COERCION
or do something obviously unwanted is carried further For example, if a string variable
markS has the value

‘64"
then
LET score = mark$

will produce a numeric value of 64 for score Other versions of BASIC would be likely
to halt and say something like

Type mis-match’
or 'Nonsense in BASIC'

If the string cannot be converted then an error is reported

There is one other type of variable in SuperBASIC or rather the SuperBASIC system LOGICAL VARIABLES
makes it seem so Consider the SuperBASIC statement AND 9IMPI F

| F«, ndy THEHf Iy ki t. PROCEDURES
In other BASICs you might write

IF w=1 THEN GOSUB 300

12/84 39

From Base to SuperBASIC

LET STATEMENTS

In

In this case w=1 is a condition or logical expression which is either true or false If it
is true then a subroutine starting at line 300 would be executed This subroutine may
deal with kite flying but you cannot tell from the above line A careful programmer would

write
IF w=1 THEN GOSUB 300 : REM fly kite

to make it more readable But the SuperBASIC statement is readable as it stands The
identifier windy is interpreted as true or false though it is actually a floating point variable
A value of 1 or any non-zero value is taken as true Zero is taken as false Thus the
single word, windy, has the same effect as a condition of logical expression

The other word, fly_ kite, is a procedure It does a job similar to but rather better than
GOSUB 300.

The following program will convey the idea of logical variables and the simplest type
of named procedure

100 INPUT windy

110 IF windy THEN fly_Kkite

120 IF NOT windy THEN tidy_shed
130 OEFine PROCedure fly_kite
HO PRINT "See it in the air."
150 END DEFine

160 DEFine PROCedure tidy_shed
170 PRINT "Sort out rubbish.”
180 END DEFine

INPUT OUTPUT

Sort out rubbi sh.
Seeitintheair
Seeitintheair
See it in the air

NNppRoO

You can see that only zero is taken as meaning false You would not normally write
procedures with only one action statement but the program illustrates the idea and syntax
in a very simple context More is said about procedures later in this chapter

SuperBASIC LET is optional but we use it in this manual so that there will be less
chance of confusion caused by the two possible uses of = The meanings of = in
LET count =3
and in
IF count = 3 THEN EXIT

are different and the LET helps to emphasise this However, if there are two or a few
LET statements doing some simple job such as setting initial values, an exception may
be made

For example.

100 LET first =0
110 LET second = 0
120 LET third = 0

may be re-written as
100 LET first =0 : second =0 : third =20

without loss of clarity or style It is also consistent with the general concept of allowing
short forms of other constructions where they are used in simple ways

The colon : is a valid statement terminator and may be used with other statements besides
LET

In a later chapter we will explain how other graphics facilities, such as drawing circles,
can be handled but here we outline the pixel-oriented features. There are two modes
which may be activated by any of the following:

Low resolution n,i/<inc OCG
8 Colour Mode Ff
256 pixels across, 256 down N
Hinh reSOp atia

2 Colour MAde NidRE 312

512 pixels across, 256 down

In both modes pixels are addressed by the range of numbers:

0 - 511 across
and 0 - 255 down

Since mode 8 has only half the number of pixels across the screen as mode 4, mode
8 pixels are twice as wide as mode 4 pixels and so in mode 8 each pixel can be specified
by two coordinates For example.

Oor1l 2or3 510 or 511

It also means that you use the same range of numbers for addressing pixels irrespective
of the mode. Always think 0-511 across and 0-255 down,

If you are using a television then not all the pixels may be visible.

The coiours available are:

MODE 256 Code MODE 512
black 0 black

blue 1

red 2 red
magenta 3

green 4 green

cyan 5

yelfow 6 white

white 7

You may find the following mnemonic helpful in remembering the codes:
Bonny Babies Really Make Good Children, You Wonder

fn the high-resolution mode each colour can be selected by one of two codes. You will
see later how a startling range of colour and stipple (texture) effects can be produced
if you have a good quality colour monitor.

Some of the screen presentation keywords are as follows:

INK colour foreground colour

BORDER width, colour draw border at edge of screen
or window

PAPER colour background colour

BLOCK width, height, across, down, colour colour a rectangle which has its
top left hand corner at position

across, down

12/84

From Basic to SuperOASIC

THE BASIC SCREEN

L/ULUUNO

From Base loSuperBASIC

42

CPDCCM When you switch on your QL the screen display is split into three areas called windows
OUNtCIN s shown below Note than in order to fit these windows into the area covered by a
ORGANISATION television screen, some pixels around the border are not used in Television mode

Ot 5N

Owsil ——0 ¥ —

#1

#2 #1 & #2

Monitor

Telewvision

The windows are identified by #0, # 1 and #2 so that you can relate various effects
to particular windows For example

CLS

will clear window # 1 (the system chooses) so if you want the left hand area cleared

you must type
CLS #2

If you want a different paper (background colour) type for green

PAPER 4 : CLS

or

PAPER #2*

CLS #2
if you want to clear window #2 to the background colour green

The numbers #0, #1, #2 are called channel numbers In this particular case they
enable you to direct certain effects to the window of your choice You will discover later
that channel numbers have many other uses but for the moment note that all of the
following statements may have a channel number The third column shows the default
channel - the one chosen by the system if you do not specify one

Note that windows may overlap If you use a TV screen the system automatically overlaps
windows # 1 and #2 so that more character positions per line are available for program

listings
Keyword

AT
BLOCK
BORDER
CLS
CSIZE
CURSOR
FLASH
INK
OVER
PAN
PAPER
RECOL
SCROLL
STRIP
UNDER
WINDOW
LIST

DIR
PRINT
INPUT

Effect

Character Position

Draws block

Draw border

Clear screen

Character size

Position cursor
Causes/cancels flashing
Foreground colour

Effect of printing and graphics
Moves screen sideways
Background colour
Changes colour

Moves screen vertically
Background for printing
Underlines

Changes existing window
Lists program

Lists directory

Prints characters

Takes keyboard input

Statements or direct commands appear tn window #0
For more detail about the syntax or use of these keywords see other parts of the manual

Default

12/84

The program below draws a green rectangle in 256 mode on red paper with a yellow
border one pixel wide The rectangle has its top left corner at pixel co ordmates 100,100
(see QL Concepts) lIts width is 80 units across (40 pixels) and its height is 20 units down
(20 pixels)

100 REMar k Rectangle

110 MODE 256

120 BORDER 1,6

130 PAPER 2 : CLS

140 BLOCK 80, 20, 100, 100, 4

You have to be a bit careful in mode 256 because across values range from 0 to 511
even though there are only 256 pixels We cannot say that the block produced by the
above program is 80 pixels wide so we say 80 units

SuperBASIC has the usual LET, INPUT READ and DATA statements for input The

PRINT statement handles most text output in the usual way with the separators
tabulates output

; Just separates - no formatting effect

\ forces new line

! normally provides a space but not at the start of line If an item will not fit at the
end of a line it performs a new line operation

TO Allows tabulation to a designated column position

You will be familiar with two types of repetitive loop exemplified as follows

(@ Simulate 6 throws of an ordinary six-sided die
100 FOR throw = 1 TO 6
110 PRINT RNDC1 TO 6)
120 NEXT throw

(b) Simulate throws of a die until a six appears
100 dl e = RND(1 TO 6)

110 PRI NT die
120 1F di e <> 6 THEN GOTO 10

Both of these programs will work in SuperBASIC but we recommend the following instead
They do exactly the same jobs Although program (b) is a little more complex there are
good reasons for preferring it

(@ 100 FOR throw =1 TO 6
110 PRI'NT RNDd TO 6)
120 END FOR throw

(b) 100 REPeat throws
110 di e = RNDd TO6)
120 PRINT di e
130 IF die =6 THEN EXIT throws
140 END REPeat throws

It is logical to provide a structure for a loop which terminates on a condition (REPeat
loops) as well as those which are controlled by a count

The fundamental REPeat structure is

REPeat identifier
statements
END REPeat identifier

The EXIT statement can be placed anywhere in the structure but it must be followed
by an identifier to tell SuperBASIC which loop to exit, for example

EXIT throws
would transfer control to the statement after

END REPeat throws.
This may seem like a using a sledgehammer to crack the nut of the simple problem
illustrated However the REPeat structure is very powerful It will take you a long way

12/84

From Baseto SuperBASIC

RECTANDbLbo AND
I IMPS

INPUT AND OUTPUT

LUUIO

From Baseto SuperBASIC

If you know other languages you may see that it will do the jobs of both REPEAT and
WHILE structures and also cope with other more awkward, situations

The SuperBASIC REPeat loop is hamed so that a correct clear exit is made The FOR
loop, like all SuperBASIC structures ends with END, and its name is given for reasons
which will become clear later

You will also see later how these loop structures can be used in simple or complex
situations to match exactly what you need to do We will mention only three more features
of loops at this stage They will be familiar if you are an experienced user of BASIC

The increment of the control variable of a FOR loop is normally 1 but you can make
it other values by using the STEP keyword As the examples show

i 100 FOR even = 2 TO 10 STEP 2
110 PRI NT i even i
120 END FOR even

Qutput is 2 4 6 8 10

i 100 FOR backwards = 9 TO1 STEP -1
110 PRINT i backwards «
120 END FOR backwards

outputis 987654321

The second feature is that loops can be nested You may be familiar with nested FOR
loops For example the following program outputs four rows of ten crosses

100 REMark Crosses

110 FOR row = 1 TO 4

120 PRI NT "Row number!' row
130 FOR cross = 1 TO 10

140 PRINT i "Xt
150 END FOR cross
160 PRI NT

170 PRINT \ '"End of row number' i row
180 END FOR row

output is

Row number 1
X X X X X X X X X X
End of row number 1
Row number 2
X X X X X X X X X X
End of row number 2
Row number 3
X X X X X X X X X X
End of row number 3
Row number 4
X X X X X X X X X X
End of row number 4

A big advantage of SuperBASIC is that it has structures for all purposes, not just FOR
loops, and they can all be nested one inside the other rejecting the needs of a task
We can put a REPeat loop in a FOR loop The program below produces scores of
two dice in each row until a seven occurs, instead of crosses

100 REMark Dice rows
110 FOR row =1 TO 4

120 PRI NT 'Row number '" row

130 REPeat throws

140 LET diel = RNDC1 TO 6)

150 LET die2 = RNDC1 TO 6)

160 LET score = die 1 + die2

170 PRINT i score '

180 |F score = 7 THEN EXIT throws

190 END REPeat throws
200 PRINT V' End of row! ' row
210 END FOR row

12/ 84

From Baseto SuperSASIC

sample output

Row number 1
811637

End of row number 1
Row number 2
462945127

End of row number 2
Row number 3

7

End of row number 3
Row number 4
624997

End of row number 4

The third feature of loops in SuperBASIC allows more flexibility in providing the range
of values in a FOR loop The following program illustrates this by printing all the divisible
numbers from 1 to 20 (A divisible number is divisible evenly by a number other than

itself or 1)

100 REMark Divisible numbers

110 FORnum=4,6,8. TO10, 12, 14TO16, 18, 20
120 PRINT i num i

130 END FOR num

More will be said about handling repetition in a later chapter but the features described
above will handle all but a few uncommon or advanced situations

You will have noticed the simple type of decision. UcUolUIN MAMNo
IF die = 6 THEN EXIT throws

This is available in most BASICs but SuperBASIC offers extensions of this structure and
a completely new one for handling situations with more than two alternative courses

of action

However, you may find the following long forms of IF .. THEN useful They should explain
themselves.

[100 REMark Long form IF...END IF
110 LET sunny = RNOCO TO 1)
120 IF sunny THEN
130 PRINT 'Wear sunglasses’
140 PRINT 'Go for wal k'
150 END | F

n 100 REMar k Long formIF.. . ELSE...END IF
110 LET sunny = RNDCO TO 1)
120 |F sunny THEN
130 PRINT 'Wear sungl asses'
140 PRINT 'Go for wal k!
150 ELSE
160 PRI'NT 'Wear coat'
170 PRINT 'Go to cinema'
180 END I F

The separator, THEN, is optional in long forms or it can be replaced by a colon in short
forms The long decision structures have the same status as loops You can nest them
or put other structures into them When a single variable appears where you expect
a condition the value zero will be taken as false and other values as true.

Most BASICs have a GOSUB statement which may be used to activate particular blocte SUBROUTINES AND

of code called subroutines. The GOSUB statement is unsatisfactory in a number of ways PPflppni IRPQ
and SuperBASIC offers properly named procedures with some very useful features rnUvCUUnNco

Consider the following programs both of which draw a green 'square’ of side length
50 pixel screen units at a position 200 across 100 down on a red background

12/64

From Baseto SuperBASIC

(a) UWsing GOSUB

100 LET col our = 4 : background = 2
110 LET across = 20
120 LET down = 100
130 LET side = 50
140 GOSUB 170

150 PRI NT 'END'
160 STOP

170 REMar k Subroutine to draw square

180 PAPER background : CLS

190 BLOCK STde, side, across, down, colour
200 RETurn

(b) Using a procedure with parameters

100 square 4, 50, 20, 100, 2

110 PRINT ' END!

120 DEFi ne PROCedure square(colour,side,across, down, background)
130 PAPER background : CLS

140 BLOCK side, side, across, down, colour

150 END DEFi ne

In the first program the values of colour, across, down, side are fixed by LET statements
before the GOSUB statement activates lines 180 and 190 Control is then sent back
by the RETURN statement

In the second program the values are given in the first line as parameters in the procedure
call, square, which activates the procedure and at the same time provides the values
it needs.

In its simplest form a procedure has no parameters It merely separates a particular piece
of code, though even in this simpler use the procedure has the advantage over GOSUB
because it is properly named and properly isolated into a self-contained unit

The power and Simplifying effects of procedures are more obvious as programs get
larger. What procedures do, as programs get larger; is not so much make programming
easier as prevent it from getting harder with increasing program size The above example
just illustrates the way they work in a simple context.

Examples The following examples indicate the range of vocabulary and syntax of SuperBASIC which
has been covered in this and earlier chapters, and will form a foundation on which the
second part of this manual will build

The letters of a palindrome are given as single items in DATA statements. The terminating
item is an asterisk and you assume no knowledge of the number of letters in the
palindrome. READ the tetters into an array and print them backwards Some palindromes
such as MADAM I'M ADAM" only work if spaces and punctuation are ignored The
one used here works properly

100 REMark Palindromes

110 DI Mt ext $(30)

120 LET texts = FILLS C ' ,30)

130 LET count = 30

140 REPeat get_letters

150 READ characters

160 IF characters = '*' THEN EXIT get _Letters

170 LET count = count-1

180 LET textS(count) = characters

190 END REPeat get letters

200 PRINT textS

210 DATA'A .'B .'L'.'E* '!W."A.'S .'I' 'E.'R
220 DATA'E ,'!I' 'S .'A.'W.'E .'L'.'B."A !

The following program accepts as input numbers in the range 1 to 3999 and converts
them into the equivalent in Roman numerals It does not generate the most elegant form,
it produces INI rather than IV

100 REMar k Roman numbers
110 | NPUT number

120 RESTORE 210

130 FOR type =1 TO 7
140 READ Letters, value
150 REPeat output

160 IF number < value : EXIT output
170 PRI NT letter*;
180 LET number = number - value

190 END REPeat out put

200 END FOR type
210 DATA +N',ia00,'D'.500,'C", 100,'L", 50" X", 10.'V,5,"1"',1

You should study the above examples carefully using dry runs if necessary until you
are sure that you understand them

In SuperBASIC full structuring features are provided so that program elements either
follow in sequence or fit into one another neatly All structures must be identified to the
system and named There are many unifying and simplifying features and many extra
facilities

Most of these are explained and illustrated in the remaining chapters of this manual,
which should be easier to read than the Keyword and Concept Reference sections
However, it is easier to read because it does not give every technical detail and exhaust
every topic which it treats There may, therefore, be a few occasions when you need
to consult the reference sections On the other hand some major advances are discussed
in the following chapters Few readers will need to use all of them and you may find
it helpful to omit certain parts, at least on first reading

From Basic toSuperBASC

LrUNOLUoIUN

CHAPTER 9
DATA TYPES
VARIABLES
AND

IL/tli 11l ICNO You will have noticed that a program (a sequence of statements) usually gets some data

IDENTIFIERS AND

VARIABLES

rLUAI INb rUIN |

VARIABLES

to work on (input) and produces some kind of results (output) You will also have
understood that there are internal arrangements for storing this data In order to avoid
unnecessary technical explanations we have suggested that you imagine pigeon holes
and that you choose meaningful names for the pigeon holes For example if it is
necessary to store a number which represents the score from simulated dice-throws you
imagine a pigeon hole named score which might contain a number such as 8

Internally the pigeon holes are numbered and the system maintains a dictionary which
connects particular names with particular numbered pigeon holes We say that the name,
score, points to its particular pigeon-hole (by means of the internal dictionary)

SCOre e a

The whole arrangement is called a variable

What you see is the word score We say that this word, score is an identifier It is what
we see and it identifies the concept we need, in this case the result, 8 of throwing a
pair of dice Because the identifier is what we see it becomes the thing we talk or write
or think about We write about score and its value at any particular moment

There are four simple data types called floating point integer, string and logical and
these are explained below We talk about data types rather than variable types because
data can occur on its own, for example 34 or Blue hat' as the value of a variable But
if you understand the different types of variables you must also understand the different
types of data

1 A SuperBASIC identifier must begin with a letter and is a sequence of

upper or lower case letters
digits or underscore

2 An identifier may be up to 255 characters in length so there is no effective limit
in practice.

An identifier cannot be the same as a keyword of SuperBASIC
An integer variable name is an identifier with % on the end
A string variable name is an identifier with $ on the end

No other identifiers must use the symbofs °/0 and $

N o o b~ w

An identifier should usually be chosen so that it means something to a human
reader, but for SuperBASIC it does not have any particular meaning other than
that it identifies certain things

Examples of the use of floating point variables are

100 LET days =24
110 LET sales = 3649. 84
120 LET sal es_per _day = sal es/ days
130 PRINT sal es_per _day

12/84

The value of a floating point variable may be anything in the range
+10~%° to +107%'° with 8 significant figures

Suppose in the above program sales were, exceptionally, only 3p Change line 110 to
110 LET sales = 0.03

This system will change this to
110 LET sales = 3E-2

To interpret this, start with 3 or 30 and move the decimal point -2 places, i e two places
left This shows that

3E-2 is the same as 003
After running the program the average daily sales are
1 25E-3 which is the same as 000125
Numbers with an E are said to be in exponent form
(mantissa) E (exponent) = (mantissa) x 10 to the power (exponent)

Integer variables can have only whole number values in the range -32678 to 32768 The
following are examples of valid integer variable names which must end with %

LET count% = 10
LET six_tally% = RNDC10)
LET number _3%-= 3

The only disadvantage of integer variables, when whole numbers are required, is the
slightly misleading % symbol on the end of the identifier It has nothing to do with the
concept of percentage It is just a convenient symbol tagged on to show that the variable
is an integer

Using a function is a bit like making an omelette You put in an egg which is processed

according to certain rules (the recipe) and get out an omelette For example the function

INT takes any number as input and outputs the whole number part Anything which
is input to a function is called a parameter or argument INT is a function which gives
the integer part of an expression You may write

PRINT INTC5.6)

and 5 would be the output We say that 56 is the parameter and the function returns
the value 5 A function may have more than one parameter You have already met

RNDC1 TO 6)

which is a function with two parameters But functions always return exactly one value
This must be so because you can put functions into expressions For example

PRINT 2 * INT(5.6)

would produce the output 10 It is an important property of functions that you can use
them in expressions It follows that they must return a single value which is then used
in the expression INT and RND are system functions, they come with the system but

later you will see how to write your own
The following examples show common uses of the INT function

100 REMark Rounding
110 INPUT decimal
120 PRINT INTCdecimalL + 0.5)

In the example you input a decimal fraction and the output is rounded Thus 4 7 would
become 5 but 43 would become 4

You can achieve the same result using an integer variable and coercion

Trigonometrical functions will be dealt with in a later section but other common numeric
functions are given in the list befow

12/84

Data Types, Variables and Identifiers

INTEGER VARIABLES

NUMbHUj
ri IMITiQMQ
rUINUI ivjno

49

Data Types Variables and Identifiers

50

INUMbnIU

OPERATIONS
ivjINO

Function Effect Examples Returned values
Absolute or ABS(7) 7
Atsb unsigned value ABS(-43) 43
Integer part of a INT(2 4) 2
INT floating point INT(04) 0
number INT(-27) -3
SQRT(2) 1414214
SORT Square root SQRT(16) 4
SQRT{26) 1612452

There is a way of computing square roots which is easy to understand To compute
the square root of 8 first make a guess It doesnt matter how bad the guess maybe
Suppose you simply take half of 8 as the first guess which is 4

Because 4 is greater than the square root of 8 then 8 /4 must be less than it The reverse
is also true If you had guessed 2 which is less than the square root then 8 / 2 must
be greater than it

It follows that if we take any guess and compute number / guess we have two numbers,
one too small and one too big We take the average of these numbers as our next
approximation and thus get closer to the correct answer

We repeat this process until successive approximations are so close as to make little
difference

100 REMar k Square Roots

110 LET number =8

120 LET approx = nunber/2

130 REPeat root

140 LET newval = (approx + number/approx) 12
150 IF newval == approx THEN EXI T root

160 LET approx = newval

170 END REPeat root

180 PRINT ' Square root of i number i 'is*

i newval

sample output
Square root of 8 is 2. 828427

Notice that the conditional EXIT from the loop must be in the middle The traditional
structures do not cope with this situation as well as SuperBASIC does

The == sign in line 150 means 'approximately equal to" that is equal to withtn 0000001
of the values being compared

SuperBASIC allows the usual mathematical operations You may notice that they are like

functions with exactly two operands each It is also conventional in these cases to put
an oPeranc| on eacl-| skje of the Symbol Sometimes the operation is denoted by a familiar

symbol such as + or * Sometimes the operation is denoted by a keyword like DIV
or MOD but there is no real difference Numeric operations have an order of priority
For example, the result of

PRINT 7 + 3*2
is 13 because the multiplication has a higher priority However
PRINT (7 + 3)*2

will output 20, because brackets over-ride the usual priority As you will see later so many
things can be done with SuperBASIC expressions that a full statement about priority
cannot be made at this stage (see the Concept Reference Guide if you wish) but the
operations we now deal with have the following order of priority

highest - raising to a power
multiplication and division (including DIV, MOD)
lowest - add and subtract

12/84

Data Types Variables and Identifiers

The symbols + and - are also used with only one operand which simply denotes
positive or negative Symbols used in this way have the highest priority of all and can
only be over-ridden by the use of brackets

Finally if two symbols have equal priority the leftmost operation is performed first so that
PRINT 7-2 + 5

will cause the subtraction be'ore the addition This might be important if you should ever
deal with very targe or very small numbers

Operation Symbol Examples Results Note
Add + 7+66 136
Subtract - 7-66 04
Multiply * 3*21 63
21*(-3) -63
Divide / 72 35 Do not divide by zero
-17/5 -34
Raise to power * 4*15 8
Integer divide DIV -8 DIV 2 -4 Integers only
7 DIV 2 3 Do not divide by zero
Modulus MOD 13 MOD 5 3
21 MOD 7 0
-17 MOD 8 7

Modulus returns the remainder part of a division Any attempt to divide by zero will
generate an error and terminate program exection

Strictly speaking, a numeric expression is an expression which evaluates to a number NUMERIC
and there are more possibilities than we need to discuss here SuperBASIC allows you ~ FYDDCCCinM”
to do complex things if you want to but it also allows you to do simple things in simple tAr nCuOIUIMO

ways In this section we concentrate on those usual straightforward uses of mathematical
features

Basically numeric expressions in SuperBASIC are the same as those of mathematics
but you must put the whole expression in the form of a sequence

5+ 3

6 -4
becomes in SuperBASIC (or other BASIC)

(5 + 3)1(6 - 4)
In secondary school algebra there is an expression for one solution of a quadratic
equation

ax> + bx + ¢ =0

One solution in mathematical notation is

x = -b + / b? -4ac
2a
If we start with the equation
2x*-3x+1=0
The following program will find one solution Example 1

100 READ a,b,c
110 PRINT 'Root is' ' (-b +SQRT(b*2 - 4*a*c))/(2*a)
120 DATA 2,-3,1

12/84 51

D.M.i Types Variables and Identifiers

Example 2 In problems which need to simulate the dealing of cards you can make cards correspond
to the numbers 1 to 52 as follows

1 to 13 Ace, twa...... king of hearts
14 to 26 Ace, two........ king of cfubs
27 to 39 Ace, two.......| king of diamonds
40 to 52 Ace, two.......! king of spades

A particular card can be identified as follows

100 REM Card identification

110 LET card = 23

120 LET suit = <card-1> DIV 13

130 LET value = card MOD 13

140 |F value = 0 THEN LET value = 13

150 IF value = 1 THEN PRINT "Ace of ";

160 IF value >= 2 AND val ue <= 10 THEN PRINT value i "of ";
170 I1F value = 11 THEN PRI NT "Jack of "

180 IF val ue = 12 THEN PRI NT "Queen of ";

190 IF value = 13 THEN PRI NT "King of ";

200 |F suit =0 THEN PRINT "hearts"
210 IF suit =1 THEN PRINT "clubs"
220 |F suit =2 THEN PRI NT "di amonds”
230 IF suit = 3 THEN PRINT "spades"”

There are new ideas in this program They are in line 160 The meaning is clearly that
the number is actually printed only if two logical statements are true These are

value is greater than or equal to 2 AND value is less than or equal to 10
Cards outside this range are either aces or court cards' and must be treated differently.

Note also the use of ! in the PRINT statement to provide a space and ; to ensure that
output continues on the same line

There are two groups of mathematical functions which we have not discussed here They
are the trigonometric and logarithmic. You may need the former in organising screen
displays. Types of functions are also fully defined in the reference section

LOGICAL VARIABLES Strictly speaking, SuperBASIC does not allow logical variables but it allows you to use
other variables as logical ones. For example you can run the following program

100 REMark Logical Variable
110 LET hungry =1
120 IF hungry THEN PRINT "Have a bun"

You expect a logical expression in line 120 but the numeric variable, hungry is there
on its own The system interprets the value, 1, of hungry as true and the output is

Have a bun
If line 110 read
LET hungry = 0O

there would be no output The system interprets zero as false and all other values as
true. That is useful but you can disguise the numeric quality of hungry by writing:

100 REMark Logical Variable

110 LET true =1 : false =10

120 LET hungry = true

130 |F hungry THEN PRI NT "Have a bun"

bTRING VARIABLES There is much to be said about handling strings and string variables and this is left to
a separate chapter

<# 12/84

A rich oil dealer gambles by tossing a coin in the following way If it comes down
heads he gets 1 If it comes down tails he throws again but the possible reward
is doubled This is repeated so that the rewards are as shown

THROW 1234 5 6 7

REWARDS 1 2 4 8 16 32 64
By simulating the game try to decide what would be a fair initial payment for each
such game
(@ if the player is limited to a maximum of seven throws per game

(b) if there is no maximum number of throws

Bill and Ben agree to gamble as follows At a given signal each divides his money
into two halves and passes one half to the other player Each then divides his new
total and passes half to the other Show what happens as the game proceeds
if Bill starts with 16p and Ben starts with 64p

What happens if the game is changed so that each hands over an amount equal
to half of what the other possesses’

Write a program which forms random three-letter words chosen from A B,C,D and
prints them until BAD appears

Modify the last program so that it terminates when any real three letter word appears

PROBLcMo ON

CHAPTER 9
V/nrtr I tn J

CHAPTER 10

LwOIlv/

If you have read previous chapters you wilt probably agree that repetition, decision making
and breaking tasks into sub-tasks are major concepts in problem analysis program design
and encoding programs Two of these concepts, repetition and decision making, need
logical expressions such as those in the following program lines

|F score = 7 THEN EXIT throws
[F suit =3 THEN PRINT "spades”

The first enables EXIT from a REPeat loop The second is simply a decision to do
something or not A mathematical expression evaluates to one of millions of possible
numeric values Similarly, a string expression can evaluate to millions of possible strings
of characters You may find it strange that logical expressions for which great importance
is claimed can evaluate to one of only two possible values true or false

In the case of
score =7

this is obviously correct Either score equals 7 or it doesnt ' The expression must be
true or false - assuming that its not meaningless It may be that you do not kpow the
value at some time, but that will be put right in due course

You have to be a hit more careful of expressions involving words such as OR, AND,
NOT but they are well worth investigating - indeed, they are essential to good
programming They will become even more important with the trend towards other kinds
of languages based more on precise descriptions of what you require rather than what
the computer must do

AND The word AND in SuperBASIC is like the word 'and' in ordinary English Consider the

UH

following program

100 REMark AND

110 PRINT "Enter two vatues” \ "1 for TRUE or 0 for FALSE"
120 INPUT raining, hole_in_roof

130 IF raining AND hole_in_roof THEN PRI NT "Get wet"

As in real life, you wtll only get wet if it is raining and there is a hole in the roof If one
(or both) of the simple logical variables

raining
hole__in__roof
is false then the compound logical expression
raining AND hole__in__roof

is also false It takes two true values to make the whole expression true This can be
seen from the rules below Only when the compound expression is true do you get wet

raining hole__in__roof raining AND hole__in__roof effect
FALSE FALSE FALSE DRY
FALSE TRUE FALSE DRY
TRUE FALSE FALSE DRY
TRUE TRUE TRUE WET

Rules lor AND

In everyday life the word 'or is used in two ways We can illustrate the inclusive use of

OR by thinking of a cricket captain looking for players He might ask "Can you bat or
bowP" He would be pleased if a player could do just one thing well but he would also
be pleased if someone could do both So it is in programming a compound expression
using OR is true if either or both of the simple statements or variables are true Try the
following program

100 REMar k OR t est

110 PRINT "Enter two val ues" \ "1 for TRUE or 0 for FALSE"
120 I NPUT "Can you baf>", batsman

130 | NPUT " Can you bow ™", bowl er

140 | F bat sman OR bowl er THENPRINT"In the team'

12/84

You can see the effects of different combinations if answers in the rules below

batsman bowler batsman OR bowler effect
FALSE FALSE FALSE not in team
FALSE TRUE TRUE in the team
TRUE FALSE TRUE in the team
TRUE TRUE TRUE in the team
Rules for OR

When the inclusive OR is used a true value in either of the simple statements will produce
a true value in the compound expression If lan Botham, the England all-rounder were
to answer the questions both as a bowler and as a batsman, both simple statements
would be true and so would the compound expression He would be in the team

If you write O for false and 1 for true you will get all the possible combinations by counting
in binary numbers

00
01
10
u
The word NOT has the obvious meaning

NOT true is the same as false
NOT false is the same as true

However you need to be careful Suppose you hold a red triangle and say that it is
NOT red AND square

In English this may be ambiguous

If you mean
(NOT red) AND square

then for a red triangle the expression is false

If you mean
NOT (red AND square)

then for a red triangle the whole expression is true There must be a rule in programming
to make it clear what is meant The rule is that NOT takes precedence over AND so
the interpretation

(NOT red) AND square
is the correct one This is the same as
NOT red AND square

To get the other interpretation you must use brackets If you need to use a complex
logical expression it is best to use brackets and NOT if their usage naturally reflects what
you want But you can if you wish always remove brackets by using the following laws
(attributed to Augustus De Morgan)

NOT (a AND b) is the same as NOT a OR NOT b
NOT (a OR b) is the same as NOT a AND NOT b
For example

NOT (tall AND fair) is the same as
NOT tall OR NOT fair

NOT (hungry OR thirsty) is the same as
NOT hungry AND NOT thirsty

Logic

Logic

XUn-bXCIUSIVS UH

PRIORITIES

Test this by entering:

100 REMark NOT and brackets
110 PRI NT "Enter two values"\"1 for TRUE or 0 for FALSE"

120 INPUT "tall"; tall

130 INPUT "fai r"; fair

140 I F NOT (tall AND fair) THEN PRINT "FIRST"
150 IF NOT tall OR NOT fair THEN PRI NT "SECOND"

Whatever combination of numbers you give as input, the output will always be either
two words or none, never one This will suggest that the two compound logical expressions
are equivalent

Suppose a golf professional wanted an assistant who could either run the shop or give
golf lessons If an applicant turned up with both abilities he might not get the job because
the golf professional might fear that such an able assistant would try to take over. He
would accept a good golfer who could not run the shop. He would also accept a poor
golfer who could run the shop This is an exclusive OR situation: either is acceptable
but not both. The following program would test applicants:

100 REMar k XOR test

110 PRINT "Enter 1 for yes or 0 for no."
120 | NPUT "Can you run a shop'", shop

130 I NPUT "Can you teach gol f", gol f

140 IF shop XOR gol f THEN PRINT "Suitable"

The only combinations of answers that will cause the output "Suitable" are (0 and 1)
or (1 and 0) The rules for XOR are given below

Able to run shop Able to teach Shop XOR teach effect
FALSE FALSE FALSE no job
FALSE TRUE TRUE gets the job
TRUE FALSE TRUE gets the job
TRUE TRUE FALSE no job

rules for XOR

The order of priority for the logical operators is (highest first)

NOT
AND
OR,XOR

For example the expression

rich OR tall AND fair
means the same as

rich OR (fa//l AND fair]

The AND operation is performed first. To prove that the two logical expressions have
identical effects run the following program

100 REMark Priorities

110 PRINT "Enter three values"\"Type 1 for Yes and 0 for No"i
120 INPUTrich, tall,fair

130 IF rich OR tall AND fair THEN PRINT "YES'

140 IF rich OR (tall AND fair) THEN PRI NT "AYE"

Whatever combination of three zeroes or ones you input at line 120 the output will be
either nothing or

YES
AYE

You can make sure that you test all possibilities by entering data which forms eight three-
digit binary numbers 000 to 111

000 001 010 011 100 101 110111

12/84

Place ten numbers in a DATA statement READ each number and if it is greater PROBLEMS ON

than 20 then print it PHAPTFR 1(1

Test all the numbers from 1 to 100 and print only those which are perfect squares
or divisible by 7

Toys are described as Safe (S), or Unsafe (U), Expensive (E) or Cheap (C), and
either for Girls (G), Boys (B) or Anyone (A) A trio of letters encodes the qualities
of each toy Place five such trios in a DATA statement and then search it printing
only those which a/e safe and suitable for girls

Modify program 3 to print those which are expensive and not safe

Modify program 3 to print those which are safe, not expensive and suitable for
anyone

CHAPTER 11
HANDLING
TEXT -

O I rillivvVdO You have used string variables to store character strings and you know that the rules

AobluNIINU

STRINGS

JUIININCci Ol HIINub

UurY A Ol niNo
Cl ipc

OoLIO[_

for manipulating string variables or string constants are not the same as those for numeric
variables or numeric constants SuperBASIC offers a full range of facilities for manipulating
character strings effectively In particular the concept of string slicing both extends and
simplifies the business of handling substrings or sices of a strng

Shtor:age for string variables is allocated as it is required by a program For example
thehnes

100 LET wordsS = "LONG'
110 LET wordsS = " LONGER"
120 PRI NT wordsS

would cause the six letter word LONGER to be printed The first line would cause space
for four letters to be allocated but this allocation would be overruled by the second line
which requires space for six characters

It is, however, possible to dimension (i e reserve space for) a string variable, in which
case the maximum length becomes defined, and the variable behaves as an array

You may wish to construct records in data processing from a number of sources Suppose
for example that you are a teacher and you want to store a set of three marks for each
student in Literature, History and Geography The marks are held in variables as shown

I|t$| 62 hlst$| 56 geogd Fal

As part of student record keeping you may wish to combine the three string values into
one six character string called mark$ You simply write

LET mark$ = tit$ S hist$ & geog$

You have created a further variable as shown

mark$ | 625671 {

But remember that you are dealing with a character string which happens to contain
number characters rather than an actual number Note that in SuperBASIC the & symbol
is used to join strings together whereas in some other BASICs the + symbol is used
for that purpose

A string slice is part of a string It may be anything from a single character to the whole
string In order to identify the string slice you need to know the positions of the required
characters

Suppose you are constructing a children's game in which they have to recognise a word
hidden in a jumble of letters Each letter has an internal number - an index -
corresponding to its position in the string Suppose the whole string is stored in the variable
Jumble$, and the clue is Big cat

¢ strmg shce

umbie$ |AIP|QJO|LIL|JI]JO{N|JA]T|S|U|Z

1 2 3 4 6 6 7 8 9 10 1 12 13 14

Handing Text

You can see that the answer is defined by the numbers 6 to 9 which indicate where
it is You can abstract the answer as shown

100 jumbleS = "APQOLLIONATSUZ"
110 LET an$ = jumble$(6 TO 9)
120 PRINT anS

Now suppose that you wish to change the hidden animal into a bull You can write two REPLACE A Ol HirJu
extra lines qi ipr

130 LET j umbl e$(6 TO9) = "BULL"
140 PRINT jumbl eS

The output from the whole five-line program is

LI ON
APQOLBULLATSUZ

All string variables are initially empty, they have length zero If you attempt to copy a
string into a string-slice which has insufficient length then the assignment may not be ,
recognised by SuperBASIC

If you wish to copy a string into a string-slice then it is best to ensure the destination
string is long enough by padding it first with spaces

100 LET subjects = "ENGLISH MATHS COMPUTING"
110 LET students ="
120 LET student$(9 TO 13) = subject$(9 TO 13)

We say that "BULL is a slice of the string APQOLBULLATSUZ' The defining phrase
(6 TO 9)

is called a slicer It has other uses Notice how the same notation may be used on both
sides of the LET statement If you want to refer to a single character it would be clumsy
to write

jumble$(6 TO 6)
just to pick out She "B* {possibly as a clue) so you can write instead
jumble$(6}
to refer to a single character
Suppose you have a variable, mark$ holding a record of examination marks The slice OUbHUUN

giving the history mark may be extracted and scaled up, perhaps because the history
teacher has been too strict in the marking The following lines will extract the history mark

100 LET mar kS = "625671"
110 LET hi st$ = mark$(3 TO 4)

The problem now is that the value "56' of the variable, hist$ is a string of characters
not numeric data If you want to scale it up by multiplying by, say 1125, the value of
histS must be converted to numeric data first, SuperBASIC will do this conversion

automatically when we type
120 LET num = 1 .125 * histS
Line 120 converts the string '56' to the number 56 and multiplies it by 1125 giving 63

Now we should replace the old mark by the new mark but now the new mark is still
the number 63 and before it can be inserted back into the original string it must be
converted back to the string '63' Again SuperBASIC will convert the number automatically
when we type

130 LET mark$(3 TO4) = num
140 PRI NT mar kS

The output from the whole program is
626371
which shows the history mark increased to 63

12/84 59

Handing Text

OEANLrIINu A
CTDIKIf»

I Hbn bl HINu
FUNCTIONS

Strictly speaking it is illegal to mix data types in a LET statement It would be silly to write
LETnum="LION"

and you would get an error message if you tried but if you write
LET num = "65"

the system will conclude that you want the number 65 to become the value of hum
and do that The complete program is

100 LET mar k$ = "625671"

110 LET hist$ = mark$(3 TO 4)
120 LET num=1.125 * histS
130 LET mark$(3 TO4) = num
140 PRI NT marks

Again the output is the same®

In line 120 a string value was converted into numeric form so that it could be multiplied,
In line 130 a number was converted into string form This converting of data types is
known as type coercion

You can write the program more economically if you understand both string-slicing and
coercion now

100 LET mark$ = "625671"
110 LET mark$<3 TO4) = 1.125 * mark$(3 TO 4)
120 PRINT mark$

If you have worked with other BASICS you will appreciate the simplicity and power of
string-slicing and coercion

You can search a string for a given substring The following program displays a jumble
of letters and invites you to spot the animal

100 REM Ani mal Spotting

110 LET jumbLeS = "SYNDI CATE"

120 PRINT jumbleS

130 I NPUT "What is the animal?" i an$

140 IF an$ INSTR jumbLeS AND an$<l) = "C
150 PRI'NT "Correct"

150 ELSE

170 PRI'NT “Not correct"

180 END I F

The operator INSTR, returns zero if the guess is incorrect If the guess is correct INSTR
returns the number which is the starting position of the string-slice, in this case 6

Because the expression
an$ INSTR jumbLeS

can be treated as a logical expression the position of the string in a successful search
can be regarded as true while in an unsuccessful search it can be regarded as false

You have already met LEN which returns the length {number of characters) of a string

You may wish to repeat a particular string or character several times For example if
you wish to output a row of asterisks, rather than actually enter forty asterisks in a PRINT
statement or organise a loop you can simply write

PRINT FILLS ("+",40)

Finally it is possible to use the function CHR$ to convert internal codes into string
characters For example

PRINT CHR$(65)

would output A

12/84

A great deal of computing is concerned with organising data so that it can be searched CUMrAnNnINu
quickly Sometimes it is necessary to sort it in to alphabetical order The basis of various CTDIMfiC
sorting processes is the facility for comparing two strings to see which comes first. OInlINVJO
Because the letters A,B,C are internally coded as 65,66,67 tt is natural to regard as

correct the following statements

A is less than B
B is less than C

and because internal character by character comparison is automatically provided

CAT is less than DOG
CAN is less than CAT

You can write, for example

IF "CAT" < "DOG" THEN PRINT "MEOW"
and the output would be

MEOW
Similarly

IF "DOG" > "CAT" THEN PRINT "WOOF"
would give the output

WOOF

We use the comparison symbols of mathematics for string comparisons All the following
logical statements expressions are both permissible and true

'ALF' < "BEN"
'KIT' > "BEN"
'KIT' <= "LEN’
KITH >= "KIT
'"PAT! >="LEN"
'LEN' <= "LEN*
'PAT' <> "PET?*

So far, comparisons based simply on internal codes make sense, but data is not always
conveniently restricted to upper case letters We would like, for example.

Cat to be less than COT
and K2N to be less than K27N

A simple character by character comparison based on internal codes would not give
these results so SuperBASIC behaves in a more intelligent way The following program
with suggested mput and the output that will result, illustrates the rules for comparison
of strings

100 REMark comparisons

110 REPeat conp

120 INPUT "input a string" ' firsts

130 INPUT "input another string" i second*
140 |F firsts < seconds THEN PRINT "Less"
150 IF firsts > seconds THEN PRINT "Greater"
160 IF firsts = seconds THEN PRINT "Equal "
170 END REPeat conp

i nput out put
CAT oor Geater
CAT CAT Equal
PET PETE Less

K6 K7 Less

K66 K7 Qeater
KI2N K6N Greater

Lof

Loge

PnUDLtMb UN
CHAPTER 11
Vin

1

Greater than - Case dependent compansion, numbers compared in numerical
order

Less than - Case dependent, numbers compared in numerical order
Equals - Case dependent, strings must be the same

Equivalent - String must be ‘almost the same, Case independent, numbers
compared in numerical order

Greater than or equal to - Case dependent, numbers compared in numerical
order

Less than or equal to - Case dependent, numbers compared in numerical order

Place 12 letters, all different, in a string variable and another six letters in a second
string variable Search the first string for each of the six letters in turn saying in
each case whether it ts found or not found

Repeat using single character arrays instead of strings Place twenty random upper
case letters in a string and list those which are repeated

Write a program to read a sample of text all in upper case letters. Count the
frequency of each letter and print the results

"GOVERNMENT IS A TRUST, AND THE OFFICERS OF THE
GOVERNMENT ARE TRUSTEES, AND BOTH THE TRUST AND THE
TRUSTEES ARE CREATED FOR THE BENEFIT OF THE PEOPLE. -
HENRY CLAY, 1829"

Write a program to count the number of words in the following text A word is
recognised because it starts with a letter and is followed by a space, full stop or
other punctuation character

"THE REPORTS OF MY DEATH ARE GREATLY EXAGGERATED -
CABLE FROM MARK TWAIN TO THE ASSOCIATED PRESS, LONDON

Rewrite the last program illustrating the use of logical variables and procedures

SuperBASIC has so extended the scope and variety of facilities for screen presentation

that we describe the features in two sections Simple Printing and Screen

The first section describes the output of ordinary text Here we explain the minimal welt
established methods of displaying messages, text or numerical output Even in this
mundane section there is innovation in the concept of the intelligent space - an example
of combining ease of use with very useful effects

The second section is much bigger because it has a great deal to say The wide range
of features actually makes things easier For example you can draw a circle by simply
writing the word CIRCLE followed by a few details to define such things as its position
and size Many other systems require you to understand some geometry and trigonometry
in order to do what is, in concept, simple

Each keyword has been carefully chosen to relect the effect it causes WINDOW defines
an area of the screen BORDER puts a border round it, PAPER defines the background
colour, INK determines the colour of what you put on the paper

If you work through this chapter and get a little practice you will easily remember which
keyword causes which effect You will add that extra quality to your programming fairly
easily With experience you may see why computer graphics is becoming a new art form

The keyword PRINT can be followed by a sequence of print items A print item may
be any of

text such as This is text
variables such as num wordS
expressions such as 3 * num, day$ & week$

Print items may be mixed in any print statement but there must be one or more print
separators between each pair Print separators may be any of

, No effect - it just separates print items

i Normally inserts a space between output items If an item will not fit on the current
line it behaves as a new line symbol If the item is at the start of line a space is
not generated

, A tabulator causes the output to be tabulated in columns of 8 characters

\ A new line symbol will force a new line

TO

The numbers 1,2,3 are legitimate print items and are convenient for illustrating the effects
of print separators

Allows tabbing

Statement Effect
100 PRINT 1,2.3 1 2 3
00 print L1f 27 3i 123
100 PRINT 1\2\3 1
2
3
100 PRINT 1;2;3 123
100 PRINT "This is text" This TS text

100 LET words =" "
110 PRINT wordS

moves print position

100 LET num = 13 13

110 PRINT num

100 LET an$ = "yes"

110 PRINT "I say" i an$ | say yes
110 PRINT "Sum is" i 4 + 2 Sum is 6

12/84

CHAPTER 12
SCREEN

IJ 1 r Ui

ollVIirLt rnIN | IINu

63

Screen Output

64

bCnCcN

ouLUUN

You can position print output anywhere on the screen with the AT command

For example

AT 10,15 : PRINT "This is on row 10 at column 15"
The CURSOR command can be used to position the print output anywhere on the
screen's scale system. For example

CURSOR 100,150 : PRINT "this is 100 pi xet grid units across and
150down"

If you read the Keyword Reference Guide you may find it difficult to reconcile the section
on PRINT with the above description Two of the difficulties disappear if you understand

that

Text in quotes, variables and numbers are all strictly speaking, expressions; they
are the simplest (degenerate) forms of expressions

Print separators are strictly classified as print items
This section introduces general effects which apply whether you wish to output text or
graphics. The statement.

MODE 8 or MODE 256
will select MODE 8 in which there are.

256 pixels across numbered 0-511 (two numbers per pixel)
256 pixels down numbered 0-255
8 colours

A pixel is the smallest area of colour which can be displayed. We use the term, solid
colour because these start wrth ordinary solid-looking colours of which there are only
eight. However, by using various effects a variety of shades and textures can be achieved
If you are using your QL with an ordinary television set then the television set will not
be able to reproduce any of these extra effects

The statement.
MODE 4 or MODE 512
will select MODE 4 in which there are

512 pixels across numbered 0 to 511
256 pixels down numbered O to 255
4 colours

You can select a colour by using the following code in combination with suitable keywords

such as PAPER, INK etc. Note that the numbers by themselves mean nothing. The
numbers are only interpreted as colours when they are used with PAPER and INK, etc.

8 Colour Mode Code 4 Colour Mode

black (0] black
blue 1 black
red 2 red

magenta 3 red

green 4 green
cyan 5 green
yellow 6 white
white 7 white

Colour Codes

For example INK 3 would give magenta in MODE 8.

STIPPLES You can if you wish specify two colours in a suitable statement For example 2,4 would

give a chequerboard stipple as shown. In each group of four pixels two would be red
(code 2) corresponding to the colour selected first The other two pixels would be a
contrast It is not really possible to display this effect on a domestic television set.

12/84

contrast

If you write.

INK 2,4

the mix colour is formed from the two codes 2 and 4. We will call these choices colour
and contrast!

INK colour, contrast

You can find out what the stipple effects are by trying them but we give more technical
details below.

100 REMar k Col our/ Contrast

110 FOR col our- =0 TO7 STEP 2

120 PAPER col our : CLS

140 FOR contrast =0 TO7 STEP 2

150 BLOCK 100, 50, 40, 50, col our, cont r ast
160 PAUSE 50

170 END FOR contrast

180 END FOR col our

If you wish to try different stipples you can add a third code number to the colour
specification. For example

INK 2,4,1
would specify a red and green horizontal stripe effect A block of four pixels would be:

The possible effects are shown using red [£% and contrast I:’

Code Name Effect
0 Single pixel of contrast
1 Horizontal Stripes
2 Vertical Stripes
3 Chequerboard

Stipple Patterns

12/84

65

66

UULUUH You can specify a colour/stipple effect as described above by using three numbers For

PARAMETERS ®@mple

INK colour, contrast, stipple
could be used with

colour in range 0 to 7
contrast in range 0 to 7
stipple m range 0 to 3

You could achieve the same effect with a single number if you wish though it is not
S0 easy to construct See the Concept Reference Guide - colour

The following program will display all the possible colour effects

1GO REMark Colour Effects

110 FOR num =0 TO 255

120 BLOCK 100,50, 40,50, num
130 PAUSE 50

140 END FOR num

rnr un PAPER followed by one two or three numbers specifies the background For example

PAPER 2 (red;
PAPER 2,4 [red/green chequerboard]
PAPER 2,4,1 (red/green horizontal stnpesj

The colour will not be visible until something else is done, for example, the screen is
cleared by typing CLS

INK INK followed by one, two or three numbers specifies the colour for printing characters
lines or other graphics The colour and stipple effects are the same as for PAPER For

example
INK 2 [red ink]
INK 2,4 [red/green chequerboard ink 3}
INK 2,4,1 [red/green horizontal striped ink]

The ink will be changed for ail subsequent output

CLS CLS means clear the window to the current paper colour - like a teacher cleaning
a blackboard, except that it is electronic and multi-coloured

FLASHING You can make the ink colour flash in mode 8 only To turn flash on you might type
FLASH 1
and to turn it off
FLASH 0
Allowing flashing characters to overlap can produce alarming results

riLhb You wil have used Microdnves for storing programs and you will have used the
commands LOAD and SAVE Cartridges can be used for storing data as well as
programs The word file usually means a sequence of data records a record being
some set of related information such as name, address and telephone number

Two of the most widely used types of file are serial and direct access files Items in a
serial file are usually read in sequence starting with the first If you want the fiftieth record
you have to read the first forty-nine in order to find it On the other hand the fiftieth record
in a direct access file can be found quickly because the system does not need to work
through the earlier records to get it Pop music on a cassette is like a serial file but eight
pieces on a long playing record form a direct access file You can move the pick up
arm directly onto any of the eight tracks

The simplest possible type of file is just a sequence of numbers To illustrate the idea
we will place the numbers 1 to 100 in a file called numbers However, the complete
file name is made up of two parts

device name
appended information

12/s4

Suppose that we wish to create the file, numbers on a cartridge in Microdrive 1 The
device name is
mdvl_
and the appended information is just the name of the file
numbers
So the complete file name is

mdvl_rtumbers

It is possible for a program to use several files at once, but it is more convenient to refer
to a file by an associated channel number This can be any integer in the range 0 to
15 A file is associated with a channel number by using the OPEN statement or, if it
is a new file, OPEN__NEW For example you may choose channel 7 for the numbers
file and write

OPEN_NEW #7 ,mdv1_numbers

fle
device
— channel number

keyword

You can now refer to the file just by quoting the number # 7 The complete program is

100 REMark Simple file

110 OPEN_NEW #7, mdv1l_numbers
120 FOR number = 1 to 100

130 PRI NT #7, nunmber

140 END FOR number

150 CLOSE #7

The PRINT statement causes the numbers to be 'printed’ on the cartridge file because
#7 has been associated with it. The CLOSE #7 statement is necessary because the
system has some internal work to do when the file has been used It also releases channel
7 for other possible uses After the program has executed type

DIP mdvl_

and the directory should show that the file numbers exists on the cartridge in Microdrive
mdvl__

You also need to know that the file is correct and you can only be certain of this if the
file is read and checked The necessary keyword is OPEN__)N, otherwise the program
for reading data from a file is similar to the previous one.

100 REMark Reading a file
110 OPEN_I N #6, mdvl1_numbers
120 FOR item = 1 TO 100

130 I NPUT n, number

140 PRINT i number i

150 END FOR item

160 CLOSE #6

The program should output the numbers 1 to 100, but only if the cartridge containing
the file numbers is still in Microdrive moV1__

You have seen one example of a device, a file of data on a Microdrive We may say,
loosely that a file has been opened but strictly we mean that a device has been associated
with a particular channel Any further necessary information has also been provided.
Certain devices have channels permanently associated with them by the system.

channel use
#0 OUTPUT - command window
INPUT - keyboard
#1 OUTPUT - print window
#2 LIST - list output

1284

Screen Outf

UHAIMNbLo

DEVICES AND
puAMMpi C
AnnIMINL.LO

67

66

WINUUWoO

DUNUbH

You can create a window of any size anywhere on the screen The device name for
a window is

SCr
and the appended information is for example

scr_ 360 _50a80_40
1 l | down value

across value
height
width

The following program creates a window with the channel number 5 and fills it with
green (code 4) and then closes it

100 REMark Create a window

110 OPEN #5, scr_400x200a20x50
120 PAPER #5,4 : CLS #5

130 CLOSE #5

Notice that each window can have its own features such as paper ink etc The fact
that a window has been opened does not mean that it is the current default window

You can change the position or shape of an opened window without closing it and
reopening it Try adding two lines to the previous program

124 WINDOW #5,300,100,110,65
126 PAPER #5,2 : CLS ttS

Re run the program and you will find a red window within the original green one This
red window is now the one associated with channel 5 see figure

You can place a border round the edge of the screen or a window For example
BORDER #5,6

would create a border round the channel #5 window It would be 6 units thick and
the size of the window would be correspondingly reduced The border would be
transparent protecting anything that was under tt You can specify a coloured border
by the usual method

80RDER #5,6,2

would produce a red border You can make a border of other colours and textures by
the usual methods For example

BORDER 10

will add a 10 pixel thick transparent border to the current window (transparent because
no colour was specified) and

BORDER 2,0,7,0

will add a 2 pixel thick black and white stipple border

12/84

Screen Output

You can specify a blocks size position and colour with a single statement It is placed uLUL/fx
in the pixel co ordinate system relative to the current window or screen For example

BLOCK #5,10,20,50,100,2

would create a block in the #5 window at a position 50 units across and 100 units
down It would be 10 units wide and 20 units high Its colour would be red

It is worth noting that WINDOW and BLOCK statements work without alteration in 4
and 8 colour mode (though the colours may vary) because the across values are always
on a 0 to 511 scale and there are always 256 pixel positions down

You can alter the size of characters For example SPECIAL PRIN | INu
CSIZE3.1 CSIZE

will give the largest possible characters and
CSIZE 0,0

will give the smallest The first number must be 01 2 or 3 and determines the width
The second must be 0 or 1 and determines the height The normal sizes are

MODE 4 CSI ZE 0,0
MODE 8 CSIZE 2,0

The number of lines and columns available for each character size is dependent on
whether the output is viewed on a monitor or on a television set, the row and column
sizes given are for a monitor, those for a television set will be smaller and also will vary
between different televisions

If you are using low resolution mode the QL will not allow you to select a character size
smaller than default size
You can provide a special background for characters to make them stand out For STRIP
example
STRIP 7
will give a white strip while
STRIP 2,4,2

will give a red/green vertical striped strip All the normal colour combinations are possible

Normally printing occurs on the current paper colour You can alter this by using strip OVER
You can make further effects by using

OVER 1 1 prints in ink on a transparent strip
OVER -1 -1 prints in ink over existing display on screen

To revert to normal printing on current strip use

OVER 0

You can underline characters UNDER

UNDER 1 underlines all subsequent output in the current ink
UNDER 0 switches off underling

If you wish to draw reasonably true geometric figures on a TV or video screen you cannot OGALE uRAPTIICO
easily use a pixel-based system If you use scale graphics then the system will do the

necessary work to ensure that you can fairiy easily draw reasonable circles, squares

and other shapes

The default scale of the graphics coordinate system is 100 in the vertical direction and
whatever is needed in the across direction to ensure that shapes drawn with the special
graphics keywords (PLOT, DRAW CIRCLE) are true

The graphics origin is not the same as the pixel origin which is used to define the position
of windows and blocks. The graphics origin is at the bottom left hand corner of the current
screen or window

12/84 69

POINTS AND LINEo It is easy to draw points and lines using scale graphics Using a vertical scale of 100
a point near the centre of the window can be plotted with

POINT 60,50
The point (60 units across and 50 units up) will be plotted in the current ink colour
Similarly a line may be drawn with the statement

LINE 60,50 TO 80,90
Further elements can be added For example the following will draw a square

LINE 60,50 TO 70,50 TO 70,60 TO 60,60 TO 60,50

_____ 60 across __ _ D

RELATIVE MODE Pair of coordinates such as
across, up

normally define a point relative to the origin 0,0 in the bottom left hand corner of a window
(or elsewhere if you choose) It is somettmes more convenient to define points relative
to the current cursor position For example the square above may be plotted in another
way using the LINE__R statement which means

"Make all pairs of coordinates relative to the current cursor position’

POI NT60, 50
LINE_LR 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10

First the point 6050 becomes the origin, then, as lines are drawn, the end of a line
becomes the origin for the next one

The following program will plot a pattern of randomly placed coloured squares

100 REMark Col oured Squares

110 PAPER 7 : CLS

120 FOR sq = 1 TO 100

130 I NK RNDd TO 6)

140 POl NT RNDC90), RNDC90)

150 LINE_LR 0,0 TO 10,0 TO 0,10 TO -10,0 TO 0,-10
160 END FOR sq

The same result could be achieved entirety with absolute graphics but it would require
a littte more effort

UnvLhu AMU If you want to draw a circle you need to specify

ELLIPSES position say 5050
radius say 40

The statement
CIRCLE 50,50,40

will draw a circle with trie centre at position 50,50 and radius (or height) 40 units, see figure

70 12/84

A oicle

If you add two more parameters
eg CIRCLE 50,50,40,.5
You will get an ellipse The keywords CIRCLE and ELLIPSE are interchangeable

An ellipse

The height of the ellipse ts 40 as before but the horizontal ‘radius' is now only 05 of
the height. The number 05 is called the eccentricity If the eccentricity is 1 you get a
circle if it is less than 1 and greater than zero you get an ellipse If you want to tilt an
ellipse you can change the fith parameter, for example

CIRCLE 50,50,40,.5,1
This will tilt he ellipse anti-clockwise by one radian, about 57 degrees, as shown in figure

Elipse a angle one radian

A straight angle is 180 degrees or PI radians, so you can make a pattern of ellipses
with the program

100 FOR rot = 0 TO 2*Pl STEP PI/6
110 CI RCLE 50,50, 40, 0.5, rot
120 END FOR rot

218

Screen Output

Example

AHC/O

The order of the parameters for a circle or ellipse is
centre_across centre_up, height, [eccentricity angle]

The last two parameters are optional and this is indicated by putting them inside square
brackets ([1)

Write a program which does the following

1 Open a window 100x100 at (100,50)

Scale 100 in mode 8

Select black paper and clear window
Make green border 2 units wide

Draw a pattern of six coloured circles

S o b~ WN

Close the window

100 REMar k pattern

110 MODE 8

120 OPEN #7, scr_100x100a 100x50
130 SCALE #7,100,0,0

140 PAPER #7,0 : CIS #7

150 BORDER #7, 2,4

160 FOR colour =1 TO 6

170 I NK #7, col our

180 LET rot = 2*Pl/col our

190 Cl RCLE #7,50,50, 30,0.5,rot
200 END FOR col our

210 CLOSE m

You can get some interesting effects by altering the program For example try the
amendments

160 FOR colour = 1 TO 100
180 LET rot = col our*PI/5Q
If you want to draw an arc you need to decide

starting point
end point
amount of curvature

The first two items are straightforward but the amount of curvature ts not so easy You
can do it by drawing accurately or by trial and error but you must decide what angle
the arc subtends and then specify the angle in radians An angle of 1 5 radians would
give a sharp bend and a small angle would give a very gentle curvature Try, for example

ARC10,50T0O50,90,1

which gives a moderate curvature in the current INK colour

{5080)

{1050)

Screen Output

You can fill a closed shape with the current INK colour by simply writing FILL

FILL 1
before the shape is drawn The following program produces a green circle

INK 4
FILL 1
CIRCLE 50,50,30

The FILL command works by drawing touching horizontal lines between suitable points

The statement
FILL O
will turn off the FILL effect

You can scroll or pan the display in a window like a film cameraman You arrange scroling SCROLLINo AND
in terms of pixels A positive number of pixels indicates upwards scrolling thus PANNING

SCROLL 10
moves the display in the current window or screen 10 pixels downwards
SCROLL -8
Moves the display 8 pixels up You can add a second parameter to induce part scrolling
SCROLL -8, 1
wtll scroll the part above (not including) the cursor line and
SCROLL -8,2
wilt scroll the part below (not including) the cursor line

As scrolling occurs, the space left by movement of the display is ftlled with the current
paper colour A second parameter O has no effect

You can PAN the display in the current window left or right The RAN statement works
in a similar manner to SCROLL but

PAN 40 moves display right
PAN -40 moves display left

A second parameter gives a partial PAN

0 - whole screen

3 - the whole of the tine occupied by the cursor

4 - the right hand side of the line occupied by the cursor
The area of the cursor is also included

If you are using stipples or are in 8 colour mode then windows must be panned or
scrolled in multiples of 2 pixels

1 Write a program which draws a Snakes and Ladders' grid of ten rows of ten PROBLEMS ON

squares CHAPTER 12
2 Place the numbers 1 to 100 in the squares starting at the bottom left and place
F for finish in the last square

3 Draw a dartboard on the screen It should consist of an outer ring which could
hold numbers A doubles' ring and triples' ring as shown and a centre consisting
of a bull's eye' and a ring around it

12/84

74

CHAFER 13

AMriAyvYo

Suppose you are a prison governor and you have a new prison block which is called
the West Block It is ready to receive 50 new prisoners You need to know which prisoner
(known by his number) is in which cell You could give each cell a name but it is simpler

to give them numbers 1 to 50

In a computing simulation we wtll imagine just 5 prisoners with numbers which we can
put in a DATA statement

DATA 50, 37, 86, 41, 32

We set up an array of variables which share the name, west, and are distinguished by
a number appended in brackets

] o] o) [[co

wasi(1) west{2) wesi(3) west(4) west(5)

It is necessary to declare an array and give its dimensions with a DIM statement

DIM west(5)

This enables SuperBASIC to allocate space, which might be a large amount After the
DIM statement has been executed the five variables can be used

The convicts can be READ from the DATA statement into the five array variables
FOR cell =1 TO 5 : READ west(cell)

We can add another FOR loop with a PRINT statement to prove that the convicts are
in the cells

ol en GO | | BE

west (1) west(2} wost(3) west(d) west(5)

The complete program is shown below

100 REMar k Pnsoners

110 DI Mwest (S)

120 FOR cell =1 TO5 : READ west Ccell)

130 FOR cell =1 TO5 : PRINT cell i west<cell)
UO DATA 50, 37, 86, 41, 32

The output from the program is

150
2 37
3 86
4 41
5 32

The numbers 1 to 5 are called subscripts of the array name, west The array west is
a numeric array consisting of five numeric array elements

You can replace line 130 by
130 PRINT west
This wil! output the values only

0
50
37
86
41
32

The zero at the top of the list appears because subscripts range from zero to the declared
number We will show later how useful the zero elements in arrays can be

Note also that when a numeric array is DIMensioned its elements are all given the value

zZero
12/84

String arrays are similar to numeric arrays but an extra dimension m the DIM statement
specifies the length of each string variable in the array Suppose that ten of the top players
at Royal Birkdale for the 1982 British Go”hampionship were denoted by their first names

and placed in DATA statements

DATA "Tom", "Graham", "Sevvy", "Jack", "Lee"
DATA "Nick", "Bernard", "Ben", "Gregg", "Hal"

You would need ten different variable names but if there were a hundred or a thousand
players the job would become impossibly tedious An array is a set of variables designed
to cope with problems of this kind Each variable name consists of two parts

a name according to the usual rules
a numeric part called a subscript

Write the variable names as
flat$(1), fLat$(2), flat$<3> etc

Before you can use the array variables you must tell the system about the array and
its dimensions

DIM fLat$C10,8)

This causes eleven (0 to 10) variables to be reserved for use in the program Each string
variable in the array may have up to eight characters DIM statements should usually
be placed all together near the beginning of the program Once the array has been
declared in a DIM statement all the elements of the array can be used One important
advantage is that you can give the numeric part (the subscript) as a numeric variable
You can write

FOR number =1 TO 10 : READ flat$(number)

This would place the golfers in their flats'

flat$(1) flat$(2) flent$(® .. flat$(10}

L Tom LGraham Sevvy Hal

You can refer to the variables in the usual way but remember to use the right subscript
Suppose that Tom and Sevvy wished to exchange flats In computing terms one of them
Tom say, would have to move into a temporary flat to allow Sevvy time to move You
can write

LET temp$ = flat$(1l): REMark Tom into temporary
LET flat$(1> = ftat$(3): REMark Sevvy into flat$(1)
LET flat$(3> = tempS: REMark Tom into flat$(3)

The following program places the ten goifers in an array named flats and prints the
names of the occupants with their flat numbers' (array subscripts) to prove that they
are in residence The occupants of flats 1 and 3 then change places The list of occupants
is then printed again to show that the exchange has occurred

100 REMark Gol fers' Flats
110 DI'M flat$C10,8)
120 FOR number =1 TO 10 : READ flat SCnumber)

130 pri nt Iist
140 exchange
150 print Iist

160 REMark End of main program

170 DEFi ne PROCedure printlist

180 FOR num =1 TO 10 : PRINT num f lat$(num
190 END DEFine

200 DEFine PROCedure exchange

210 LET temp$ = f lat$(1)

220 LET flat$(1> = flat$(3)

230 LET flat$(3> = temp$

240 END DEFine

250 DATA "Tom", "Graham". "Sevvy", "Jack", "Lee"
260 DATA "Nick", "Bernard", "Ben", "Greg", "Hal"

1?/R4

OIRINuUu AHNAYoO

7S

output (line 130)

output {line 15Q)

—_

[l = 2 N e MY, B ST L P

Tam
Grabam
Sevyy
Jack
Lee
Nick
Bernard
Ben
Gregg
Hal

1 Sevvy

Z Graham
3 Tom

4 Jack

5 Lee

é Nick

7 Bernard
B Ben

? Gregg
10 Hal

1 VVU UIMtNOoIUNAL Sometimes the nature of a problem suggests two dimensions such as 3 floors of 10
ARRAYS flats ratnertnan justa gingie row of 30.

Suppose that 20 or more golfers need flats and there is a block of 30 flats divided into
three floors of ten flats each. A realistic method of representing the block would be with
a two-dimensional array. You can think of the thirty variables as shown below:

flat$(2.0) flat$(2,1) flat$(2,2} ___ L _. flat$(2,0)
_’ } second(?) D

flat${1,0) flats(1.1) flas$(1.2) _____ . ______ flat$(1,9)
I | frsih ’

fiat3{0,0) flat$(0,7) Rat$(02) ___ . __ flat$(09}

Iﬁ _[ground(0)
Assuming DATA statements with 30 names, a suitable way to place the names in the
flats is:

120 FOR fl oor

=0TO2

130 FORnum=0 TO9
140 READ fLats$(fLoor, num)
150 END FOR num

160 END FOR floor
You also need a DIM statement:
ZODIMflat$C2,9,8)

which shows that the first subscript can be from 0 to 2 (floor number) and the second
subscript can be from 0 to 9 (room number). The third number states the maximum
number of characters in each array element

We add a print routine to show that the golfers are in the flats and we use letters to
save space.

100 REMark 30 Golfers
110 DI Mfl at $C2, 9, 8)
120 FOR floor = 0 TO 2

130 FOR num=0 TO9
140 READ flat$(fLoor, num) REMar k Gol fer goes in
150 END FOR num

160 END FOR floor

170 REMark End of input
180 FOR floor = 0 TO 2
190 PRI NT "Floor number" ' floor

12184

200 FORnum=0TO9
210 PRINT "Flat' ' num i
220 END FOR num
230END FOR floor

240 DATA''AVBVCVDWVEVFVGVHVTIrvJ
"KLY, UM, UNY, MO P QL R, S T
260 DATA"U VW' VWV XV YVZ, "3 "£,"$","%

250 DATA

The output starts

FLoor number 0

Flat 0 A
Flat 1 B
Flat 2 C

and continues giving the thirty occupants

You may find this section hard to read though it is essentially the same concept as string-
slicing You will probably need string slicing if you get beyond the learning stage of
programming The need for array slicing is much rarer and you may wish to omit this

section particularly on a first reading

We now use the golfers' flats to illustrate the concept of array slicing The flats will be
numbered O to 9 to keep to single digits and names will be single characters for space

flatSCfloor, num)

reasons
20 21 22 22 34 25 26 27 2B 29
Aatd | U v w X Y p @ £ $ %
10 11 1.2 13 14 t5 16 1,7 18 19
flats | K L M N 0] P Q R L)
g0 01 02 03 04 05 06 07 08 09
flats | A B C D E F G | J

Given the above values the following are array slices

flats (1,3)
fLat$ (1,1 TO 6)

Array Element

flat$Cci,1)
flat$(1,2)
flat$(1,3)
flat$<1,4)
flatS(1,5)
flat$(1,6)

il ttf-n

Means a single array element with value N

Means six elements with values L M N O P Q

Value

OQuozzr

Means flats (1,0 TO 9)

ten elements with values KLM NOPQRST

In these examples a range of values of a subscript can be given instead of a single
value If a subscript is missing completely the complete range is assumed In the third
example the second subscript is missing and it is assumed by the system to be 0 TO 9

The techniques of array slicing and string slicing are similar though the latter is more

widely applicable

ANnHAY oLIUIINb

PROBLEMS ON 1 SORTING

CHAPTER 13 Place ten numbers in an array by reading from a DATA statement Search the array
to find the lowest number Make this lowest number the value of the first element
of a new array Replace it in the first array with a very large number Repeat this
process making the second lowest number the second value in the new array
and so on until you have a sorted array of numbers which should then be printed

2 SNAKES AND LADDERS
Represent a snakes and ladders game with a 100 element numeric array Each
element should contain either
zero

or a number in the range 10 to 90 meaning that a player should transfer to
that number by going up a ladder' or down a snhake

or the digits 1 2, 3 etc to denote a particular players position

Set up six snakes and six ladders by placing numbers in the array and simulate
one solo run by a single player to test the game

3 CROSSWORD BLANKS

1 2 3 a 5 columns
1
2 .
row 3
a4

° i

Crosswords usually have an odd number of rows or columns in which the black
squares have a symmetrical pattern The pattern is said to have rotational symmetry
because rotation through 180 degrees would not change it

Note that after rotation through 180 degrees the square in row 4, column 1 could
become the square in row 2 column 5 That is row 4, column 1 becomes row
2 column 5inab x5 grid

Write a program to generate and display a symmetrical pattern of this kind

4 Modify the crossword pattern so that there are no sequences, across or down,
of less than four white squares

5 CARD SHUFFLE

Cards are denoted by the numbers 1-52 stored in an array They can be converted
easily to actual card values when necessary The cards should be 'shuffled’ as
follows

Choose any position in range 1-51 eg 17

Place the card in this position in a temporary store

Shunt all the cards in positions 52 to 18 down to positons 51 to 17
Place the chosen card from the temporary store to position 52

Deal similarly with the ranges 1-50, 1-49 down to 1-2 so that the pack
is well shuffled

Output the result of the shuffle

6 Set up six DATA statements each containing a surname, initials and a telephone
number (dialling code and local number) Decide on a suitable structure of arrays
to store this information and READ it into the arrays

PRINT the data using a separate FOR loop and explain how the input format
(DATA), the internal format (arrays) and output format are not necessarily alt the same

12'84

CHAFER 14
PROGRAM

In this chapter we go again over the ground of program structure loops and decisions O | MUw I U Fit
or selection We have tried to present things in as simple a way as possible but

SuperBASIC is designed to cope properly with the simple and the complex and all levels

in between Some parts of this chapter are difficult and if you are new to programming

you may wish to omit parts The topics covered are

Loops

Nested loops
Binary decisions
Multiple decisions

The latter parts of the first section, Loops, get difficult as we show how SuperBASIC copes
with problems that other languages simply ignore Skip these parts if you feel so inclined
but the other sections are more straightforward

In this section we attempt to illustrate the well-known problems of handling repetition LUOrO
with simulations of some Wild West scenes The context may be contrived and trivial

but it offers a simple basis for discussion and it illustrates difficulties which arise across

the whole range of programming applications

A bandit is holed up in the Old School House The sheriff has six bullets m his gun EXAMPLE 1
Simulate the firing of the six shots

100 REMark Western FOR Program 1
110 FOR bul lets =1 TO6

120 PRINT "Take ai m'

130 PRINT "Fi re shot"

140 END FOR bull ets

100 REMar k Western REPeat Program 2
110 LET bullets =6

120 REPeat bandit

130 PRINT "Take ai m"

140 PRINT "Fi re shot"

150 LET bullets = bullets - 1

160 IF bullets =0 THEN EXI T

170 END REPeat bhandit

Bot h these prograns produce t he sane out put

Takeai ra
Fi re a shot

is printed six times

If, in each program the 6 is changed to any number down to 1 both programs still work
as you would expect But what if the gun is empty before any shots have been fired®

Suppose that someone has secretly taken all the bullets out of the sheriffs gun What EXAMPLE 2
happens if you simply change the 6 to O in each program?

100 REMark Western FOR Zero Case Program 1
110 FOR bullets =1 to 0

120 PRINT "Take ai m- -

SO PRINT "Fire a shot"

140 END FOR bul lets

This works correctly There is no output The 'zero case behaves properly in SuperBASIC

100 REMark Western REPeat Fails Program 2
110 LET bullets =0

120 REPeat bandit

130 PRINT "Take aim'

140 PRINT "Fire shot"

150 LET bullets = bullets - 1

160 IF bullets =0 THEN EXI T bandit

170 END REPeat bandit

12/ 84

Program Structure

nn

Program 3

EXAMPLE 3

Program 1

The program fails in two ways

1 Take aim
Fire a shot

is printed though there were never any bullets

2 By the time the variable bullets, is tested in line 160 it has the value -1 and it
never becomes zero afterwards The program loops indefinitely You can cure the
infinite looping by re-writing line 160

160 IF bullets <1 THEN EXIT bandit

There is an inherent fault in the programming which does not allow for the possible
zero case This can be corrected by placing the conditional EXIT before the PRINT
statements

100 REMark Western REPeat Zero Case
110 LET but lets =0

120 REPeat Bandit

130 IF bullets =0 THEN EXIT Bandit
140 PRI NT "Take ai m"

150 PRINT "Fire shot"

160 LET bul lets = bullets -1

170 END REPeat Bandit

This program now works properly whatever the initial value of bullets as long as it is
a positive whole number or zero Method 2 corresponds to the REPEAT UNTIL loop
of some languages Method 3 corresponds to the WHILE ~ ENDWHILE loop of some
languages However, the REPeat...END REPeat with EXIT is more flexible than either
or the combination of both

If you have used other BASICs you may wonder what has happened to the NEXT
statement. We will re-introduce it soon but you will see that both loops have a similar
structure and both are named

FOR name = (opening keyword) REPeat name
(statements) (content) (statements)
END FOR name (closing keyword) END REPeat name

In addition the REPeat loop must normally have an EXIT amongst the statements or
it will never end

Note also that the EXIT statement causes control to go to the statement which is
immediately after the END of the loop

A NEXT statement may be placed in a loop It causes control to go to the statement
which is just after the opening keyword FOR or REPeat It should be considered as
a kind of opposite to the EXIT statement By a curious coincidence the two words, NEXT
and EXIT both contain EXT Think of an EXTension to loops and

N means 'Now start again
| means Its ended'

The situation is the same as in example 1 The sheriff has a gun loaded with six bullets
and he is to fire at the bandit but two more conditions apply

1 If he hits the bandit he stops firing and returns to Dodge City

2 If he runs out of bullets before he hits the bandit, he tells his partner to watch the
bandit while he (sheriff) returns to Dodge City

100 REMark Western FOR wi th Epilogue

110 FOR bullets =1 TO6

120 PRI NT "Take ai m"

130 PRI NT "FI RE A SHOT"

140 LET hit = RNDC9)

150 IFhit =7 THEN EXIT bullets

160 NEXT bul l et's

170 PRINT "Watch B d i t
180 END FOR bul I ets

190 PRI'NT "Return to DodgeCity"'

12/ 84

In this case, the content between NEXT and END FOR is a kind of epilogue which
is only executed if the FOR loop runs its full course If there is a premature EXIT the
epilogue is not executed

The same effect can be achieved with a REPeat loop though it is not necessarily the
best way to do it However, it is worth looking at (perhaps at a second reading) if you
want to understand structures which are simple enough to use in simple ways and
powerful enough to cope with awkward situations when they arise

100 REMark Western REPeat with Epi Logue
110 LET bullets=6

120 REPeat Bandit

130 PRINT "Take aim"

140 PRINT "Fire shot"

150 LET hit = RNOC9)

160 IF hit = 7 THEN EXIT Bandit

170 LET bullets = bullets -1

180 IF bullets 0 0 THEN NEXT Bandit
190 PRINT "Watch Band!t"

200 END REPeat Bandit

210 PRINT "Return to Dodge City"

The program works property as long as the sheriff has at least one bullet at the start
It fails if line 20 reads

110 LET bullets=0

You might think that the sheriff would be a foot to start an enterprise of this kind if he
had no bullets at all, and you would be right We are now discussing how to preserve
good structure in the most complex type of situation We have at least kept the problem
context simple, we know what we are trying to do Complex structural problems usually
arise in contexts more difficult than Wild West simulations But if you really want a solution
to the problem which caters for a possible hit, running out of bullets and an epilogue,
and also the zero case then add the following line to the above program

125 |F bul I ets =0 THEN PRI NT "Watch Bandit" : EXIT bandit

We can conceive of no more complex type of problem than this with a single loop
SuperBASIC can easily handle it if you want it to

Consider the following FOR loop which PLOTS a row of points of various randomly
chosen colours (not black)

100 REMark Row of pixels
110 PAPER 0 : CIS

120 LET up = 50

130 FOR across = 20 TO 60
140 INK RNDC2 TO 7)
150 POINT across, up
160 END FOR across

This program plots a row of points thus

If you want to get say 51 rows of points you must plot a row for values up from 30 to
80 But you must always observe the rule that a structure can go completely within another
or it can go properly around it It can also follow in sequence, but it cannot 'mesh’ with
another structure Books about programming often show how FOR loops can be related
with a diagram like

——— — —
—— -
. >
Righit
(nesled) Fighi Wrong
{sequence) {Meshed)

Program Structure

Program 2

Nbol tzU LUUroO

Program Structure

DIINAHY UtUolUNo

In SuperBASIC the rule applies to all structures You can solve all problems using them
properly We therefore treat the FOR loop as an entity and design a new program

FOR up = 30 TO 80

FOR across = 20 TO 60
INK RND(2 To 7)
POINT across up
END FOR across

END FOR up

When we translate this into a program we are entitled not only to expect it to work but

to know what it will do It will plot a rectangle made up of rows of pixels

100 REMark Rows of pixels
110 PAPERO ; CL.S

120 FOR up = 30 TO 80

130 FOR across = 20 TO 60
140 INK RNO(2 TO 7)

150 PO NT across, up
160 END FOR across

170 END FOR up

Different structures may be nested Suppose we replace the inner FOR loop of the above
program by a REPeat loop We will terminate the REPeat loop when the zero colour

code appears for a selection in the range O to 7

100 REMar k REPeat in FOR
110 PAPER O : CS

120 FCR up = 30 TO 80

130 LET across = 19
140 REPeat dots

150 LET col our = RNDC7)

160 | NK col our

170 LET across = across + 1

180 POI NT across, up

190 IF colour =0 then EXIT dots

200 END REPeat dots
210 END FOR up

Much of the wisdom about program control and structure can be expressed in two rules

1 Construct your program using only the legitimate structures for loops and decision-

making

2 Each structure should be properly related in sequence or wholly within another

The three types of binary decision can be illustrated easily in terms of what to do when

it rains

i 100 REMark Short form IF
110 LET rain = RNDCO TO 1)
120 I F rain THEN PRI NT "Qpen brol ly"

i 100 REMark Long formIF...END IF
110 LET rain = RNDCO TO 1)
120 | F rain THEN
130 PRI NT "Wear coat"
140 PRI NT "Qpen brolly"
150 PRINT "Wal k fast"
160 END | F

til 100 REMar k Long formIF ... ELSE... END I F
110 LET rain = RNDCO TO 1)
120 I F rai n THEN
130 PRI NT "Take a bus"
140 ELSE
150 PRI NT "Wal k"
160 END | F

All these are binary decisions The first two examples are simple either something
happens or it does not The third is a general binary decision with two distinct possible
courses of action both of which must be defined

You can omit THEN in the long forms if you wish In the short form you can substitute
for THEN

Consider a more complex example in which it seems natural to nest binary decisions
This type oi nesting can be confusing and you should only do it if it seems the most
natural thing to do Careful attention to layout particularly indenting is especially important

Analyse a piece of text to count the number of vowels consonants and other characters
Ignore spaces For simplicity the text is all upper case

"COMPUTER HISTORY WAS MADE IN 1984"

Read in the data
FOR each character
IF letter THEN
IF vowel
increase vowel count
ELSE
increase consonant count
END IF
ELSE
IF not space THEN increase other count
END IF
END FOR
PRINT results

100 REMark Character Counts

110 RESTORE 290

120 READ text$

130 LET vowels =0 : cons =D : others =0
140 FOR num =1 TO LENCtextD

150 LET ch$ = textS(num)

160 IF ch$ >= "A" AND ch$ <= "z2"

170 IF ch$ INSTR "AEIOU"

180 LET vowels = vowel + 1

190 ELSE

200 LET cons = cons + 1

210 END | F

220 ELSE

230 I[F ch$ <> " " THEN others = others + 1
240 END IF

250 END FOR num

260 PRI NT "Vowel count is" > vowels

270 PRI NT "Consonent count is" i cons

280 PRINT "Other count is" < others

290 DATA "COMPUTER HI STORY WAS MADE |N 1984"

Vowel count is 9
Consonant count is 15
Ot her count is 4

Where there are three or more possible actions and none is dependant on a previous
choice the natural structure to use is SELect which enables selection from any number
of possibilities

A magic snake grows without limit by adding a section to its front Each section may
be up to twenty units long and may be a new colour or it may remain the same Each
new section must grow in one of the directions North, South East or West The snake
starts from the centre of the window

12/84

Program Structure

EXAMPLE

Data

Design

Program

Qut put

MULTIPLE

UbUIolUINo
CCJ| o«t

w OLLeu

EXAMPLE

Method At any time while the snake is still on the screen you choose a random length and ink

colour easily. The direction may be selected by a number 1,23 or 4 as shown:

North 1

West 4

South 3

Design Select PAPER
Set snake to centre of window
REPeat
Choose direction, colour, length of growth
FOR unit = 1 to growth

Make snake grow, north, south, east or west

IF snake is off window THEN EXIT
END FOR
END REpeat
PRINT end message

Program 100 REMark Magic Snake
110 PAPER 0 : CLS
120 LET across = 50 : up = 50
130 REPeat snake

140 LET direction = RNDC1 TO 4)

150 LET growth = RNDC2 TO 20)
160 INK colour
170 FOR unit =1 TO growth

East 2

: colour = RND(2 TO 7)

180 SELect ON direction

190 ON direction = 1

200 LET up = up + 1

210 ON direction = 2

220 LET across = across + 1
230 ON direction = 3

240 LET up = up -1

250 ON direction = 4

260 LET across = across - 1
270 END SELect

280 IF across<1 OR across>99 OR up<l OR up>99 THEN EXIT snake
290 POINT across,up

300 END FORunit
310 END REPeat snake
320 PRINT "Snake off edge"

The syntax of the SELect ON structure also allows for the possibility of selecting on a

list of values such as
5,6,8,10TO13

It is also possible to allow for an action to be executed if none of the stated values is

found. The full structure is of the form given below.

84

12/84

SELectONNnum LONG FORM
ON num = list of values

statements
ON num = list of values

statements

ON num = REMAINDER
statements
END SELect

where num is any numertc variable and the REMAINDER clause is optional

There is a short form of the SELect structure For example SHORT FORM

100 INPUT num
110 SELect ON num=0TO9 : PRINT "digit"

will perform as you would expect <

1 Store 10 numbers in an array and perform a'bubble-sort'This is done by comparing rnUbLCIVIo UN
the first pair and exchanging if necessary, the second pair (second and third PHAPTER 14
numbers), up to the ninth pair (ninth and tenth numbers) The first run of nine v/nnr tn It
comparisons and possible exchanges guarantees that the highest number will reach
its correct position Another eight runs will guarantee eight more correct positions
leaving only the lowest number which must be in the only (correct) position [eft
The simplest form of bubble sort' of ten numbers requires nine runs of nine
comparisons

2. Consider ways of speeding up bubblesort but do not expect that it will ever be
very efficient

3 An auctioneer wishes to sell an old clock and he has instructions to invite a first
bid of £50 If no-one bids he can come down to £40, £30, £20, but no lower, in
an effort to start the bidding, if no-one bids, the clock is withdrawn from the sale
When the bidding starts, he takes only £5 increases until the final bid is made
If the final bid is £35 (the 'reserve price) or more, the clock is sold Otherwise it
is withdrawn

Simulate the auction using the equivalent of a six-sided die throw to start the bidding
A 'six' at any of the starting prices will start it off

When the bidding has started there should be a three out of four chance of a
higher bid at each invitation.

4 In a wild west shoot-out the Sheriff has no ammunition and wishes to arrest a
gunman camped in a forest He rides amongst the trees tempting the gunman
to fire He hopes that when six shots have been fired he can rush in and overpower
the gunman as he tries to re-load Simulate the encounter giving the gunman a
one-twentieth chance of hitting the Sheriff with each shot If the Sheriff has not
been hit after six shots he will arrest the gunman

5 The Sheriff's instructions to his Deputy are

"If the gun is empty then re-load it and if it ain't then keep on firing until you
hit the bandit or he surrenders If Mexico Pete turns up, get out fast”

Wrtte a program which caters properly for all these situations

Whatever happens, return to Dodge City

If Mexico Pete turns up, return immediately

If the gun is empty, reload it

If the gun is not empty, ask the bandit to surrender
If the bandit surrenders, arrest him

If he doesn't surrender, fire a shot

If the bandit is hit, arrest him and fix his wound.

Assume an unlimited supply of ammunition Use a simulated ‘twenty-sided die®
and let a seven mean surrender' and a thirteen' mean the bandit is hit

12/84

CHAPTER 15

PROCEDURES

86

AND

rUNU I IUM O In the first part of this chapter we explain the more straightforward features of SuperEASIC's

procedures and functions We do this with very simple examples so that you can
understand the working of each feature as it is described Though the examples are
simple and contrived you will appreciate that, once understood, the ideas can be applied
m more complex situations where they really matter

After the first part there is a discussion which attempts to explain Why procedures'
If you understand, more or less, up to that point you will be doing well and you should
be able to use procedures and functions with increasing effectiveness

SuperBASIC first allows you to do the simpler things in simple ways and then offers you
more if you want it Extra facilities and some technical matters are explained in the second
part of this chapter but you could omit these, certainly at a first reading and stil be
in a stronger position than most users of older types of BASIC

VALUhh You have seen in previous chapters how a value can be passed to a procedure Here

PARAMETERS ISanotherexample

EXAMPLE In "Chans Chinese Take-Away" there are just six items on the menu

Rice Dishes Sweets
1 prawns 4 ice

2 chicken 5 fritter

3 special 6 iychees

Chan has a simple way of computing prices He works in pence and the prices are-

for a rice dish 300 + 10 times menu number
for a sweet 12 times menu number

Thus a customer who ate special rice and an ice would pay
300 +10*3 + 12*4 = 378 pence

A procedure, item, accepts a menu number as a value parameter and prints the cost

Program 100 REMark Cost of Dish
110 item 3
120 item 4

130 OEFi ne PROCedure item(num)

140 I'F num <= 3 THEN LET price = 300 + 10*num
150 IF num>= 4 THEN LET price = 12*num

160 PRINT > price i

170 END DEFine

Qut put 330 48

In the main program actual parameters 3 and 4 are used. The procedure definition has
a formal parameter, num, which takes the value passed to it from the main program.
Note that the formal parameters must be in brackets, but that actual parameters need
not be

EXAMPLE Now suppose the working variable, price, was also used in the mam program, meaning

something else, say the price of a glass of lager, 70p. The following program fails to
give the desired result

12'84

Procedures and Functions

100 REMark Global price Program
110 LET price=70

120 item 3

130 item A

140 PRINT i price i

150 DEFine PROCedure itemCnum)

160 IF num <= 3 THEN LET price = 300 + 10*num
170 IF num >= 4 THEN LET price = 12*num

180 PRINT i price '

190 END DEFine

33048 48 Output
The price of the lager has been altered by the procedure We say that the variable, price,
is global because it can be used anywhere in the program

Make the procedure variable, price, LOCAL to the procedure This means that EXAMPLE
SuperBASIC will treat it as a special variable accessible only within the procedure The
variable, price in the main program will be a different thing even though it has the same

name
100 REMark LOCAL price Program
110 LET price = 70
120 item3
130 item 4

140 PRINT i price i

150 DEFi ne PROCedure item(num)

160 LOCaL price

170 IF num <= 3 THEN LET price = 300 + 10*num
180 IF num >= 4 THEN LET price = 12*num

190 PRINT ' price i

200 END DEFi ne

330 48 70 Cut put

This time everything works properly Line 70 causes the procedure variable price to
be internally marked as belonging' only to the procedure, item The other variable, price
is not affected You can see that local variables are useful things

Local variables are so useful that we automatically make procedure formal parameters EXAMPLE
local Though we have not mentioned it before parameters such as num in the above

programs cannot interfere with main program variables To prove this we drop the LOCAL

statement from the above program and use num for the price of lager Because num

in the procedure is local everything works

100 REMar k LOCAL parameter Pr ogr am
110 LET num = 70

120 item 3

130 item 4

140 PRINT i num i
150 DEFi ne PROCedure i t emCnum)

160 IF num <= 3 THEN LET price = 300 + 10*num

170 IF num>= 4 THEN LET price = 12*num

180 PRINT i price '

190 END DEFi ne

330 48 70 Cut put

So far we have only used procedure parameters for passing values to the procedure VANINDLDb

But suppose the main program wants the cost of an item to be passed back so that PARAMETERS
it can compute the total bill We can do this easily by providing another parameter in rnnnivic uno
the procedure call This must be a variable because it has to receive a value from the

procedure We therefore call it a variable parameter and it must be matched by a

corresponding variable parameter in the procedure definition

12/84 -

Procedures and Functors

EXAMPLE

Program

Output

rUNOI IUIMO

EXAMPLE

Pr ogr am

Qut put

88

Use actual variable parameters, cost__1 and cost_2 to receive the values of the variable
price from the procedure Make the main program compute and print the total bill

100 REMark Variable parameter

110 LET num = 70

120 item 3,cost_1

130 item 4,cost_2

140 LET bill = num + cost_1 + cost_2

150 PRINT bi U

160 DEFine PROCedure item(num, price)

170 IF num <= 3 THEN LET price = 300 + 1Q*num
180 IF num >= 4 THEN LET price = 12*num

190 END DEFine

448

The parameters num and price are both automatically local so there can be no problems
The diagrams show how information passes from main program to procedure and back

Menu numbers
Main Pracedure
Program ltemn
e —
prices

That is enough about procedures and parameters for the present

You already know how a system function works For example the function

SQRTCY)

computes the value, 3, which is the square root of 9 We say the function returns the
value 3 A function like a procedure, can have one or more parameters, but the
distinguishing feature of a function is that it returns exactly one value This means that
you can use it in expressions that you already have You can type

PRINT 2*SQRT(9>

and get the output 6 Thus a function behaves like a procedure with one or more value
parameters and exactly one variable parameter holding the returned value, that variable
parameter is the function name itself

The parameters need not be numeric
LENC'stnng")
has a string argument but it returns the numeric value 6
Re-write the program of the last section which used price as a variable parameter Let
price be the name of the function
The value to be returned is defined by the RETurn statement as shown

100 REMark FuNction with RETurn

110 LET num= 70

120 LET bi Lt =num+price(3) +pnce(4)
130 PRI NT bi Lt

140 OEFi ne FuNction price(num

150 [F num <=3 THEN RETurn 300 + 10*num
160 [F num>= 4 THEN RETurn 12*num

170 END DEFi ne

448

Notice the simplification in the calling of functions as compared with procedure calls

12/84

The ultimate concept of a procedure is that it should be a black box' which receives
specific information from 'outside’ and performs certain operations which may include
sending specific information back to the 'outside’ The 'outside’ may be the main program

or another procedure

The term 'black box" implies that its internal workings are not important, you only think
about what goes in and what comes out If, for example, a procedure uses a variable
count, and changes its value that might affect a variable of the same name in the main
program Think of a mail order company You send them an order and cash, they send
you goods Information is sent to a procedure and it sends back action and/or new
information

Order by cash
Mail
Order
> Goods Company
Information
Action andfor Procedure
new information

You do not want the mail order company to use your name and address or other
information for other purposes That would be an unwanted side-effect Similarly you
do not want a procedure to cause unplanned changes to values of variables used in
the main program

Of course you could make sure that there are no double uses of variable names in a
program That will work up to a point but we have shown in this chapter how to avoid
trouble even if you forget what variables have been used in any particular procedure

A second aim in using procedures is to make a program modular Rather than have
one long main program you can break the job down into what Seymour Papert, the
inventor of LOGO calls 'Mind-sized bites' These are the procedures each one small
enough to understand and control easily They are linked together by the procedure
calls in a sequence or hierarchy

A third aim is to avoid writing the same code twice Write it once as a procedure and
cafl it twice if necessary Functions and procedures written for one program can often
be directly used, without change, by other programs, and one might create a library
of commonly used procedures and functions

We give below another example which shows how procedures make a program modular

An order is placed for six dishes at Chan's Take Away, where the menu is

Item Number Dish Price
1 Prawns 350
2 Chicken 280
3 Special 330

Write procedures for the following tasks.

1 Set up two three-element arrays showing menu, dishes and prices Use a DATA
statement

2 Simulate an order for six randomly chosen dishes using a procedure, choose, and
make a tally of the number of times each dish is chosen

12/84

Procedures and Functions

WHY

PROPFDURFN?
r NUOtUUNtO.

EXAMPLE

89

Procedures and Functions

3 Pass the three numbers to a procedure, waiter, which passes back the cost of
the order to the main program using a parameter cost Procedure waiter calls two
other procedures, compute and cook which compute the cost and simulate

"cooking”
4 The procedure, cook simply prints the number required and the name of each dish

The main program should call procedures as necessary, get the total cost from procedure,
waiter, add 10% for a tip and print the amount of the total bill

Design This program illustrates parameter passing in a fairly complex way and we will explain
the program step by step before putting it together

100 REMar k Procedures
110 RESTORE 490
120 DIMiten$(3,7), price(3), dish<3)
130 REMar k *+* PROGRAM ***
0N T3J qid = 1.0
150 set _up

210 DEFine PROCedure set_up
220 FORk =1 T03

230 READ item$(k)
240 READ price(k)
250 END FOR k

260 END DEFine

490 DATA "Prawns", 3.5. "Chicken", 2.8, "Special", 3.3
The names of menu items and their prices are placed in the arrays item$ and price

The next step is to choose a menu number for each of the six customers The tally of
the number of each dish required will be kept in the array dish

160 choose di sh

270 DEFine PROCedure choose(dish)

280 FOR pick =1 TO 6

290 LET number = RNOC1 TO 3)

300 LET di sh(number) = dish(number) + 1
310 END FOR pick

320 END DEFine

Note that the formal parameter dish is both

local to procedure choose
an array in mam program

The three values are passed back to the global array also called dish. These values
are then passed to the procedure waiter

170 wai ter dish, hi IL

330 DEFine PROCedure waiter(dish, cost)
340 compute dish, cost

350 cook dish

360 END DEFine

The waiter passes the information about the number of each dish required to the
procedure, compute, which computes the cost and returns it

920 12/84

Procedures and Functo

370 DEFine PROCedure computeCdish, total)
380 LET total =0

390 FORk=11to3

400 LET total = total + di sh(k) *pri ce (k)
110 END FOR k

420 END DEFine

The waiter also passes information to the cook who simply prints the number required
for each menu item

430 DEFine PROCedure cook(dish)

440 FORc =1 T03

450 PRINT i dish(c) i itemSCc) '
460 END FOR ¢

470 END DEFine

Again, the array, dish in the procedure cook is local It receives the information which
the procedure uses in its PRINT statement

The complete program is listed below

100 REMark Procedures Program
110 RESTORE 490

120 DIM item$(3,7), price(3), dish<3)

130 REMark *** PROGRAM ***

140 LET tip = 0.1

150 set_up

160 choose di sh

170 waiter dish, bi 11

180 LET bi 11 = hill + tip*bi LI

190 PRINT "Total cost is £" ; bill

200 REMark *** PROCEDURE DEFI NI TI ONS ***
210 DEFine PROCedure set_up

220 FORk =1 TO3

230 READ it emSCk)

240 READ price(k)

250 END FOR k

260 END DEFine

270 DEFine PROCedure choose(dish)

280 FOR pick =1 TO6

290 LET number = RNDC1 TO 3)

300 LET di sh(number) =di sh(number) e» 1
310 END FOR pick

320 END DEFine

330 DEFine PROCedure waiterCdish, cost)

340 compute dish, cost

350 cook dish

360 END DEFine

370 DEFine PROCedure compute(dish, total)
380 LET total =0

390 FORk =1 TO3

400 LET total = total + di sh(k)*pri ce(k)
410 END FOR k

420 END DEFine

430 DEFine PROCedure cook(dish)

40 FORc=1T03

450 PRINT i dish(c) i item$<c)

460 END FOR ¢

470 END DEFine

480 REMark *** PROGRAM DATA ***

490 DATA "Prawns", 3.5, "Chicken",2.8,"Special",3.3

The output depends on the random choice of dishes but the following choice illustrates Output
the pattern, and gives a sample of output

3 Prawns
1 Chicken
2 Speci al

Total cost is £20.40

12/84 ot

Procedures and Functions

92

COMMENT

EXAMPLE

Program Changes

I YrtiLhSS

DApAIiypTppC
rnnniVVIC CnO

Program

Output

oUUrb Ur
VARIABLES

Obviously the use of procedures and parameters in such a simple program is not
necessary but imagine that each sub-task might be much more complex In such a
situation the use of procedures would aliow a modular build-up of the program with
testing at each stage The above example merely illustrates the main notations and

relationships of procedures
Similarly the next example illustrates the use of functions

Note that in the previous example the procedures waiter and compute both return exactly
one value Rewrite the procedures as functions and show any other changes necessa'y

as a consequence

DEFine FuNction waiter(dish)
cook dish
RETurn compute(dish)
END DEFine

DEFine FuNction compute(dish)
LET total = O
FOR k =1 TO 3
LET total = total + chsh(k)* pnce(k)
END FOR k
RETurn total
END DEFine

The function call to waiter also takes a different form
LET biLL = waiter(dish)
This program works as before. Notice that there are fewer parameters though the program

structure is similar That is because the function names are also serving as parameters
retunmg information to the source of the function call

All the variables used as formal parameters in procedures or functions are 'safe' because
they are automatically local Which variables used in the procedures or functions are
not locaP What additional statements would be needed to make them local’

The variables k, pick and num are not local. The necessary changes to make them so are

LOCAL k
LOCAL pick, num

Formal parameters do not have any type You may prefer that a variable which handles
numbers has the appearance of a numeric variable and which handles strings looks
"5 astnng Vvariable, but however you write your parameters they are typeless To prove

it, try the following program

100 REHark Number or word

110 waiter 2

120 waiter "Chicken"

130 DEFine PROCedure waiter(item)
140 PRINT i item i

150 END DEFine

2 Chicken

The type of the parameter is determined only when the procedure is called and an actual
parameter ‘arrives!

Consider the following program and try to consider what two numbers will be output.

100 REMark scope

110 LET number = 1

120 test

130 DEFine PROCedure test
HO LOCat number

150 LET number = 2

160 PRINT number

170 try

12/84

Procedures and Functions

180 END OEFi ne

190 DEFi ne PROCedure try
200 PRI NT number

210 END DEFi ne

Obviously the first number to be printed will be 2 but is the variable number in line 200
global?

The answer is that the value of number in line 160 will be carried into the procedure
try A variable which is local to a procedure will be the same variable in a second
procedure called by the first

Equally if the procedure try is called by the main program, the variable number will
be the same number in both the mam program and procedure, try. The implications
may seem strange at first but they are logical

1 The variable number in line 110 is global.
2. The variable number in procedure test is definitely local to the procedure

3 The variable number in procedure try 'belongs' to the part of the program which
was the last call to it

We have covered many concepts in this chapter because SuperBASIC functions and
procedures are very powerful. However, you should not expect to use ail these features
immediately. Use procedures and functions in simple ways at first. They can be very
effective and the power is there if you need it.

1 Six employees are identified by their surnames only Each employee has a particular PROBLEMS ON
pension fund rate expressed as a percentage. The following data represent the PHAPTFR 1*5

total salaries and pension fund rates of the six employees V/nMrltn 1Q
Benson 13,800 6 25
Hanson 8,700 600
Johnson 10,300 625
Robson 15,000 700
Thomson 6,200 600
Watson 5,100 5.75

Write procedures to

input the data into arrays
compute the actual pension fund contributions
output the lists of names and computed contributions

Link the procedures with a main program calling them in sequence

2 Write a function select with two arguments range and miss. The function should
return a random whole number in the given range but it should not be the value
of miss

Use the function in a program which chooses a random PAPER colour and then
draws random circles in random INK colours so that none is in the colour of PAPER

3. Re-write the solution to exercise 1 so that a function pension takes salary and
contribution rate as arguments and returns the computed pension contribution
Use two procedures, one to input the data and one to output the required
information using the function pension

4. Write the following

a procedure which sets up a 'pack of cards:

a procedure which shuffles the cards.

a function which takes a number as an argument and returns a string value
describing the card.

a procedure which 'deals' and displays four poker hands of five cards each,
a mam program which calls the above procedures,

(see chapter 16 for discussion of a similar problem}

12/84 9

CHAPTER16
SOME

I CV/niillwuCoO

SIMULATION OF

PARD Pl AYINP
\jNnU rL.nl MNU

Program

Input and Output

COMMENT

In this final chapter we present some applications of concepts and facilities already
discussed and we show how some further ideas may be applied

It is easy to store and manipulate "playing cards" by representing them with the numbers
1 to 52 This IS how you m.ght convert sucn a number totne equivalent card SUppOSG
for example, that the number 29 appears You may decide that ’

cards 1-13 are hearts
cards 14-26 are clubs
cards 27-39 are diamonds
cards 40-52 are spades

and you will know that 29 means that you have a diamond' You can program the QL
to do this with

LET suit = (card-1) DIV 13

This will produce a value in the range 0 to 3 which you can use to cause the appropriate
suit to be printed The value can be reduced to the range 1 to 13 by writing

LET value = card MOO 13
|F value = 0 THEN LET value = 13

The numbers 1 to 13 can be made to print Ace, 2, 3 Jack Queen, King, or, if you
prefer it, such phrases as "two of hearts" can be printed The following program will
print the name at the card corresponding to your input number

100 REMark Cards
110 DIM suitname$(4,8),cardval$(13,5),
120 LET f$ =" of"

130 set_up
140 REPeat cards
150 [NPUT "Enter a card number 1-52:" i card

160 [F card <1 OR card> 52 THEN EXI T cards

170 LET suit = Ccard-1) DIV 13

180 LET value = card HOD 13

190 IF value = 0 THEN LET value = 13

200 PRINTcardvalLS(valLue) i f$i suitnameS(suit)
210 END REPeat cards

220 DEFine PROCedure set _up

200 FOR s =1 TO4 : READ suitnameSCs)

240 FORv =1 TO13 : READ cardvalLSCv)

250 END DEFi ne

260 DATA "hearts","clubs","diamonds", "spades”

270 DATA "Ace","Two","Three","Four","Five","Six","Seven
280 DATA "Eight","Nine","Ten","Jack", "Queen","King"

13
Kirig of hearts
49
Ten of spades
27

Ace of di amends
0

Notice the use of DATA statements to hold a permanent file of dafa which the program
always uses The other data which changes each time the program runs is entered
through an INPUT statement If the input data was known before running the program
it would be equally correct to use another READ and more DATA statements This would
give better control

12/84

The following program will establish a file of one hundred numbers

100 REMark Number File

110 OPEN~NEW #6,mdvl_numbers
120 FOR num = 1 TO 100

130 PRINT #6.num

140 END FOR num

150 CLOSE #6

After running the program check that the filename 'numbers is in the directory by typing

DIR mdvl_numbers

You can get a view of the file without any special formatting by copying from Microdrive
to screen

COPY mdvl_numbers to scr

You can also use the following program to read the file and display its records on the
screen

100 REMark Read File
1100PEN_I N#6, mdv1l_nunmbers
120 FOR num= 1 TO 100

130 | NPUT #6,item

140 PRINT i itemi

150 END FOR num

160 CLOSE #6

If you wish you can alter the program to get the output in a different form

In a similar fashion the following programs will set up a file of one hundred randomly
selected letters and read them back

100 REMark Letter File

110 OPEN_NEW#6, mdvl _chfile

120 FOR num=1 TO 100

130 LET ch$ = CHR$CRND(65 TO 90))
140 PRI NT #6, ch$

150 END FOR num

160 CLOSE #6

100 REMark Get Letters

110 OP€N_IN #6,mdvl__chfi Le
120 FOR num =1 TO 100

130 INPUT #6,itemS

140 PRINT i item$ '

150 END FOR num

160 CLOSE #6

Suppose that you wish to set up a simple file of names and telephone numbers

RON 678462
GEOFF 896487
ZOE 249386
BEN 584621
MEG 482349
CATH 438975

WENDY 982387

The following program will do it

12/84

100 REMark Phone numbers
110 OPEN_NEW #6,mdvl_phone
120 FOR record =1 TO 7

130 INPUT name$.num$

140 PRINT #6;name$;num$
150 END FOR record

160 CLOSE #6

Some Techniques

SEQUENTIAL DATA
FILES

Numeric File

Character File

SETTING UP A
DATA FILE

95

COPY A FiLE

READ A FILE

AN INSERTION

SORT

EXAMPLE
Method

Some Techniques

Type RUN and enter a name followed by the ENTER key and a number followed by
the ENTER key Repeat this seven times

Notice that the data is 'buffered It is stored internally until the system is ready to transfer
a batch to the Microdrive The Microdrive is only accessed once, as you can tell from
looking and listening

Once afile is established, tt should be copied immediately as a back up To do this type
COPY mdvl_phone TO mdv2_phone

You need to be certain that the file exists in a correct form so you should read it back
from a Microdrive and display it on the screen You can do this easily using

COPY mdv2_phone TO scr

The output to the screen will not provide spaces automatically between the name and
the number but it will provide a 'newlme’ at the end of each record. The output will be

RONG78462
GEOFF896487
ZOE?249386
BENS84621
MEG482349
CATHA438975
WENDY982387

You can get a more controlled presentation of the data with the following program

100 REMar k Read Phone Numbers
110 OPEN_IN #5, mdvl_phone
120 FOR record =1 TO 7

130 | NPUT #5,rec$

140 PRI NT, rec$

150 END FOR record

160 CLOSE #5

The data is printed, as before, but this time each pair of fields is held in the variable
rec$ before being printed on the screen You have the opportunity to manipulate it into
any desired form

Note that more than one string variable may be used at the file creation stage with INPUT
and PRINT but the whole record so created may be retrieved from the Microdrive file
with a single string variable (rec$ in the above example)

The following colours are available in the low resolution screen mode (in code number
n * *
ar -
black blue red magenta green cyan yellow white

Write a program to sort the colours into alphabetical order using an insertion sort
We place the eight colours in an array, colour$ which we divide into two parts

' |

1 |
—— |
1 I

SORTED PART UNSORTED PART

We take the leftmost item of the unsorted part and compare it with each item, from right
to left, in the sorted part until we find its right place As we compare we shuffle the sorted
items to the right so that when we find the right place to insert we can do so immediately,
without further shuffling

12/84

Suppose we have reached the point where four items are sorted and we now focus
on green, the leftmost item in the unsorted part

1 2 3 4 5 8 7 8
black blue magenla red green cyan yellow white
sorted part unsored pan

1 We place green in the variable, comp$ and set a variable p to 5

2 The variable, p will eventually indicate where we think green should go When
we know that green should move left, then we decrease the value of p

3 We compare green with red If green is greater than {nearer to Z) or equal to red
we exit and green stays where it is

Otherwise we copy red in to position 5 thus and decrease the value of p thus

1 2 3 4 5 6 7 8
black blue magenta red red cyan yellow whie

4 We now repeat the process but this time we are comparing green with magenta
and we get

1 2 3 4 5 6 7 8
black blue magenla magena red gyan vyellow while

Finally we move left again comparing green with blue This time there is no need
to move or change anything We exit from the loop and place green in position
3 We are then ready to focus on the sixth item, cyan

a1

1 2 3 4 5 6 7 8
black blue green magenta red cyan yellow white

1 We will first store the colour$ in an array colour$(8) and use

compS the current colour being compared
p to point at the position where we think the colour in comp$ might go

2 A FOR loop will focus attention on positions 2 to 8 in turn (a single item is already
sorted)

3 A REPeat loop will allow comparisons until we find where the comp$ value actually
goes

REPeat compare
IF comp$ need go no further left EXIT
copy a colour into the position on its right
and decrease p

END REPeat compare

4 After EXIT from the REPeat loop the colour in comp$ is placed in position p and
the FOR loop continues

12/84

PROBLEM ANALYSIS

97

Some Techniques

Program Design

MODIFIED

PR

OGRA

I nUWnn

N

1 Declare array colours
Read colours into the array
3 FOR item = 2 TO 8
LET p = item
LET compS = colour$(p)
REPEAT compare
IF compS > = colour${p-1) EXIT compare
LET colour$(p) = colour$(p-1)
LET p = p-1
END REPeat compare
LET colour$(p) = comp$
END FOR item
4 PRINT sorted array colourS
5 DATA

N

Further testing reveals a fault It arises very easily if we have data in which the first item
is not in its correct position at the start A simple change of initial data to

red black blue magenta green cyan yellow white

reveals the problem We compare black with red and decrease p to the value, 1 We
come round again and try to compare black with a variable coiour$(p-1) which is
coloiir$(0) which does not exist

This is a well-known problem in computing and the solution is to 'post a sentinel” on
the end of the array Just before entering the REPeat loop we need

LET colour$(0) = comp$

Fortunately SuperBASIC allows zero subscripts, otherwise the problem would have to
be solved at the expense of readability

100 REM Insertion Sort

110 DIM colour$<8,7) .
120 FOR item __ 1 Tog - READ coLour$(itern)

130 FOR itern=2 TO 8

140 LET p = itern

150 LET comp$ = colour$(p)
160 LET cotourSCO) = comp$
170 REPeat compare

180 IF comp$ >= coLour$(p-1) : EXIT compare
190 LET coLourSCp) = colour$(p-1)
200 LET p = p-1

210 END REPeat compare

220 LET col our$(p) = compS

230 END FOR item

240 PRI NT "Sorted..." i cotourS

250 DATA "bl ack","blue", "magenta", "red"
260 DATA"green", "cyan", "yellow", "white"

COMMENT 1 The program works well It has been tested with awkward data

AAAAAAA
BABABAB
ABABABA
BCDEFGH
GFEDCBA

2 Aninsertion sort is not particularly fast, but it can be useful for adding a few items
to an already sorted list it is sometimes convenient to allow modest amounts of
time frequently to keep items in order rather than a substantial amount of time
less frequently to do a complete re-sorting

You now have enough background knowledge to follow a development of the handling
of the file of seven names and telephone numbers

In order to sort the file ‘phone’ into alphabetical order of names we must read it into
an internal array, sort it, and then create a new file which will be in alphabetical order
OT nQITIGS

It is never good practice to delete a file before its replacement is clearly established and
proven correct You should therefore copy the file first, as security, using a different name
The required processes are as follows

Copy the file 'phone’ to 'phone__temp'
Read the file 'phone’ into an array

Sort the array.

Pause to check that everything is in order

Delete file 'phone’
Create new file 'phone'’

This is all the program needs to do but the new file should be immediately checked using

OUTDWN R

COPY mdvl_phone TO scr
Any further necessary checks should be carried out then

DELETE mdv2_phone

COPY mdvl_phone TO mdv2_phone
COPY mdvl_phone TO scr

DELETE mdvl_phone_temp

The above operations complete the process of substituting a sorted file for the original
unsorted one in both master and back-up files

In the following program we illustrate the passing of complete arrays between main
program and procedure. The data passes in both directions
In line 40 the array, row, holding the numbers 1,2,3 is passed to the procedure, addsix.

The parameter, come, receives the incoming data and the procedure adds six to each
element. The array parameter, send, at this point holds the numbers 7,89

These numbers are passed back to the main program to become the values of array,
black The values are printed to prove that the data has moved as required

MAIN Screen
PROGRAM row back | —— Output
PROCEDURE come +6 ~ send

addsix

100 REMark Pass Arrays
110 DIMrow(3), back(3)
120 FORk =1 TO3 : LET row(k) =k

130 addsix row, back

140 FOR k =1 TO3 : PRINT i backCk) i

150 DEFine PROCedure addsix(come,send)

160 FOR k =1 TO3 . LET send<k)=come(k)+6
170 END DEFine

789

The following procedure receives an array containing data to be sorted The zero element
will contain the number of items. Note that it does not matter whether the array is numeric
or string The principle of coercion will change string to numeric data if necessary

12'84

Some Techniques

oUHi INu A
MICRODRIVE FILE

AHHAY
PARAMETERS

Program

Qut put

Some Techniques

Qut put

A second point of interest is that the array element come(O) is used for two purposes

it carries the number of items to be sorted
it is used to hold the item currently being placed

100 DEFi ne PROCedure sort(come, send)
110 LET num= come(O)
120 FOR i tern = 2 TO num

130 LET p = item

140 LET comeCO) = come(p)

150 REPeat compare

160 IF come(Q >= comeCp-1) : EXIT compare
170 LET come(p) = comeCp-1)

180 LET p = p-1

190 END REPeat compare

200 LET come(p) = come(O)

210 END FOR item
220 FOR k=1 TO7 : send(k) = come(k)
230 END DEFi ne

The following additional lines will test the sort procedure First type AUTO 10 to start
the line numbers from 10 onwards

10 REMar k Test Sort

20 DI Mrows$(7,3), back$(7, 3>

30 LET row$<0> =7

40 FOR k =1 TO7 : READ row$(k>

50 sort row$, back!

60 PRINT i back$ '

70 DATA "EEL", "DOG', "ANT", "GNU", "CAT", "BUG', "FOX"

ANT BUG CAT DOG EEL FOX GNU

COMMENT This program illustrates how easily you can handle arrays in SuperFJASIC All you have

METHOD

100

to do is use the array names for passing them as parameters or for printing the whole
array Once the procedure is saved you can use MERGE mdvl__sort to add it to a
program in main memory

You now have enough understanding of techniques and syntax to handle a more complex
screen layout Suppose you wish to represent the hands of four card players A hand
can be represented by something like

HA370Q
C5 91J
D 6 10 K
S 2 40

To help the presentation the Hearts and Diamonds will be printed in red and the Clubs
and Spades in black A suitable STRIP colour might be white The general background
could be green and a table may be a colour obtained by mixing two colours

Since a substantial amount of character printing is involved it is best to start planning
in terms of the pixel screen You can see that you need to provide for twelve lines of
characters with some space between lines and a total screen height of 256 pixels

1
| ——
| —
— 1
I——__l:I —
— c—
— —/
 E—
———
—3
—

12/84

It is useful to recall that the possible character heights are 10 pixels or 20 pixels it is
obvious that the 10 pixel height must be used to allow space for a proper layout

The number of character positions across the screen must be estimated If we adopt
the convention of "T" for ten instead of 10" all card values can be represented as a
single character Suppose that we also allow a maximum of eight cards of the same
suit as a first approach We can reconsider the problem again if necessary That would
require a total of 10 characters for each hand The across requirement is therefore

west hand + table width + east hand
Allowing a space between characters that would be:
20 + table width + 20

The decision now depends on which screen mode you choose The 256 mode will cope
with the problem, as you will see later, but first we will work in 512 pixel mode The smallest
character width is six pixels which would give a total of 240 pixels + 'able width The
diagram will have some balance if we have a table width of about half of 240

We should therefore experiment with a table width of about 120 pixels which may be
adjusted. A little testing produced the layout shown

H: 5 9K

C: A G

0: AL G

$:A23T
H: A H: 6 B TAQ
C: 7TJK C: 24568
D: SB 9K b: 7T @&
5:457JK $§: 6

H: 2347)

C: 397

D: 23

5: 891

WINDOW 440 x 220 at 35,15
Green with black border of 10 units

TABLE 100 x 60 at 150,60
Chequerboard stipple of red and green

HANDS Room for at least eight card symbols
Initial cursor positions are.

north 150,10
east 260,60
south 150,130
west 30,60
CHARACTER SIZE Standard for 512 mode

NUMBER OF PIXELS between lines is 12

CHARACTER COLOUR White
CHARACTER STRIP Red for Hearts and Diamonds
Black for Clubs and Spades.

i7'Rd

Some Techniques

Some Techniques

VARIABLES card(52) stores card numbers
sort(13) used to sort each hand
tok${4,2) stores tokensH C D S
kmemh working loop variables

ran random position for card exchange
temp used in card exchange
item card to be inserted in sort
dart pointer to find position in sort
comp hold card number in sort
me ptxel increment in card rows
seat current deal' position
ac,dn, cursor position for characters
row current row for characters
Im$ builds up row of characters
max highest card number
p points to card position
n current number of card
PROCEDURES shuffle shuffles 52 cards
split splits cards into four hands and calls sortem to sort each hand
sortem sorts 13 cards in ascending order
layout provides background colour, border and table

printem prints each line of card symbols
gethne gets one row of cards and converts numbers into the symbols
A2,34,56,7,891,J,QK

PROGRAM DESIGN
OUTLINE

1 Declare arrays pick up tokens' and place 52 numbers in array card
2 Shuffle cards

3 Split into 4 hands and sort each

4 OPEN screen window

5 Fix the screen |ayout

6. Print the four hands

7 (QLCBE the screen wi ndow

100 DI Mcard(52),sort (13>, tok$a, 2)
110 FOR k = 1 TO 4 : READ tok$(k)

120 FOR k = 1 TO52 : LET card(k) =k
130 shuffle

140 split

150 OPEN #6, scr_44Qx220a35x15

160 [ayout

170 printem

180 CLOSE #6

190 DEFi ne PROCedure shuffle

200 FOR ¢ = 52 TO3 STEP -1

210 LET ran = RNDd TO c-1)
220 LET temp = card(c)

230 LET card(c) = card(ran)
240 LET card(ran) = temp

250 END FOR ¢

260 END DEFine

270 DEFi ne PROCedure split
280 FORh =1T04

290 FORc =1 TO 13

300 LET sort<c) = card(<h-1)*13+c>
310 END FOR ¢

320 sortem

330 FOR c =1 TO 13

340 LET card«h-1>*13+c) = sort(c)
350 END FOR ¢

360 END FOR h

370 END DEFine

380 DEFine PROCedure sortem
390 FOR item= 2 TO 13

400 LET dart = item

102

410 LET comp = sort(dart)

420 LET sort(0) = comp

430 REPeat conpare

440 IF comp >= sortCdart-1) : EXIT conpare
450 LET sort(dart) = sort<dart-1)

460 LET dart = dart -1

470 END REPeat compare

480 LET sort(dart) - conp

490 END FOR item

500 END DEFi ne

510 DEFine PROCedure |ayout
520 PAPER #6,4 : CLS #6
530 BORDER #6, 10,0

540 BLOCK #6, 100, 60, 150, 60, 2, 4
550 END DEFi ne

560 DEFi ne PROCedure printem
570 LETinc =12 : INK#6,7
580 LETp=0

590 FOR seat = 1 TO4

600 READ ac, dn

610 FORrow=1 TO 4
620 get Line

630 CURSOR #6, ac, dn
640 PRI NT #6,1in$
650 LET dn = dn + inc
660 END FOR row

670 END FOR seat

680 END DEFi ne

690 DEFi ne PROCedure getlLine

700 I[F row MOD 2 = 0 THEN STRIP #60
710 I[F row MOD 2 = 1 THEN STRIP #6,2
720 LET in$ = tok$(row)

730 LET max = row*13

740 REPeat one_suit

750 LETp=p+1

760 LET n = card(p)

770 IF n >max THEN p = p-1 : EXIT one_suit
780 LET n = n MOD 13

790 IFn=0THEN n = 13

800 IFn=1: LET ch$ = "A"

810 IFn>=2ANDNn<=9 : LET ch$=n
820 IFn=10 : LET ch$ = "T"

830 IFn=11 : LET ch$ ="J"

840 IFn=12 : LET chs = "Q"

850 IF n=13 : LET ch$ = "K"

860 LET Lin$ = LinS & " " & ch$

870 IF p = 52 : EXIT one=suit

880 IF cardCp)>card(p+1) : EXITone_suit

890 END REPeat one_suit

900 END DEFine

910 DATA "H:".,"C:","D:","S:"

920 DATA 150,10,260,60,150,130,30,60

The program works in the 256 mode But the various lines of card symbols may overlap
the Table" or overflow at the edge of the window A simple change in procedure getline
from.

860 LET lin$ = LinS8" " & ch$
to
860 LET LinS = LinS & ch$

will correct this. The spaces between characters disappear but the larger sized characters
enable the rows to be easily readable The program thus works well in either graphics
mode

Some Techniques

COMMENT

AA

Some Techniques

104

CONCrUJsSIUN

We have tried to show how you can use SuperBASIC to solve problems We have shown

how simple tasks can be performed in simple ways When the task is inherently complex,
like manipulating arrays or designing screen graphics, SuperBASIC enables it to be
handled efficiently with maximum possible clarity

If you were a beginner and you have worked through a fair proportion of this guide
you will have started well on the road to good programming If you were already
experienced, we hope that you will appreciate and exploit the extra features offered by
SitperBASIC

So enormous is the range of tasks which can be done with SuperBASIC that we have
only been able to touch a fraction of them in this guide We cannot guess at which of
the thousands of possibilities you will attempt, but we hope that you will find them fruitful,
stimulating and fun

10
11
12
13

Use the BREAK sequence to abandon a running program because

a) something is wrong and you do not understand it

b) it is longer of interest

c) any other problem (three points)
The RESET button is on the right hand side of the computer

The effect of the RESET button is rather like switching the computer off and on
again

The SHIFT key

a) s only effective while you hold it down whereas the CAPS LOCK key stays
effective after you have pressed it (one poaint)

b) The SHIFT key affects all the letter, digit and symbol keys, but the CAPS
LOCK key affects only letters (one point)
The CTRL <J= keys delete the previous character just left of the cursor

The <" (ENTER) key causes a message or instruction to be entered for action by
the computer.

We use + for the ENTER key

CLS *u causes part of the screen to be cleared

RUN -*» causes a stored program to be executed

LIST «»i' causes a stored program to be displayed on the screen

NEW ¢ clears the mam memory ready for a new program

Keywords of SuperBASIC are recognised in upper or lower case

The part of a keyword displayed in upper case is the allowed abbreviation

14 to 16 is very good Carry on reading.

12 or 13 is good, but re-read some parts of chapter one

10 or 11 is fair, but re-read some parts of chapter one and do the test again
Under 10. You should work carefully through chapter one again and repeat the test

ANoWcHb U
OCLr TEST ON
CHAPTER 1

CHECK YOUR
SCORE

ANSWERS TO 1 An internal number store is like a pigeon hole which you can name and put

SELF TEST ON numbers nto

PHAPTFR 9 2 A LET statement which uses a J)articular name for the first time will cause a pigeon

Winr I Cn L nole to be createcj @nd named, for example
LET count = 1 *» (1 point)
A READ statement which uses a name for the first time will have the same effect,
for example
READ count *» (1 point)

You can find the value of a pigeon hole with a PRINT statement

The technical name for a pigeon hole is Variable' because its values can vary as
a program runs

5 Avariable gets its first value when it is first used in a LET statement, INPUT statement
or READ statement

6 A change in the value of a variable is usually caused by the execution of a LET
statement

7 The = sign in a LET statement represents an operation

‘Evaluate whatever is on the right hand side and place it in the pigeon hole
named on the left hand side; that is ‘Let the left hand side become equal
to the right hand side'

8 An un-numbered statement is executed immediately

A numbered statement is not executed immediately It is stored
10 The quotes in a PRINT statement enclose text which is to be printed
11 When quotes are not used you are printing out the value of a variable

12 An INPUT statement makes the program pause so that you can type data at the
keyboard

13 DATA statements are never executed

14 They are used to provide values for the variables in READ statements
15 The technical word for the name of a pigeon hole is ‘identifier’

16 Example answers

i day
ii day 23
in day__of week (3 points)

17 The space bar is especially important for putting spaces after or before keywords
so that they cannot be taken as identifiers (names) chosen by the user

18 Freely chosen identifiers are important because they help you to make programs
easier to understand Such programs are less prone to errors and more adaptable

CHECK YOUR 18 to 21 is very good Carry on reading
SCORE 16 or 17 good but re-read some parts of chapter two
14 or 15 fair, but re-read some parts of chapter two and do the test again
Under 14 you should work carefuly through chapter two again and repeat the test

1%pi

A pixel is the smallest area of light that can be displayed on the screen
There are 256 pixel positions across the low resolution mode
There are 256 pixel positions from top to bottom in the iow resolution mode

B OW N -

An address is determined by
the up value 0 to 100
the across value, 0 to a number computed by the system

5 There are eight colours available in the low resolution mode including black and
white

6 i LINE draws a line eg LINE ab TO xy
ii INK selects a colour for drawing, eg INK 5
M PAPER selects a background colour, eg PAPER 7
iv BORDER draws a border, eg BORDER 15

REPeat name END REPeat name
A REPeat loop terminates when an 'EXIT name statement is executed

Loops m SuperBASIC have names so that it is possible to EXIT from them in a
straightforward way It is not necessary to work out line numbers in advance

11 to 13 is very good Carry on reading

8 to 10 is good but re-read some parts of chapter three *

6 or 7 is fair but re-read some parts of chapter three and do the test again

Under 6 You should work carefully through chapter three again and repeat the test

[y

symbols

The term ‘character string is often abbreviated to 'string'

A string variable name always ends with $

Names such as word$ are sometimes pronounced “worddollar

The keyword LEN will find the length or number of characters in a string For
example, if the variable meat$ has the value 'steak’ then the statement

oa b~ W N

PRINT LEN(meatS)
will output 5
The symbol for joining two strings is &
The limits of a string may be defined by quotes or apostrophes
The quotes are not part of the actual string and are not stored

The function is CHR$ You must use it with brackets as in CHR$(66) or with brackets
as in CHRS(RND(65 TO 67)

10 You generate random letters with statements like

letter-code = RNDC65 TO 90)
PRINT CHRSUettercode)

© 0O N O

9 or 10 is very good Carry on reading
7 or 8 is good but re-read some parts of chapter four
5 or 6 is fair but re-read some parts of chapter four and do the test again

Under 5 You should work carefully through chapter four again and repeat the test

12/84

A character string is a sequence of characters such as letters, digits or other

ANSWERS TO

SELF TEST ON

CHAPTER 3

CHtt/K YUUH

SCORE
ANSWEnNDb U
seLp tesJd ON
PHAPTFR i
CHECK YUUn
SCORE

107

103

ANOWtnO U 1 Lower case letters for variable names or loop names contrast with the keywords

Cpl P TPCT QM which are at least partly displayed in upper case
PHADTPR R ° Indenting reveals clearly what is the extent and content of loops (and other
UIHriCnoO structures)
3 Identifiers (names) should normally be chosen so that they mean something for

example count or word$ rather than C or W$
4 You can edit a stored program by

replacing a line
inserting a line
deleting a line (three poaints)

5 The ENTER key must be used to enter a command or program line

The word NEW will wipe out the previous SuperBASIC program in the QL and
will ensure that a new program which you enter will not be merged with an old one
7 If you wish a line to be stored as part of a program then you must use a line number

The word RUN followed by << will cause a program to execute

9 The word REMark enables you to put into a program information which is ignored
at execution time

10 The keywords SAVE and LOAD enable programs to be stored on and retrieved
from cartridges (two points)

CHECK YOUR 12 to 14 is very good Carry on reading
SCORE ' ° 5 go0d but re-read some parts of chapter five
8 or 9 is fair but re-read some parts of chapter five and do the test again

Under 8 You should re read chapter five carefully and do the test again

12/84

1 It is not easy to think of many different variable names for storing the data If you ANSWERS TO
can think of enough names every one has to be written in a LET statement or OCI C TC~T ON
a READ statement if you do not use arrays OCLr 1CO1I un

2 A number called the subscript, is part of an array variable name All the variables wnAr 1Cn 0
m an array share one name but each has a different subscript

3 You must 'declare’ an array giving its size (dimension) in a DIM statement usually
placed near the beginning of a program before the declared array is used

4 The distinguishing number of an array variable is called the subscript
Houses in a street share the same street name but each has its own number

Beds in a hospital ward may share the name of the ward but each bed may be
numbered

Cells in a prison block may have a common block name but a different number
Holes on a golf course, eg the fifth hole at Royal Birkdale

6 A FOR loop terminates when the process corresponding to the last value of the
loop variable has been completed

7 A FOR loop's name is also the name of the variable which controls the loop
The two phrases for this variable are loop variable' or ‘control variable

9 The values of a loop variable may be used as subscripts for array variable names
Thus, as the loop proceeds each array variable is Visited' once

10 Both FOR loops and REPeat loops
a have an opening keyword
REPeat , FOR
b have a closing statement
END REPeat name, END FOR name
c have a loop name
Only the FOR loop has

d a loop variable or control variable {four points)
This test is more searching than the previous ones CHECK YOUR
15 or 16 is excellent Carry on reading SCORE

13 or 14 is very good but think a bit more about some of the ideas Look at programs
to see how they work

11 or 12 is good but re read some parts of chapter six
8 to 10 is fair but re-read some parts of chapter six and do the test again
Under 8 You should re read chapter six carefully and do the test again

12/84

109

ANbWtnb IU 1 We normaiiy break down large or complex jobs into smaller tasks until they are

SELF TEST ON smanenoudh to be Comp|eted

CHAPTFR 7 ~ s pnneplecan o aPphed in programmmg by breaking the total job down and
vinrtr 1 tn / writing a procedure for each task
3 A simple procedure is
a separate block of code
properly named (two points)
4 A procedure call ensures that

the procedure is activated
control returns to just after the calling point {two points)

5 Procedure names can be used in a main program before the procedures have
been written This enables you to think about the whole job and get an overview
without worrying about the detail

6 If you write a procedure definition before using its name you can test it and then
when it works properly forget the details You need only remember its name and
roughly what it does

7 A programmer who can write up to thirty line programs can break down a complex
task into procedures in such a way that none is more than thirty lines and most
are much less In this way he need only worry about one bit of the job at a time

8 The use of a procedure would save memory space if it is necessary to call it more
than once from different parts of a program The definition of a procedure only
occurs once but it can be called as often as necessary

9 A main program can place information in pigeon-holes' by means of LET or READ
statements These 'pigeon-holes can be accessed by the procedure Thus the
procedure uses information originally set up by the main program

A second method is to use parameters in the procedure call These values are
passed to variables in the procedure definition which then uses them as necessary

10 An actual parameter is the actual value passed from a procedure call in a main
program to a procedure

11 A formal parameter is a variable in a procedure definition which receives the value
passed to the procedure by the main program

CHECK YOUR This is a searching test You may need more experience of using procedures before
QpADC the ideas can be fully appreciated But they are very powerful and, when understood
OvUnC extremely helpful ideas They are worth whatever effort is necessary

12 to 14 excellent Read on with confidence
10 or 11 very good Just check again on certain points
8 or 9 good but re-read some parts of chapter seven

6 or 7 fair but re-read some parts of chapter seven Work carefully through the programs
writing down all changes in variable values Then do the test again

Under 6 read chapter seven again Take it slowly working all the programs These ideas
may not be easy but they are worth the effort When you are ready take the test again

110 12/84

Sirncisir-

oL

The Keyword Reference Guide lists all SuperBASIC keywords in alphabetical order A
brief explanation of the keywords function is given followed by loose definition of the
syntax and examples of usage An explanation of the syntax definition s given in the
Concept Reference Guide under the entry syntax

Each keyword entry indicates to which, if any, group of operations it relates, ie DRAW
is a graphics operation and further information can be obtained from the graphics section
of the Concept Reference Guide

Sometimes it is necessary to deal with more than one keyword at a time, ie IF, ELSE,
THEN, END, IF, these are all listed under IF

An index is provided which attempts to cover all possible ways you might describe a
SuperBASIC keyword For example the clear screen command, CLS, is also listed under
clear screen and screen dear

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

ABS

ABS returns the absolute value of the parameter It will return the value of the parameter maths functions

if the parameter is positive and will return zero minus the value of the parameter if the
parameter is negative

syntax. ABS(numenc__express/on)

example- i PRINT ABSCO0.5)
i PRINT ABSCa-b)

ACOS, ASIN
ACOT, ATAN

ACOS and ASIN will compute the arc cosine and the arc sine respectively. ACOT will maths functions
calculate the arc cotangent and ATAN will calculate the arc tangent. There is no effective
limit to the size of the parameter.

syntax: angle.- numeric__expression [in radians]

ACOS (angle) ASIN (angle)
ACOT (angle) ATAN(angfe)

example. i PRINT ATAN (angle)
i. PRINT ASINC1)
ill PRINT ACOTC3.6574)
iv. PRINT ATAN(a-b)

ADATE

Clock ADATE allows the dock to be adjusted

syntax seconds = numeric__expression
ADATE seconds

example i ADATE 3600 [will advance the clock 1 hour)
H ADATE -60 [will move the clock back 1 minute]

ARC
ARC R

graphics ARC will draw an arc of a circle between two specified points in the window attached
to the default or specfied channel The end points of the arc are specified using the
graphics co ordtnate system

Multiple arcs can be drawn with a single ARC command

The end points of the arc can be specified in absolute coordinates (relative to the graphics
origin or in relative coordinates (relative to the graphics cursor) If the first point is omitted
then the arc is drawn from the graphics cursor to the specified point through the specified
angle

ARC will always draw with absolute coordinates while ARC__R will always draw relative
to the graphics cursor

syntax X = numeric__expression
y = numer/c_expression
angle = numenc”expression {in radians)
point = X,y

parameter__2 =\ TO point, angle
| ,point TO point.angle

parameter_| =\ point TO point.angle
] TO point.angle

NEF o

ARC [channel,] parameter__/ * [parameter__ 2]*
ARC__R [channel,] parameter_1 * [parameter_ 2\ *

where 1 wii! draw from the specified point to the next specified
point turning through the specified angle

2 will draw from the the last point plotted to the specified
point turning through the specified angle

example t ARC 15,10 TO 40,40, PI12
[draw an arc from 1510 to 4040 turning through ir/2 radians)

ti ARCTO50,50,P1/2
[draw an arc from the last point plotted to 5050 turning through
7T/2radians]

il ARC_R 10,10 TO 55,45,0,5
[draw an arc starting 1010 from the last point plotted to 55,45
from the start of the arc turning through 05 radians]

12/84

AT

AT allows the print position to be modified on an imaginary row/column grid based on windows
the current character size AT uses a modified form of the pixel coordinate system where

(row 0, column 0) is in the top left hand corner of the window AT affects the print position

in the window attached to the specified or default channel

syntax line = numeric__expression
column = numeric__expression

AT [channel,] line , column
example AT 10,20 : PRINT "This is at Line 10 column 20"

AUTO allows line numbers to be generated automatically when entering programs directy MU | w
into the computer. AUTO will generate the next number in sequence and will then enter

the SuperBASIC line editor while the line is typed in If the line already exists then a

copy of the tine is presented along with the line number. Pressing ENTER at any point

in the line will check the syntax of the whole line and will enter it into the program

AUTO is terminated by pressing

[CTRL] | space]

syntax first__line~= line___number
gap = numeric__expression

AUTO [firsLJine] [,gap\

example i AUTO [start at line 100 with intervals of 10)
i AUTO 10,5 [start at line 10 with intervals of 5]
in AUTO 7 (start at line 100 with intervals of 7)

12/84

BAUD

communications BAUD sets the baud rate for communication via both serial channels The speed of the

BEEP

sound

channels cannot be set independently
syntax rate = numeric__expression
BAUD rate

The value of the numeric expression must be one of the supported baud
rates on the QL

75
300
600
1200
2400
4800
9600
19200 (transmit only)

If the selected baud rate is not supported, then an error will be generated

example i BAUD 9600
n BAUD pri nt_speed

BEEP activates the inbuilt sound functions on the QL BEEP can accept a variable
number of parameters to give various levels of control over the sound produced The
minimum specification requires only a duration and pitch to be specified BEEP used
with no parameters will kill any sound being generated

syntax duration-= numeric__expression (range -32768 32767]
pitch = numeric__expression [range 0 255]
grad_Xx = numeric__expression (range -32768 32767J
grad_y = numeric__expression [range -8 7]
wrap = numenc_expression (range 0 15J
fuzzy = numeric__expression [range 0 15}
random = numeric__expression [range 0 15]

BEEP [duration, pitch
[, pitch_2 , grad__x, grad_y

[, wrap
{, fuzzy
[, random|j]j]]
duration specifies the duration of the sound in units of 72
microseconds A duration of zero will run the sound until
terminated by another BEEP command
pitch specifies the pitch of the sound A pitch of 1 is high and
255 is low
pitch_2 specifies an second pitch level between which the sound
will 'bounce’
grad__x defines the time interval between pitch steps
grad__y defines the size of each step grad x and grad__y
control the rate at which the pitch bounces between
levels
wrap will force the sound to wrap around the specified number
of times If wrap is equal to 15 the sound will wrap
around forever
fuzzy defines the amount of fuzzmess to be added to the
sound
random defines the amount of randomness to be added to the
sound

12/84

BEEPING is a function which will return zero (false) if the QL is currently not beeping
and a value of one (true) if it is beeping

syntax BEEPING
example 100 DEFine PROCedure be_quiet
110 BEEP

120 END DEFine
130 IF BEEPING THEN be_quiet

BLOCK will fill a block of the specified size and shape, at the specified position relative
to the origin of the window attached to the specified, or default channel

BLOCK uses the pixel coordinate system

syntax width - numeric__express/on
height = numer/c_expression
X = numeric__expression
y = numeric__expression

BLOCK [channel] width, height, x, y , colour
example i BLOCK 10, 10, 5, 5, 7 [a 10x10 pixel white block at 55]

i 100 REMark "bar chart"

110 CSIZE 3,1

1Z0 PRINT "bar chart"

130 LET bottom= 100 : size =20 : left =10

140 FOR bar =1 to 10

150 LET colour = RND(0 TO 255)

160 LET height = RNOC2 TO 20)

170 BLOCK size, height, Left+bar*size,
hottom hei ght ,0

180 BLOCK size-2, height-2, Left+bar*size+l,
hottom hei ght+1. col our

190 END FOR bar

[use LET col our = RND<O TO 7) for televisions]

BEEPING

sound

DL\/wI\
windows

BORDER

windows

CALL

QdOS

warning

BORDER will add a border to the window attached to the specified channel or default
channel

For all subsequent operations except BORDER the window size is reduced to allow
space for the BORDER If another BORDER command is used then the full size of
the original window is restored prior to the border being added, thus multiple BORDER
commands have the effect of changing the size and colour of a single border Multiple
borders are not created unless specific action is taken

If BORDER is used without specifying a colour then a transparent border of the specified
width is created

syntax width = numeric__expression
BORDER [channel,] size [, colour]

example i BORDER 10,0,7 [black and white sttpple border)
ii 100 REMark Lurid Borders
110 FOR thickness = 50 to 2 STEP -2
120 BORDER thickness, RNDCO TO 255)
130 END FOR thickness
140 BORDER 50

{use RND(0 TO 7) for televisions)

Machine code can be accessed directly from SuperBASIC by using the CALL command
CALL can accept up to 13 long word parameters which will be placed into the 68008
data and address registers {D1 to D7, AO to A5) in sequence

No data is returned from CALL

syntax address = numeric__expression
data = numeric__expression

CALL address, *[data]* (13 data parameters maximum]

example i CALL 262144,0,0,0
n CALL 262500,12,3,4,1212,6

Address register A6 should not be used in routines called using this command To return
to SuperBASIC use the instructions

MOVEQ #0,00
RTS

CHRS

CHRS$ is a function which will return the character whose value is specified as a parameter BASIC
CHRS is the inverse of CODE
syntax CHRS (nhumeric__expression)

example i PRINT CHR$(27) (print ASCII escape character]
I PRINT CHRSC65) (print A]

CIRCLE
CIRCLE R

CIRCLE will draw a circle (or an ellipse at a specified angle) on the screen at a specified graphics
position and size The circle will be drawn in the window attached to the specified or
default channel

CIRCLE uses the graphics coordinate system and can use absolute coordinates (le
relative to the graphics origin) and refative coordinates (i e relative to the graphics cursor)
For relative coordinates use CIRCLE__R

Multiple circles or ellipses can be plotted with a single call to CIRCLE Each set of
parameters must be separated from each other with a semi colon ()

The word ELLIPSE can be substituted tor CIRCLE if required

syntax X = numeric__express/on
y = rwme/vc__express/on
radius = numeric__expression
eccentricity = numeric__expression
angle = numenc_express/on (range 0 2n]
parameters = \ X vy, 1
| radius eccentricity angfe 2

where 1 will draw a circle
2 will draw an ellipse of specified eccentricity and angle

CIRCLE [channel\ parameters *[, parameters}*

X horizontal offset from the graphics origin or graphics cursor
y vertical offset from the graphics origin or graphics cursor
radius radius of the circle

eccentricity the ratio between the major and minor axes of an ellipse

angle the orientation of the major axis of the ellipse relative to
the screen vertical The angle must be specified in radians

example i CIRCLE 50,50,20 ja circle at 5050 radius 20J
I CIRCLE 50,50,20,0.5,0 [an ellipse at 5050 major axis 20
eccentricity 05 and aligned with the
vertical axis;

12/84

V/LuAnNn CLEAR will clear out the SuperBASIC variable area for the current program and will

release the space for Qdos
syntax CLEAR

example CLEAR

Comment CLEAR can be used to restore to a known state the SuperBASIC system For example,

if a program is broken into (or stops due to an error) while it is in a procedure then
SuperBASIC is still in the procedure even after the program has stopped CLEAR will
reset the SuperBASIC (See CONTINUE, RETRY)

CLOSE

devices CLOSE will close the specified channel Any window associated with the channel wtl!

be deactivated

syntax channel = #numeric__expression
CLOSE channel
example [CLOSE #4

Il CLOSE #1 nput_crianne |

12/64

Will clear the window attached to the specified or default channel to current PAPER
colour, excluding the border if one has been specified CLS will accept an optional
parameter which specifies if only a part of the window must be cleared

syntax. pan = numeric__expression

CLS [channel] [part]

where par!l = 0 - whole screen {default if no parameter)
part = 1 - top excluding the cursor line
part = 2 - bottom excluding the cursor line
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor position
example: i CLS [the whole wmdowj
n CLS3 [clear the cursor line]

Ml CLS #2,2 {clear the bottom of the window on channel 2j

CODE is a function which returns the internal code used to represent the specified
character If a string is specified then CODE will return the internal representation of the
first character of the string

CODE is the inverse of CHR$
syntax CODE (stnng_expression)

example i. PRINT CODEOQO'A") [prints 65)
n PRINT CODEC'SuperBASIC") [prints 83

12/84

CIS

windows

wWL/C

10

CONTINUE
RETRY

error handling

warning

COPY
COPY_N

devices

CONTINUE allows a program which has been halted to be continued RETRY allows
a program statement which has reported an error to be re-executed

syntax CONTINUE
RETRY

example CONTINUE
RETRY

A program can only continue if

1 No new lines have been added to the program
2 No new variables have been added to the program
3 No lines have been changed

The value of variables may be set or changed

COPY will copy a file from an input device to an output device until an end of file marker
is detected COPY__N will not copy the header (if it exists) associated with a file and
will allow Microdrive files to be correctly copied to another type of device

Headers are associated with directory-type devices and should be removed using
COPY__ N when copying to non-directory devices eg mdvl is a directory device, serl
is a non directory device

syntax COPY device JO device
COPY__N device TO device

It must be possible to input from the source device and it must be possible
to output to the destination device

example i COPY mdvl_data_fiLe TO con_ [copy to default window]
n COPY neti_3 TO mdvl_data [copy data from network
station to mdv__data j
in COPY_N mdvl_test_data TO serl [copy mdvl_test data to
serial port 1 removing
header information}

12/84

COS

COS will compute the cosine of the specified argument maths functions
syntax: ang/e-= numenc_expresston {range -10000 10000 in radians}

COS (angle)
example. i PRINT cosctheta)

1 PRINT COSC3.141592654/2)

COT

COT will compute the cotangent of the specified argument maths functions
syntax angle- = numeric__expression (range -30000 30000 in radians)

COT (angle)
example: i PRINT COT(3)

i PRINT COTC3.141592654/2)

12/84

CSIZE

windows

CURSOR

windows

Sets a new character size for the window attached to the specified or default channel,
The standard size is 0,0 in 512 mode and 2,0 in 256 mode

Width defines the horizontal size of the character space Height defines the vertical size
of the character space The character size is adjusted to fill the space available

Figure A Character Square

width size height size

6 pixels 0 10 pixels
8 pixels 1 20 pixels
12 pixels
16 pixels

wWN PO

syntax: width = numeric___expression [range 0..3J
height = numeric__expression {range 0 1)

CSIZE [channel,] width, height

example i CSIZE 3,0
Il CSIZE 3,1

CURSOR allows the screen cursor to be positioned anywhere in the window attached
to the specified or default channel

CURSOR uses the pixel coordinate system relative to the window origin and defines
the position for the top left hand corner of the cursor The size of the cursor is dependent
on the character size in use.

If CURSOR is used with four parameters then the first pair is interpreted as graphics
coordinates (using the graphics coordinate system) and the second pair as the position
of the cursor (in the pixel coordinate system) relative to the first point.

This allows diagrams to be annotated relatively easily

syntax X = numeric___expression
y = numeric___expression

CURSOR [channel,] x, ¥y [X, V]

example. i CURSOR 0,0
ii CURSOR 20,30
in. CURSOR 50,50,10,10

12/84

READ, DATA and RESTORE allow embedded data, contained in a SuperBASIC
program, to be assigned to variables at run time

DATA is used to mark and define the data, READ accesses the data and assigns it
to variables and RESTORE allows specific data to be selected

DATA

READ

RESTORE

An implicit RESTORE is not performed before running a program This allows a single
program to run with different sets of data Either include a RESTORE in the program

allows data to be defined within a program The data can be read by
a READ statement and the data assigned to variables A DATA statement
is ignored by SuperBASIC when it is encountered during normal

processing
syntax DATA * {expression,] *

reads data contained in DATA statements and assigns it to a list of variables
Initially the data pointer is set to the first DATA statement in the program
and is incremented after each READ Re running the program will not
reset the data pointer and so in general a program should contain an
explicit RESTORE

An error is reported if a READ is attempted for which there is no DATA
syntax READ * [identifier,] *

restores the data pointer, i e the position from which subsequent READs
will read their data If RESTORE is followed by a line number then the
data pointer is set to that Itne If no parameter is specified then the data
pointer is reset to the start of the program

syntax RESTORE [line_number]

example i 100 REMark Data statement example
110 DIM weekdays$(7,4)
120 RESTORE
130 FOR count=1 TO 7 :
READ weekdays$(count)
140 PRINT weekdays
150 DATA "MON","TUE","UED"," THIJR","FRI"
160 DATA "SAT'V'SUN"

ii 100 DIM month$(12,9)
110 RESTORE
120 REMark Data statement example
130 FOR count=1 TO 12 :
READ month$(colLtnt)
140 PRINT months
150 DATA "January","February","March"
160 DATA "April","May","June"
170 DATA "July","August","September"
180 DATA "October","November","December"

or perform an explicit RESTORE or CLEAR before running the program

DATA

READ
RESTORE

BASIC

warning

14

DATES
DATE

Clock DATES is a function which will return the date and time contained in the QLs clock

DAYS

Clock

The format of the string returned by DATES is
"yyyy mmm dd hh mm ss"

where yyyy is the year 1984 1985, etc
mmm is the month Jan, Feb etc
dd is the day 01 to 28 29, 30, 31

hh is the hour 00 to 23
mm are the minutes 00 to 59
S are the seconds 00 to 59

DATE will return the date as a floating point number which can be used to store dates
and times in a compact form

If DATES is used with a numeric parameter then the parameter will be interpreted as
a date in floating point form and will be converted to a date string

syntax DATE$ [get the time from the clock)
DATES$(nu/77enc_express;on) (get time from supplied parameter}
example i PRINT DATES (output the date and time]

n PRINT DATES(234567) (convert 234567 to a date)

DAYS is a function which will return the current day of the week If a parameter is specified
then DAY$ wil! interpret the parameter as a date and will return the corresponding day
of the week

syntax DAY$ [get day from clock]
DAYS (numeric__expression) (get day from supplied parameter]
example i PRINT DAYS [output the day]
n PRINT DAYSC234567) (output the day represented by 234567
(seconds)]

12/84

DEFine FuNction defines a SuperBASIC function. The sequence of statements between
the DEFine function and the END DEFine constitute the function. The function definition
may also include a list of forma! parameters which will supply data for the function. Both
the formal and actual parameters must be enclosed in brackets. If the function requires
no parameters then there is no need to specify an empty set of brackets.

Formal parameters take their type and characteristics from the corresponding actual
parameters. The type of data returned by trie function is indicated by the type appended
to the function identifier. The type of the data returned in the RETURN statement must

match,

An answer is returned from a function by appending an expression to a RETurn statement
The type of the returned data is the same as type of this expression.

A function is activated by including its name in a SuperBASIC expression.

Function calls in SuperBASIC can be recursive; that is, a function may call itself directly
or indirectly via a sequence of other calis,

syntax: formal__parameters™ (express/on *[, expression}*)
actual__parameters:= (expression *[, expression]*)

type:= \ $

%

DEF FuNction identifier type [forma/__parameters]
[LOCal identifier *[, identifier]*]
statements
RETurn expression

END DEFine

RETurn can be at any position within the procedure body. LOCal
statements must preceed the first executable statement in the function.

example: 10 OEFine FuNction mean(a, b, c)
20 LOCal answer
30 LET answer = (a + b + ¢c>/3
40 RETurn answer
50 END DEFine
60 PRINT rneanCl ,2,3)

To improve legibility of programs the name of the function can be appended to the END

DEFine statement. However, the name wil not be checked by SuperBASIC.

DEFine
FuNction
END DEFine

functions and
procedures

comment

16

DEFine
PROCedure
END DEFine

functions and
procedures

comment

DEFine PROCedure defines a SuperBASIC procedure The sequence of statements
between the DEFine PROCedure statement and the END DEFine statement constitutes
the procedure The procedure definition may also include a list of formal parameters
which will supply data for the procedure The formal parameters must be enclosed in
brackets for the procedure definition, but the brackets are not necessary when the
procedure is called If the procedure requires no parameters then there is no need to
include an empty set of brackets in the procedure definition

Formal parameters take their type and characteristics from the corresponding actual
parameters

Variables may be defined to be LOCal to a procedure Local variables have no effect
on similarly named variables outside the procedure If required local arrays should be
dimensioned within the LOCal statement

The procedure is called by entering its name as the first item in a SuperBASIC statement
together with a list of actual parameters Procedure calls in SuperBASIC are recursive
that is, a procedure may call itself directly or indirectly via a sequence of other calls

It is possible to regard a procedure definition as a command definition in SuperBASIC,
many of the system commands are themselves defined as procedures

syntax formal__parameters = (expression *[, expression]*)
actual__parameters = expression *[, expression}*

DEFine PROCedure identifier [formal_parameters]
[LOCal identifier *[, identifier] *]
statements
[RETurn]

END DEFine

RETURN can appear at any position within the procedure body if present
the LOCal statement must be before the first executable statement in the
procedure The END DEFine statement will act as an automatic return

example i 100 DEFine PROCedure start_screen
110 WINDOW 100,100,10,10
120 PAPER 7 : INK 0 : CLS
130 BORDER A,255
140 PRINT "Hello Everybody"
150 END DEFine
160 start_screen

n 100 DEFine PROCedure slow_scrotl(scrolL_Limit)
110 LOCalL count ~
120 FOR count =1 TO scrolL_Limit
130 SCROLL 2
140 END FOR count
150 END DEFine
160 sLow_scroL | 20

To improve legibility of programs the name of the procedure can be appended to the
END DEFine statement However, the name will not be checked by SuperBASIC

12/34

DEG

DEG is a function which will convert an angle expressed in radians to an angle expressed maths functions
in degrees

syntax DEG (numeric—expression)

example PRINT DEG(PI1/2) (will print 90j

DELETE will remove a file from the directory of the cartridge in the specified Microdrive UtLt | t
syntax DELETE device Microdrives
The device specification must be a Microdrive device

example i DELETE mdvl_old_data
ii DELETE mdv1_letter_fi le

12/84

17

DIM

orrawo

¥ Defines an array to SuperBASIC String, integer and floating point arrays can be defined

String arrays handle fixed length strings and the final index is taken to be the string length

Array indices run from 0 up to the maximum index specified in the DIM statement, thus
DIM will generate an array with one more element in each dimension than is actually
specified

When an array is specified it is initialised to zero for a numeric array and zero length
strings for a string array

syntax index = numeric__expression
array = indenttfier{index *{, index}*)

DIM array *{, array] *

example i DIM string_array$C10,10,50)
ii DIM matrix(100,100)

DIMN

arrays DIMN is a function which will return the maximum size of a specified dimension of a
specified array If a dimension is not specified then the first dimension is assumed If
the specified dimension does not exist or the identifier is not an array then zero is returned

syntax array = identifier
index = numeric__expression (1 for dimension 1, etc]

DIMN(array [.dimension])
example consider the array defined by DIMa<2,3,4)

[PRINT DIMN (A, 1) [will print 2)
Il PRINT OIMM(A,2) [will print 3]
ll PRINT DIMNCA,3) (will print 4]
v PRINT DIMN (A) (will print 2]
v PRINT DIMNCA.4) [will print 0]

12/84

DfR will obtain and display in the window attached to the specified or default channel
the directory of the cartridge in the specified Microdrive

syntax

example

DIR device
The device specification must be a valid Microdrive device

The directory format output by DIR is as follows

free__sectors = the number of free sectors
available__sectors = the maximum number of sectors on this cartridge
file__name = a SuperBASIC file name
screen format Volume name
free__sectors i available__sectors sectors
file__name
file_name
i DIR mdvl_
n DIR "mdv2_"
in DIR "mdv" & microctnve_number$ & " "

screen format BASIc
183 | 221 sectors
demo_1
demo_1 old
denmo_2

DIV is an operator which will perform an integer divide

syntax,
example

12/84

numeric__expression DIV numeric__expression

i PRINT 5 DIV 2 (will output 2]
ii PRINT -5 DIV 2 {will output -3]

DIR

Microdrives

" .

DLINE

BASIC DLINE will delete a single line or a range of lines from a SuperBASIC program

tZL/H

syntax range - line__number TO line__number 1
line__number TO 2

j TO line_number 3

| line__number 4

DLINE range * .range] *

where 1 will delete a range of lines
2 will delete from the specified line to the end
3 will delete from the start to the specified line
4 will delete the specified line

example i DLINE 10 TO 70, 80, 200 TO 400
{will delete lines 10 to 70 inclusive, fine 80 and lines 200 to 400
inclusive]
I DLINE

(will delete nothing)

The EDIT command enters the SuperBASIC line editor

The EDIT command is closely related to the AUTO command, the only difference being
in their defaults. EDIT defaults to a line increment of zero and thus will edit a single
Isne unless a second parameter is specified to define a line increment.

If the specified line already exists then the line is displayed and editing can be started
If the line does not exist then the line number is displayed and the line can be entered

The cursor can be manipulated within the edit line using the standard QL keystrokes
cursor right
cursor left

Cursor up same as ENTER but automatically gives previous
existing line to edit next

cursor down same as ENTER but automatically gives next
existing line to edit next

delete character right
delete character left

When the line is correct pressing ENTER will enter the line into the program.

If an increment was specified then the next line in the sequence will be edited otherwise
edit will terminate

syntax* increment' = numeric___expression
EDIT line__number [.increment]

example i EDIT 10 (edit line 10 only}
ii. EDIT 20,10 (edit lines 20, 30 etc]

EOF

EOF is a function which will determine if an end of file condition has been reached devices
on a specified channel If EOF is used without a channel specification then EOF will
determine if the end of a program's embedded data statements has been reached

syntax EOF [(channel)]

example i IF EOF (#6) THEN STOP
i | F EOF THEN PRI NT "CQut of data"

EXEC
EXEC_W

EXEC and EXEC__W will ioad a sequence of programs and execute them in parallel Qdos

EXEC witll return to the command processor after all processes have started execution,
EXEC__Wwill wait until all the processes have terminated before returning

syntax. program =device [used to specify a Microdrive fife containing the
program)
EXEC program

example i EXEC mdvl_communcations
i - EXEC_W mdvl_pn nter_process

12/84

21

22

EX|T

repetition EXIT will continue processing after the END of the named FOR or REPeat structure

syntax EXIT identifier

example i 100 REM start looping
110 LET count = 0
120 REPeat Loop
130 LET count = count + 1
140 PRINT count
150 IF count = 20 THEN EXIT Loop
160 END REPeat Loop
(the loop will be exited when count becomes

equal to 20)

it 100 FOR n = 1 TO 1000
110 REM program st atements
120 REM program statements
130 IF RND > 5 THEN EXIT n
140 END FOR n
{the loop will be exited when a random
number greater than 05 is generated}

EXP

maths functions EXP will return the value of e raised to the power of the specified parameter

syntax EXP (numeric—expression) [range -500 500J
example i PRINT EXP(3)
n PRINT EXP(3.141592654)

12/84

FILL

FILL will turn graphics fil on or off FILL will fil any non-re-entrant shape drawn with graphics
the graphics or furtfe graphics procedures as the shape is being drawn Re-entrant shapes
must be sptit into smaller non-re-entrant shapes

When you have finished filling, FILL O should be called

syntax switch. = numeric__expression (range 0 1]
FILL [channel,] switch
example i FILL 1 :LINE 10,10 TO 50,50 TO 30,90 TO 10,10:FILL O
[will draw a filled triangle]
n. FILL 1 :CIRCLE 50,50,20:FILL O

[will draw a filled circle]

FILL$

FILLS is a function which will return a string of a specified length filed with a repetition string arrays
of one or two characters.

syntax: FILLS (string__expression,numeric__expression)

The string expression supplied to FILLS must be either one or two
characters long.

example: [PRINT FILL$("a",5) [will print aaaaa]
n PRINT FILL$("00",7) [will print 0000000;
in LET a$ = a$ 8 FILLSC" ", 10)

12/84

23

FLASH

windows

warning

FOR

CM ft CT™D

tT
repetition

short

long

warning

24

FLASH turns the flash state on and off FLASH is only effective in low resolution mode
FLASH will be effective m the window attached to the specified or default channel
syntax switch = numeric__expression (range 0 1)

FLASH [channel,] switch

where switch = 0 will turn the flash off
switch = 1 will turn the flash on

exanpl e 100 PRINT "A ",
110 FLASH 1
120 PRINT "flashing ";
130 FLASH 0
140 PRI NT "word"

Writing over part of a flashing character can produce spurious results and should be
avoided

The FOR statement allows a group of SuperBASIC statements to be repeated a controlled
number of times The FOR statement can be used in both a long and a short form

NEXT and END FOR can be used together within the same FOR loop to provide a
/ooP eP./0Ouei e a group of SuperBASIC statements which will not be executed if a
loop is exited via an EXIT statement but which will be executed if the FOR loop terminated
normally

define for__item = \ numeric__express/on
| numeric__exp TO numeric__exp
I numeric__exp TO numeric__exp STEP numenc_exp

for__list= for__item *[, for__item*

The FOR statement is followed on the same logical line by a sequence of SuperBASIC
statements The sequence of statements is then repeatedly executed under the control
of the FOR statement When the FOR statement is exhausted processing continues
on the next line The FOR statement does not require its terminating NEXT or END
FOR Single line FOR loops must not be nested

syntax FOR variable = forest . statement *[: statement}*

example | FOR i =1, 2,3, 4TO 7 STEP 2 : PRINT i
n FOR element = first TO Last : LET buffer(element) =0

The FOR statement is the last statement on the line Subsequent lines contain a series
of SuperBASIC statements terminated by an END FOR statement The statements
enclosed between the FOR statement and the END FOR are processed under the control
of the FOR statement

syntax FOR variable = for_Jist
statements
END FOR variable
exanpl e 100 INPUT "data please" i- x

110 LET factorial =1

120 FOR value = x TO1 STEP -1

130 LET factorial = factorial. * value
140 PRINTxiiii factorial

150 |F factorial>1E20 THEN

160 PRINT "Very |arge number"

170 EXIT val ue

180 END IF

190 END FOR val ue

A floating point variable must be used to control a FOR loop

12/84

FORMAT will format and make ready for use the cartridge contained in the specified
Microdrive

syntax FORMAT [channel,] device

Device specifies the Microdrive to be used for formatting and the identifier part of the
specification is used as the medium or volume name for that cartridge FORMAT will
write the number of good sectors and the total number of sectors available on the cartridge

on the default or on the specified channel

It is helpful to format a new cartridge several times before use This conditions the surface
of the tape and gives greater capacity

example i FORMAT mdv1l_data_cartndge
ii FORMAT mdv2_wp_letters

FORMAT can be used to reinitialise a used cartridge However, all data contained on
that cartridge will be lost

For compatibility with other BASICs SuperBASIC supports the GOSUB statement.
GOSUB transfers processing to the specified line number, a RETurn statement will transfer
processing back to the statement following GOSUB

The line number specification can be an expression
syntax GOSUB line__number

example i GOSUB 100
ii GOSUB 4*select_variablLe

The control structures available in SuperBASIC make the GOSUB statement redundant

12/84

FORMAT

Microdrives

warning

VjiuouD

comment

25

26

\3\) I V. For compatibility with other BASICs SuperBASIC supports the GOTO statement GOTO

will unconditionally transfer processing to the statement number specified The statement
number specification can be an expression

syntax GOTO line__number
example i GOTO program_start
I GOTO 9999

comment The control structures available in SuperBASIC make the GOTO statement redundant

IF
THEN

Pl QC
CLwt

FMD IF
Short

long 1

long 2

The IF statement allows conditions to be tested and the outcome of that test to control

subsequent program flow

_xe 1 Statement can De useQl in both a Iong and a short form

The THEN keyword is followed on the same logical line by a sequence of SuperBASIC
keyword This sequence of SuperBASIC statements may contain an ELSE keyword If
the expression in the fF statement is true (evaluates to be non-zero), then the statements
between the THEN and the ELSE keywords are processed If the condition is false
(evaluates to be zero) then the statements between the ELSE and the end of the line

are processed

If the sequence of SuperBASIC statements does not contain an ELSE keyword and if
the expression in the IF statement s true then the statements between the THEN keyword
and the end of the line are processed If the expression is false then processing continues
at the next line

syntax statements = statement *[, statement] *
IF expression THEN statements [ELSE statements]

exanpl e I IF a=32 THEN PRINT "Limt" : ELSE PRINT "C"
i | Ftest >maxi mumTHEN LET maxi mum= test
in IF "1"+1=2 THEN PRI NT "coercion K"

The THEN keyword is the last entry on the logical line A sequence of SuperBASIC
statements is written following the IF statements The sequence is terminated by the END
IF statement The sequence of SuperBASIC statements is executed if the expression
contained in the IF statement evaluates to be non zero The ELSE keyword and second
sequence of SuperBASIC statements are optional

The THEN keyword is the last entry on the logical line A sequence of SuperBASIC
statements follows on subsequent lines, terminated by the ELSE keyword IF the
expression contained in the IF statement evaluates to be non zero then this first sequence
of SuperBASIC statements is processed After the ELSE keyword a second sequence
of SuperBASIC statements is entered, terminated by the END IF keyword If the expression
evaluated by the IF statement is zero then this second sequence of SuperBASIC
statements is processed

12/84

syntax IF express/on THEN
statements
[ELSE
statements]
END IF

exanpl e 100 LET Limit =10
110 I NPUT "Type in a number" i number
120 IF number > Limit THEN
130 PRI'NT "Range error"
140 ELSE
150 PRINT "Inside limit"
160 END | F

In all three forms of the IF statement the THEN is optional In the short form it must comment
be replaced by a colon to distinguish the end of the IF and the start of the next statement
In the long form it can be removed completely

IF statements may be nested as deeply as the user requires (subject to available memory) nesting
However, confusion may arise as to which ELSE, END IF etc matches which IF
SuperBASC will match nested ELSE statements etc to the closest IF statement, for

example-

100 IF a = b THEN
110 IF ¢ =d THEN

120 PRI NT "error"

130 ELSE

140 PRI'NT "no error"
150 END I F

160 ELSE

170 PRI NT "not checked"
180 END | F

The ELSE at line 130 is matched to the second IF. The ELSE at line 160 is matched
with the first IF (at line 100)

INK

This sets the current ink colour, ie the colour in which the output is written INK will windows
be effective for the window attached to the specified or default channel

syntax. INK [channel,] colour
example i INK 5

ii INK 6,2

li. INK #2,255

12/84

HIIN\[Z Yy INKEY$ is a function which returns a single character input from either the specified
or default channel
An optional timeout can be specified which can wait for a specified time before returning,
can return immediately or can wait for ever If no parameter is specified then INKEY$
will return immediately

syntax INKEYS [\(channel)
\(cnannel, time)
\(time)\
where time = 1 32767 (wait for specified number of frames]
time = -1 [wait forever}
time = 0 [return immediately]
example i PRINT INKEYI [input from the default channel]

ii PRINT INKEY$(#4) [input from channel 4;

MI PRINT INKEYS (50) {wait for 50 frames then return anyway]

iv PRINT INKEY$(0) (return immediatly (poll the keyboard)]

% PRINT INKEY!(#3,100) [wait for 100 frames for an input from
channel 3 then return anyway]

IINKU | INPUT allows data to be entered into a SuperBASIC program directly from the QL
keyboard by the user SuperBASIC halts the program until the specified amount of data
has been input, the program will then continue Each item of data must be terminated
by the ENTER key

INPUT will input data from either the specified or the default channel

If input is required from a particular console channel the cursor for the window connected
to that channel will appear and start to flash

syntax separator = \ |
| 1
I\
I
| TO

prompt = [channel,] expression separator
INPUT [prompt] (channel\ variable *\variable}*

exanpl e i I NPUT ("Last guess "&guess & "New guess'") <
guess
n | NPUT "What is your guess™; guess

il 100 I NPUT "array size™ ' Limit
110 DI MarrayUi mt - 1)
120 FOR element =0 to Limt-1
130 INPUT ("data for element" & el ement)
array(e Lement)
140 END FOR el ement
150 PRINT array

INSTR is an operator which will determine if a given substring is contained within a
specified string If the string is found then the substring's position is returned If the string
is not found then INSTR returns zero
Zero can be interpreted as false i e the substring was not contained in the given string
A non zero value the substrings position can be intepreted as true ie the substring
was contained in the specified string

syntax strings-expression INSTR string express/on

example i PRINT "a" INSTR "cat" [will print 2)
i PRINT "CAT" INSTR "concatenate" [will print 4j
in PRINT "x" INSTR "eggs" [will print 0]

INT will return the integer part of the specified floating point expression
syntax INT (numeric__expression)

example [PRINT INT(X)
I PRINT INTC3.U1592654/2)

12/84

INSTR

operator

INT

maths functions

29

KEYROW

KEYBOARD MATRIX

30

KEYROW is a function which looks at the instantaneous state of a row of keys (the table
below shows how the keys are mapped onto a matrix of 8 rows by 8 columns) KEYROW
takes one parameter which must be an integer in the range 0 to 7 this number selects
which row is to be looked at The value returned by KEYROW is an integer between
0 and 255 which gives a binary representation indicating which keys have been
depressed m the selected row

Since KEYROW is used as an alternative to the normal keyboard input mechanism using
IIMKEY$ or INPUT any character in the keyboard type ahead buffer are cleared by
KEYROW thus key depressions which have been made before a call to KEYROW
will not be read by a subsequent INKEY$ or INPUT

Note that multiple key depressions can cause surprising results In particular if three
keys at the corner of a rectangle in the matrix are depressed simultaneously, it will appear
as if the key at the fourth corner has also been depressed The three special keys CTRL,
SHIFT and ALT are an excepton to this rule and do not interact with other keys in this way

syntax row = numeric__expression jrange 0 7j
KEYROW (row)

exanpl e 100 REMark run this programand press a few keys
110 REPeat |oop
120 CURSOR 0,0
130 FORrow=0to7
140 PRINT row M KEYROWrow) ; " "
150 END FOR row
160 END REPeat Loop

COLUMN
ROW 1 2 4 8 % 32 64 128
7 |smeTletre | A | x v / N
6| 8 2 6 Q E Q T U
5 9 w | M8 | A - ¥
4| L 3 H i A P D J
301 | B K s F - G
2 1| z c B £ M -
1 [EnTER| - w | ESC | - | SPACE | down
0| Fa Fi 5 F2 3 | F5 4 7

12/84

LBYTES will load a data tile into memory at the specified start address

syntax start_address-~ numeric_expression
LBYTES device ,start_address
example i LBYTES mdvl_screen, 131072
[load a screen image]
n LBYTES mdvl_progratn, start_address

(load a program at a specified address)

LEN is a function which will return the length of the specified string expression

syntax LEN (string__expression)
example i PRINT LEN< "LEN will find the Length of this
string")
n PRINT LEN(output_string$)

12/84

LBYTES

devices
MicrodriveS

LEN

String arrays

31

32

|
LI

LC |

LIic

IMP D
IMC fl

—% "

LET starts a SuperBASIC assignment statement The use of the LET keyword is optional
The assignment may be used for both string and numeric assignments SuperBASIC
will automatically convert unsuitable data types to a suitable form wherever possible

syntax [LET] variable = express/on

i LETa=1+2
n LET aS - "12345"
in LETaS=6789

iv b$ = test_data

example

LINE allows a straight line to be drawn between two points in the window attached to
n® Default * specified channel The ends of the line are specified using the graphics

coordinate system
Multiple lines can be drawn with a single LINE command

The normal specification requires specifying the two end points for a line These end
points can be specified either in absolute coordinates (relative to the graphics origin)
or in relative coordinates (relative to the graphics cursor) If the first point is omitted then
a line is drawn from the graphics cursor to the specified point If the second potnt is
omitted then the graphics cursor is moved but no line is drawn

LINE will always draw with absolute coordinates, i e. relative to the graphics origin while
LINE__R will always draw relative to the graphics cursor

syntax. X = numeric__expression
Y= numeric___express/on
point= x ,y
parameter® = | TO point 1
| ,point TO point 2
parameterj = | TO point, angle 1
| TO point 2
| point 3

LINE {channel,} parameter® *[, parameter_2\ *
LINE__R [channel] parameter® * [,parameter_2] *

where 1 will draw from the specified point to the next specified point
2 will draw from the the last point plotted to the specified point
3 will move to the specified point - no line will be drawn

example i LINE 0,0 TO 0, 50 TO 50,0 TO 50,0 TO 0,0 (a square}
n. LINE TO 0.75, 0.5 [a line]
in LINE 25,25 (move the graphics cursorj

12/84

LIST allows a SuperBASIC line or group of lines to be listed on a specific or default
channel

LIST is terminated by [CTRL] space
syntax line = line__number TO line__number
line__numberTO
| TO line__number

| line__number
1

LIST [channel] line *[tine*

m.bwl\)HL

where 1 will list from the specified line to the specified line
2 will list from the specified line to the end
3 will list from the start to the specified line
4 will list the specified line
5 will list the whole program

example i LIST [list all lines]
ii LIST 10 to 300 (list lines 10 to 300J
in LIST 12,20,50 [list lines 1220 and 50 only]

If LIST output is directed to a channel opened as a printer channel then LIST will provide
hard copy

LOAD will load a SuperBASIC program from any QL device LOAD automatically performs
a NEW before loading another program, and so any previously loaded program will
be cleared by LOAD

If a line input during a load has incorrect SuperBASIC syntax, the word MISTAKE is
inserted between the line number and the body of the line Upon execution, a line of
this sort will generate an error

syntax LOAD device

example i LOAD "mdv1l_test_program
is LOAD mdvl_games
HI LOAD neti_3
iv LOAD serl_e

Liw |

comment

LOAD

devices
Microdnves

LN
LOG10

maths functions

LOCal

functions and
procedures

comment

LN will return the natural logarithm of the specified argument LOG10 will return the
common logarithm There is no upper limit on the parameter other than the maximum
number the computer can store

syntax LOGIO(numenc_expression) (range greater than zero]
LN (numeric___expression) [range greater than zero)

example i PRINT LOG10C2Q)
ii PRINT LNC3.U1592654)

LOCal allows identifiers to be defined to be LOCal to a function or procedure. Local
identifiers only exist within the function or procedure in which they are defined, or in
procedures and functions called from the function or procedure in which they are defined
They are lost when the function or procedure terminates. Local identifiers are independent
of similarly named identifiers outside the defining function or procedure Arrays can be
defined to be local by dimensioning them within the LOCal statement.

The LOCal statement must precede the first executable statement in the function or
procedure in which ft is used

syntax. LOCal identifier *[, identifier] *

example i LOCal a, b, ¢c<10,10)
ii LOCal temp_data

Defining variables to be LOCal allows variable names to be used within functions and
procedures without corrupting meaningful variables of the same name outside the function
or procedure

LRUN will load and run a SuperBASIC program from a specified device LRUN will
perform NEW before loading another program and so any previously stored SuperBASIC
program will be cleared by LRUN

if a line input during a loading has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax LRUN device

example i LRUN mdv2_TEST
i LRUN mdvl_game

MERGE will load a file from the specified device and interpret it as a SuperBASfC
program If the new file contains a line number which doesnt appear in the program
already in the QL then the line will be added If the new file contains a replacement
line for one that already exists then the line will be replaced All other old program lines
are left undisturbed

If a line input during a MERGE has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax MERGE device

example i MERGE mdvl_overLay_program
n MERGE mdvl_new_data

12/84

LRUN

devices
Microdrives

MERGE

devices
Microdrives

35

36

MOD

operators

MODE

screen

MOD is an operator which gives the modulus, or remainder, when one integer is divided
by another

syntax numeric__expression MOD numeric—expression

example i PRINT 5 MOD 2 (will print 1]
i PRINT 5 MOD 3 [will print 2]

MODE sets the resolution of the screen and the number of solid colours which it can
display MODE will clear all windows currently on the screen, but will preserve their
position and shape Changing to low resolution mode (8 colour) will set the minimum

character size to 2,0
syntax MODE numeric__expression

where 8 or 256 will select low resolution mode
4 or 512 will select high resolution mode

example i MODE 256
i MODE 4

MOVE will move the graphics turtle in the window attached to the default or specified
channel a specified distance in the current direction The direction can be specified using
the TURN and TURNTO commands The graphics scale factor is used in determining
how far the turtle actually moves Specifying a negative distance will move the turtle
backwards

The turtle is moved in the window attached to the specified or default channel

syntax distance - numeric__expression
MOVE [channel,] distance
example i MOVE #2,20 [move the turtle in channel 2 20 units
forwards]
n MOVE -50 (move the turtle in the default channel 50

units backwards]

MRUN will interpret a file as a SuperBASIC program and merge it with the currently
loaded program

If used as direct command MRUN will run the new program from the start If used as
a program statement MRUN will continue processing on the line following MRUN

If a line input during a merge has incorrect SuperBASIC syntax, the word MISTAKE
is inserted between the line number and the body of the line Upon execution, a line
of this sort will generate an error

syntax MRUN device

example i MRUN mdv1_chai n_program
n MRUN mdvl_new_data

13/84

MOVE

turtle graphics

MRUN

devices
Microdrives

37

NET

network NET allows the network station number to be set. If a station number is not explicitly
set then the QL assumes station number 1

syntax station = numenc_expression [range 1 127J
NET station

example i NET 63
i NET 1

comment Confusion may arise if more than one station on the network has the same station number

it W NEW will clear out the old program, variables and channels other than 01 and 2
syntax NEW
example NEW

12/84

NEXT

NEXT is used to terminate, or create a loop epilogue in, REPeat and FOR loops repetition
syntax: NEXT identifier
The identifier must match that of the loop which the NEXT is to control

example i 10 REMark this toop must repeat forever
11 REPeat infinite_Loop
12 PRINT "stilLL looping”
13 NEXT infinite_Loop

n 10 REMark this Loop wil |l repeat 20 times
11 LET Limit = 20
12 FOR index=1 TO Limit
13 PRI NT i ndex
14 NEXT i ndex

ill 10 REMark this LoopwilLLteLLyouwhena30isfound
11 REPeat toop
12 LET number = RND<1 TO 100)
13 IF number <> 30 THEN NEXT Loop
14 PRI NT number; " is 30"
15 EXI T LOCP
16 END REPeat Loop

If NEXT is used inside a REPeat - END REPeat construct it will force processing to in REPeat
continue at the statement following the matching REPeat statement

The NEXT statement can be used to repeat the FOR loop with the control variable set in FOR
at its next value, If the FOR loop is exhausted then processing will continue at the

statement following the NEXT, otherwise processing will continue at the statement after

the FOR

ON...GOTO

To provide compatibility with other BASICS, SuperBASIC supports the ON GOTO and vIMMYVjtJDUu
ON GOSUB statements These statements allow a variable to select from a list of possible

line numbers a line to process in a GOTO or GOSUB statement If too few line numbers

are specified in the list then an error is generated

syntax. ON variable GOTO expression *[, expression}*
ON variable GOSUB expression *{, expression}*

example. i ON x GOTO 10, 20, 30, 40
II. ON select_variabLe GOSUB 1000, 2000, 3000, 4000

SELect can be used to replace these two BASIC commands comment

12/64

39

Of==N
OPEN IN
OPEN_NEW

~ csvices
fiicrcrrmves

OVER

windows

OhEN allows the user to link a logical channel to a physical QL device for I/O purposes.

Il Ihe channel is to a Microdrive then the Microdrive file can be an existing file or a new
lil" In which case OPEN_IN will open an already existing Microdrive file for input and
°I'EN_NEW will create a new Microdrive file for output.

“Vntax: channel:= # numeric__expression
OPEN channel, device

"Mmple: i. OPEN #5, f_name$

li. OPEN_IN #9, "mdvl_fiLe_name"
[open file mdvl__file__name)

in. OPEN_NEW m, mdvl_data_fHe
(open file mdvl_data_file]

iv. OPEN #6, con_10x20a20x20_32
[Open channel 6 to the console device creating a window size
10x20 pixels at position 20,20 with a 32 byte keyboard type ahead
buffer.}

v. OPEN #8, mdvl read_write_fHe.

OVER selects the type of over printing required in the window attached to the specified
° default channel. The selected type remains in effect until the next use of OVER.

syi‘iax: switch. = numeric__express/on [range -1..1)
OVER [channel,] switch

where switch - 0 - print ink on strip
switch = 1 - print in ink on transparent strip
switch =-1 - XORs the data on the screen

example: i. OVER 1 (set "overprinting"]
[i. 10 REMark ShadowWiting
11 PAPER7 : INKO : OVER1 : CLS
12 CSIZE 3,1
13 FORi =0TO10
14 CURSOR i, i
15 IF i=10 THEN INK 2
16 PRI NT " Shadow
17 END FOR i

12184

PAN the entire current window the specified number of pixels to the left or the right
PAPER is scrolled in to fill the clear area

An optional second parameter can be specified which will allow only part of the screen
to be panned

syntax distance = numeric__expression
part = numeric__expression

PAN [channel,] distance [, pari

where part = 0 - whole screen {or no parameter)
part = 3 - whole of the cursor line
part = 4 - right end of cursor line including the cursor

position
If the expression evaluates to a positive value then the contents of the
screen will be shifted to the right

example i PAN #2,50 {pan left 50 pixelsj
i PAN -100 {pan right 100 pixels!
in PAN 50,3 [pan the whole of the current cursor line 50 pixels

to the right!

If stipples are being used or the screen is in low resolution mode then to maintain the
stipple pattern the screen must be panned in multiples of two pixels

PAPER sets a new paper colour (ie the colour which will be used by CIS, PAN,
SCROLL, etc) The selected paper colour remains in effect until the next use of PAPER

PAPER will also set the STRIP colour

PAPER will change the paper colour in the window attached to the specified or default
channel

syntax PAPER [channel,] colour

example i PAPER #3,7 [White paper on channel 3|
n PAPER 7,2 (White and red stipple)
in PAPER 255 (Black and white stipple)

iv. 10 REMark Show colours and stipples
11 FOR colour=0TO 7
12 FOR contrast =0 TO 7
13 FOR stipple=0TO 3

14 PAPER colour, contrast, stipple
15 SCROLL 6
16 END FOR stipple

17 END FOR contrast

18 END FOR col our
(not suitable for televisions)

12/84

PAN

windows

warning

PAPER

windows

41

iMUOt

PEEK
PEEK W
PEEK L

BASIC

warning

42

PAUSE wilt cause a program to wait a specified period of time Delays are specified
in units of 20ms in the UK only, otherwise 1667ms If no delay is specified then the
program will pause indefinitely Keyboard input will terminate the PAUSE and restart
program execution

syntax- delay = numeric___expression
PAUSE [delay]
example " i. PAUSE 50 [wait 1 second!

n PAUSE 500 [wait 10 seconds]

PEEK is a function which returns the contents of the specified memory location

PEEK has three forms which will access a byte (8 bits), a word (16 bits), or a long word
(32 hits).

syntax address:= numeric__expression

PEEK(adcfress) [byte access)
PEEK_ W(add/-ess) (word accessj
PEEK__[.(address) [long word access]

example i. PRINT PEEKC12245) [byte contents of location 12245J
n. PRINT PEEK_W<12) [word contents of locations 12 and 13]
iti. PRINT PEEK_L(1000) [long word contents of location 1000}

For word and long word access the specified address must be an even address.

12/84

Operates the pen in turtle graphics If the pen is up then nothing will be drawn If the
pen is down then lines will be drawn as the turtle moves across the screen

The line will be drawn in the window attached to the specified or default channel The
line will be drawn in the current ink colour for the channel to which the output is directed

syntax PENUP [channel]
PENDOWN [channel]

example i PENUP (will raise the pen in the default channel]
i PENDOWN #2 [will lower the pen in the window attached to
channel 2)

Pl is a function which returns the value of TT
syntax PI

example PRINT PI

12/84

PENUP

i CFMUwVVIM
turtle graphics

Pl

maths functions

43

44

POINT
POINT R

graphics POINT plots a point at the specified position in the window attached to the specified
or default channel. The point is plotted using the graphics coordinates system relative
to the graphics origin. If POINT_R is used then all points are specified relative to the
graphics cursor and are plotted relative to each other

Multiple points can be plotted with a single call to POINT.

syntax: X:= numeric__expression
y:= numenc__express:on

parameters: = X , y
POINT {channel,} parameters *[.parameters]*

example: i. POINT 256,128 [plot a point at (256,128)!
i POINT x, x*x [plot a point at (x,x*X)j
i ii.l0REPeatexample
20 | NK RNDC255)
30 POI NT RND<100), RND(100)
40 END REPeat example

POKE
POKE_W
POKE L

BASIC POKE allows a memory location to be changed. For word and long word accesses
the specified address must be an even address.

POKE has three forms which will access a byte (8 bits), a word (16 bits), a long word

(32 hits).
syntax: address:= numeric__expression
data: = numeric_expression
POKE address, data (byte access)
POKE__W address, data (word access)
POKE__L address, data (long word access)
example: i. POKE 12235,0 (set byte at 12235 to 0)

ii. POKE_L 131072, 12345 (set long word at 131072 to

warning Poking data into areas of memory used by Qdos can cause the system to crash and
data to be lost. Poking into such areas is'not recommended.

12/84

Allows output to be sent to the specified or default channel The normal use of PRINT r KIN |
is to send data to the QL screen devices

syntax separator =] ' Microdrives

I\

| TO numeric___expression

item = expression
channel
separator

PRINT *[item]*

Multiple print separators are allowed At least one separator must
separate channel specifications and expressions

example i PRINT "HelL lo World"
(will output Hello World on the default output device (channel 1)J
n PRINT #5, "data", 1,2,3,4
(will output the supplied data to channel 5 (which must have been
previously opened)}
lit PRINT TO 20 ; "This is in column 20"

i Normal action is to insert a space between items output on the screen If the item
will not fit on the current line a line feed will be generated If the current print position
is at the start of a line then a space will not be output ! affects the next item to separators
be printed and therefore must be placed in front of the print item being printed
Also a ; or al must be placed at the end of a print list if the spacing is to be continued
over a series of PRINT statements

Normal separator, SuperBASIC will tabulate output every 8 columns
\ Wil force a new line

Will leave the print position immediately after the last item to be printed Output will
be printed in one continuous stream

TO Will perform a tabbing operation TO followed by a numeric—expression will advance
the print position to the column specified by the numeric__expression If the
requested column is meaningless or the current print position is beyond the specified
position then no action will be taken

RAD

RAD is a function which will convert an angle specified in degrees to an angle specified maths functions
in radians

syntax RAD (numeric_express/on)

example PRINT RAOC180) [will print 3141593}

12/84

45

46

RANDOMISE

maths functions

RECOL

windows

RANDOMISE allows the random number generator to be reseeded If a parameter is
specified the parameter is taken to be the new seed If no parameter is specified then
the generator is reseeded from internal information

syntax RANDOMISE [numeric_expression]
example i RANDOMISE [set seed to internal data)
i RANDOMISE 3.2235 [set seed to 32235)

RECOL will recolour individual pixels in the window attached to the specified or default
channel according to some preset pattern Each parameter is assumed to specify, in
order, the colour in which each pixel is recoloured, i e She first parameter specifies the
colour with which to recolour all black pixels, the second parameter blue pixels, etc

The colour specification must be a solid colour, ie it must be in the range 0 to 7

syntax cO = new colour for black
d = new colour for blue
c2 = new colour for red
c3 = new colour for magenta
c4 = new colour for green
c5 = new colour for cyan
c6 = new colour for yellow
c7 = new colour for white

RECOL (channel ,] cO, d, c2, c3, c4, c5, c6, c7

example RECOL 2,3,4,5,6,7,1,0 (recolour blue to magenta red to
green, magenta to cyan etc}

12/84

REMark allows explanatory text to be inserted into a program The remainder of the
line is ignored by SuperBASIC

syntax REMark text
example REMark This is a comment in a program

REMark is used to add comments to a program to aid clarity

RENUM allows a group or a series of groups of SuperBASIC line numbers to be
changed If no parameters are specified then RENUM will renumber the entire program
The new listing will begin at line 100 and proceed in steps of 10

If a start line is specified then line numbers prior to the start line will be unchanged
If an end line is specified then line numbers following the end line will be unchanged

If a start number and stop are specified then the lines to be renumbered will be numbered
from the start number and proceed in steps of the specified size

If a GOTO or GOSUB statement contains an expression starting with a number then
this number is treated as a line number and is renumbered

syntax starL"tne = numeric__expression {start renumberj
end__line = numeric__expression [stop renumber]
stan__number= numeric—expression (base line number]
step = numeric__.expression (step)

RENUM [start_Ime [TO end_line],} [start_number] [,step]

example i RENUM {renumber whole program from 100 by 10]
n RENUM 100 TO 200[renumber from 100 to 200 by 10)

No attempt must be made to use RENUM to renumber program lines out of sequence
le to move lines about the program RENUM should not be used in a program

12/84

nClvidl ©\

comment

FiCIMUIVI

warning

47

REPeat
END REPeat

repetition REPeat allows general repeat loops to be constructed REPeat should be used with
EXIT for maximum effect REPeat can be used in both long and short forms

short The REPEAT keyword and loop identifer are followed on the same logical line by a colon
and a sequence of SuperBASIC statements EXIT will resume normal processing at the
next logical line

syntax REPeat identifier : statements
example REPeat wait : IF INKEYS <> "" THEN EXIT wait

long The REPEAT keyword and the loop identifier are the only statements on the logical line
Subsequent lines contain a series of SuperBASIC statements terminated by an END
REPeat statement.

The statements between the REPeat and the END REPeat are repeatedly processed
by SuperBASIC

syntax REPeat identifier
statements
END REPeat identifier
exanmpl e 10 LET number = RNDC1 TO 50)
11 REPeat guess
12 I NPUT "What is your guess''", guess
13 | F guess = number THEN
14 PRI NT "You have guessed correctly"
15 EXIT guess
16 ELSE
17 PRI NT "You have guessed incorrectly"”
18 END I F

19 END REPeat guess

comment Normally at least one statement in a REPeat loop will be an EXIT statement

RESPR

Qdos RESPR is a function which will reserve some of the resident procedure space (For
example to expand the SuperBASIC procedure list)

syntax space = numeric__expression
RESPR (space)
example. PRINT RESPR(1024)

[will print the base address of a 1024 byte block]

12/84

RETurn is used to force a function or procedure to terminate and resume processing nC I1Uill
at the statement after the procedure or function call When used within a function definiton functions and

theRETurn statement ts used to return the function's value procedures
syntax RETurn [expression]
example i 100 PRINT ack (3,3)

110 DEFine FuNction ack(m,n)

120 IF (T=0 THEN RETurn n+l

130 IF n=0 THEN RETurn ack (m-1,1)
140 RETurn ack(m-1,ack(m,n-1))
150 END DEFine

i 10 LET warmng_flag = 1
11 LET error_number = RNDCO TO 10)
12 warning error_number
13 DEFine PROCedure warmng(n)

14 IF warning_fLag THEN

15 PRINT "WARNING:";

16 SELect ON n

17 ONn =1

18 PRINT "Microdrive full"
19 ONn =2

20 PRI NT "Data space full"
21 ON n = REMAI NDER

22 PRI'NT "Programerror"
23 END SELect

24 ELSE

25 RETur n

26 END | F

27 END DEFi ne

It is not compulsory to have a RETurn in a procedure If processing reaches the END comment
DEFine of a procedure then the procedure will return automatically

RETurn by itself is used to return from a GOSUB

RND

RND generates a random number Up to two parameters may be specified for RND maths functions
If no parameters are specified then RND returns a pseudo random floating point number
in the exclusive range 0 to 1 If a single parameter is specified then RND returns an
integer in the inclusive range O to the specified parameter If two parameters are specified
then RND returns an integer in the inclusive range specified by the two parameters

syntax RND ([numeric__expression] [TO numeric___expression])
example i PRINT RND (floating point number between
0 and 1]
n PRINT RNDC10 TO 20) [integer between 10 and 20]
m PRINT RNDC1 TO 6) (integer between 1 and 6)
iv. PRINT RNDC10) (integer between 0 and 10)

12/84

49

RUN

program RUN allows a SuperBASIC program to be started If a line number is specified in the
RUN command then the program will be started at that point, otherwise the program
will start at the lowest line number

syntax RUN [numeric_expression]
example i RUN [run from start]
i RUN 10 [run from line 10!

tn RUN 2*20 [run from line 40]

comment Although RUN can be used within a program its hormal use is to start program execution
by typing it in as a direct command

SAVE

devices
Microdrives SAVE will save a SuperBASIC program onto any QL device

syntax line = numenc_expression TO numenc_expression
numeric__expression TO
TO numeric__expression
numeric__expression
1

SAVE device *[line]*

where 1 will save from the specified line to the specified line
2 will save from the specified line to the end
3 wtll save from the start to the specified line
4 will save the specified line
5 wil save the whole program

o DWN R

example i SAVE mdv1l_program, 20 TO 70
[save lines 20 to 70 on mdvl___program]

ii SAVE mdv2_test_program, 10,20,40
[save lines 1020,40 on mdvl___test_ program]

in SAVE net3
[save the entire program on the network]

IV SAVE serl
[save the entire program on serial channel 1]

50 12/84

SBYTES

devices
SBYTES allows areas of the QL memory to be saved on a QL device Microdrives
syntax start—address = numeric__expression
length = numeric__expression

SBYTES device, starL_address, length

example i SBYTES mdvl_screen_data, 131072,32768
(save memory 50000 length 10000 bytes on mdvl__test_ program]
ii SBYTES mdvl_test_program, 50000,10000
[save memory 50000 length 1000 bytes on mdvl___test_programj
in SBYTES neto_3, 32768,32678
{save memory 32768 length 32768 bytes on the network]
iv. SSYTES serl, 0,32768
[save memory 0 length 32768 bytes on serial channel 1]

SCALE

SCALE allows the scale factor used by the graphics procedures to be altered A scale graphics
of 'x' implies that a vertical line of length x' will fill the vertical axis of the window in which

the figure is drawn A scale of 100 is the default SCALE also allows the origin of the

coordinate system to be specified This effectively allows the window being used for the

graphics to be moved around a much larger graphics space

syntax X = numeric__expression
y = numeric__expression

origin = X,y
scale = numeric__expression

SCALE [channel,] scale, origin

example i SCALE 0.5,0.1,0.1 [setscale to 05 with the origin at 01,01]
n SCALE 10,0,0 [set scale to 10 with the origin at 0,0j
in CALE 100,50,50 [set scale to 100 with the origin at 50,50]

12/84

51

SCROLL

Windows SCROLL scrolls the window attached to the specified or default channel up or down
by the given number of pixels Paper is scrolled in at the top or the bottom to fill the
clear space

An optional third parameter can be specified to obtain a part screen scroll

syntax part = numeric__expression
distance = numeric__expression

where part = 0 - whole screen (default is no parameter)
part = 1 top excluding the cursor line
part = 2 - bottom excluding the cursor line

SCROLL [channel,] distance [, part]

If the distance is positive then the contents of the screen will be shifted

down
example i SCROLL 10 {scroll down 10 pixels]
n SCROLL -70 (scroll up 70 pixels]
in SCROLL-10, 2 [scroll the lower part of the window up 10

pixels]

SDATE

clock The SDATE command allows the QLs clock to be reset

syntax year = numeric__expression
month = numeric__expression
day = numeric__express/on
hours = numeric__expression

minutes = numeric—expression
seconds - numeric__express/on

SDATE year, month, day, hours, minutes, seconds

example i SOATE 1984,4,2,0,0,0
I SDATE 1984,1,12,9,30,0
in SDATE 1984,3,21,0,0,0

SELect allows various courses of action to be taken depending on the value of a variable
define select_vanable = numeric__variable
selecthitem = \ expression

| express/on TO expression
select_list = \ select_item *[, se/ecL__item]*

Allows multiple actions to be selected depending on the value of a select__vanable
The select variable is the last item on the logical line A series of SuperBASIC statements
follows which is terminated by the next ON statement or by the END SELect statement
If the select item is an expression then a check is made within approximately 1 part
in 10 ', otherwise for expression TO expression the range is tested exactly and is
inclusive The ON REMAINDER statement allows a, ‘catch-all' which will respond if no
other select conditions are satisfied

syntax SELect ON selecl*vartable
*[[ON select_vanable] = setecL-list
statements] *
[ON select_vanable] = REMAINDER
statements
END SELect

example 100 LET error_number = RNDC1 TO 10)
110 SELect ON error_number
120 ON error®*number =1

130 PRINT "Divide by zero"

140 LET error_number =0

150 ON error_number = 2

160 PRINT "FiLe not found"

170 LET error_number =0

180 ON error_number =3 TO 5

190 PRINT "Microdrive file not found"
200 LET error_number = 0

210 ON error_number = REMAINDER

220 PRINT "Unknown error"

230 END SELect

If the select variable ;s used in the body of the SELect statement then
tt must match the select variable given in the select header

The short form of the SELect statement allows simple single line selections to be made
A sequence of SuperBASIC statements follows on the same logical line as the SELect
statement If the condition defined in the select statement is satisfied then the sequence
of SuperBASIC statements is processed

syntax SELect ON select_vanable = select_list. statement *[: statement] *

exanpl e [SELect ON test data =1 TO 10 :
PRINT "Answer wi thin range"
n SELect ON answer = 0.00001 TO 0.00005 :
PRI'NT "Accuracy OK"
in SELect ONa=1TO10 : PRINT a " "in range"

The short form of the SELect statement allows ranges to be tested more easily than
with an IF statement Compare example n above with the corresponding IF statement

12/84

SELect
END SELect

conditions

long

short

comment

53

SEXEC

QdOS Wiil save an area of memory in a form which is suitable for loading and executing with
the EXEC command.

The data saved should constitute a machine code program.

syntax: start__address'= numeric__expression [start of area]
length = numeric__expression [length of area]
data__space = numeric__expression (length of data area which will
be required by the program]

SEXEC device, start_address, length, data_space
example SEXEC mdvl_program, 262144,3000,500
Comment The Qdos system documentation should be read before attempting to use this command

SIN

maths functions SIN will compute the sine of the specified parameter.

syntax angle:= numeric_expression [range -10000 .10000 in radiansj
SIN(angte)
example i. PRINT SIN(3)

li. PRINT SINC3.141592654/2)

12/84

SORT

will compute the square root of the specified argument The argument must be greater maths functions

than or equal to zero

syntax: SORT (rtumer/c_expressf/on) (range >= O]
example- t PRINT SQRK3) (print square root of 3]
i. LET C = SQRT(a*2 + b”2) (let ¢ become equal to the

square root of "2 + b"2]

STOP

STOP will terminate execution of a program and will return SuperBASIC to the command BASIC
interpreter

syntax: STOP

example i. STOP
li. IF n = 100 THEN STOP

You may CONTINUE after STOP.
The last executable line of a program will act as an automatic stop. comment

STRIP

windows

comment

TAN

maths functions

STRIP will set the current strip colour in the window attached to the specified or default
channel The strip colour is the background colour which is used when OVER 1 is
selected Setting PAPER will automatically set the strip colour to the new PAPER colour

syntax STRIP [channel,] colour

example i STRIP 7

(set a white strip)
n STRIP 0,4,2

[set a bfack and green stipple strip}
The effect of STRIP is rather like using a highlighting pen

TAN will compute the tangent of the specified argument The argument must be in the

range -30000 to 30000 and must be specified in radians

syntax TAN (numeric—expression) [range -30000 30000)

example i TAN(3)

(print tan 3)
n TANC3.U1592654/2) [print tan 7T/2]

TURN
TURNTO

TURN allows the heading of the turtle' to be turned through a specified angle while turtle graphics
TURNTO allows the turtle to be turned to a specific heading

The turtle is turned in the window attached to the specified or default channel

The angle is specified in degrees A positive number of degrees will turn the turtle anti-
clockwise and a negative number will turn it clockwise

Initially the turtle is point at 0° that is to the right hand side of the window
syntax angle = numeric__expression fangle in degrees}

TURN [channel,] angle
TURNTO [channel,] angle

example i TURN 90 [turn through 90°]
i TURNTO O (turn to heading 0°)

UNDER

Turns underline either on or off for subsequent output lines Underlining is in the current windows
INK colour in the window attached to the specified or default channel

syntax switch = numeric__expression [range 0 1)
UNDER [channel,] switch

example i UNDER 1 [underlining on]
n UNDER O (underlining off]

12/84

57

WIDTH

devices WIDTH allows the default width for non-console based devices to be specified, for

example printers
line__width = numeric___expression

syntax
WIDTH [channel,] Ime_width

example i WIDTH 80 (set the device width to 80]
i WIDTH #6, 72 [set the width of the device attached to

channel 6 to 72]

WINDOW

windows Allows the user to change the position and size of the window attached to the specified

or default channel Any borders are removed when the window is redefined
Coordinates are specified using the pixel system relative to the screen origin

syntax width = numeric—expression
depth = numeric—expression
X - numenc_expressiQn
Yy = numeric__expression
WINDOW [channel,] width, depth, X, y

example WINDOW 30, 40, 10, 10 (window 30x40 pixels at 1010]

12/84

A

ABS
Absolute values

ACOT
ADATE

ARC
cotangent
tangent

,.A?rctangent
Arguments
Arrays
DIM
DIMN

£f.9nment

ATAN

B

BAUD
Baudrates
BEEP
BEEPING
BLOCK
BORDER

[->

N

CALL

Channel
CLOSE

Character
CODE
repetition
size

CHR$

CIRCLE

CIRCLE_R
CLEAR

BASIC
screen

window
Clock

ADATE
DATE
DATES
DAY$

SDATE
CLOSE

Closing
channels
LS

QODE
Colour
INK
MODE
PAPER
RECOL
recolour
Comments
Communications

baud rates
networks

12/84

N

NN

14 15

17
17

oo dp

27
36

41
46

47

38

Conditions
P
SELect
CONTINUE

PDPY
COPY

COos

CQSj|ne
coT

cotangent
CSI2E

CURSOR

D

DATA

structures

£E£IS
DEFme
DAYS
DEFme
FuNction
PROCedure
DEG
Degrees
Delay
DELETE
files
lines
Devices
CLOSE
directory
LBYTES
LOAD

an run
LRUN

MERGE
merge and run
MRUN
NET
network station
OPEN
OPEN_JN
open for input
OPEN_NEW
OFE,en neW
UN
SAVE
SBYTES
DIM
Dimension arrays
DIMN
DIR
Directory
Display directory
DIV
DLINE

Documentation
Dots

£

EDIT
ELLIPSE
ELLIPSE_R

15,

2fi

END
DEFINE
FOR
IF
REPeat
SELect
EOF
Equals
Errors
CONTINUE
RETRY
EXEC
EXEC_W
EXIT
with FOR
with REPeat
EXP
Exponentiation

directo

LEVISS
LOAD
load and run

R
MERGE
M RUQNandrUn

OPEN

open for input
OPEN_IN
open new
OPEN NEW
PRINT

RUN

pictVE
FILLS
FLASH

FOR
with EXIT
with NEXT

FuNction
DEFine

RETurn

Q

GOSuUB

GOTO

Graphics
ARC
ARC_R
CIRCLE
CIRCLE_R
ELLIPSE
ELLIPSE_R
FILL

15

50

16
24
26

48
53
21
32

10
10
21

21
22
24
48

22

12

19

3
33

37

40
40

40
45

23
23
24

24
24

15
15

49

25

wN g gdh N

N

fill shape
LINE
LINE_R
POINT
POINT_R
SCALE
Turtle
FILL
MOVE
TURN
TURNTO
SCALE
PENDOWN
PENUP

LJ

Highlighting

/o
INKEY$

keyboard input
KEYROW

pP—o0
Sl

INKEYS
IMPy T

N%VE

integer d,v,de
J
Jumpy

K

KEYRISW'
L

LBYTES
LEN

Length of Stmgs
LET

LINE
delete

editor
numbering
renumbering
RENUM
LINE_R

LIST

LN

LOAD

load and run

LRUN

Local variables
in functions
in procedures

QQ

23

32
44
44
51

23
37
57
57
51
43
43

56

28
30
30

%%

28

18

26

-30

39

31
2
Jl
Xo

20
20

47
47
32

34
33
35
35
34
15
16

Logarithm
LOG10

Loop epilogue
Loop repetition

FOR
NFEXT

B&&8:

Machine code
CALL
SEXEC
saving
EXEC
EXEC_W
loading
respr
Maths functions
ABS
absolute value
ACOT
arc cotangent
ATAN
arc tangent
common logarithm
COs
cosine
coTt
EXP
exponentiation
INT
integer part
LOG
LN
natural logarithm
RAD
radians conversion
SIN
Sine
SQR
square root
TAN
tangent
Merge and run
Microdnves
COPY
copying
DELETE
deleting files
FORMAT
formatting cartridges
LOAD
loading SuperBASIC programs
SAVE
saving SuperBASIC programs
MOD
MODE
modulus
MOVE
MRUN
Multitasking
PAUSE
SEXEC

12/84

34
34
24

24

39
Tt

10
10
17
17
25
25
33
33

50
36
36
36
37
37

42
54

N

NET
Netwofks

NEW

NEXT
withFOR

WwWith REPSat

Restarting SuperBASIC

ON GOSUB
ON GOTO
OPEN
channel
serial port
window
OPEN_IN
open existing file
OPEN_NEW
open new file
Operators
INSTR
MOD
OVER
overprinting

Q

PAN
PAPER
Parameters
PAUSE
PEEK
PEEK_L
PEEK W
PENDOWN
PENUP
PI
Plotting points
POINT
POINT R
POKE
POKE_L
POKE_W
PRINT
OVER
UNDER
Printout
Procedures
DEFine
LOCal
RETurn
Programs
CONTINUE
RETRY
RUN
SAVE

p

RAD

Random numbers
RANDOMISE
READ

RECOL

Keywords Index

15

15

38
38
38

39
24

a8

38

39
39
40
40
40
40
40
40
40
40

29
36
40
40

40
40

42
42
42
42
43
43
43
44
44
44
44
44
44
45
40
57
45

16
34
49

10
10

50

45
49
46
13
a7

Keywords Index

REM. L 47
REMark 47
RENUM A7
Renumber lines. 47
REPeat 48
EXIT. 22
NEXT 39
Repetition
FOR. 24
NEXT. 39

Reset clock 2,52
Resoluton. 36
RESPR. A8

RESTORE. 13
RETRY. 10
RETurn. 49
with FuNction . .1 5
with PROCedures. 16
RND. . .. 49
Routines 16

rRS-232-¢c. A
RUN.50

LRUN. 35
Joad and run. 35
S
SAVE ..
machine code.| 51
programs. 50
SBYTES 51
CpAi C c-i

TR o trie

ctersize
cr |
FLASH. ... 24
INK 27
MODE. 36
output 45
OVER 40
overprinting. 40
PAN. 41
PAPER. 41
PRINT. ... 45
RECOL 46
recolounng. 46
SCROLL. 52
STRIP. . . . 56
UNDER. 57
underlining. 57
WINDOW. B8
SCROLL. 52
SDATE. 52
SELect 53
Setting clock 52
Setting station number. L 38
Shapes
ARC. . .. 2
CIRCLE. 7
ELLIPSE. 7
FILL 23
LINE 34
SIN. 54
SINe. . .. 54

Size of characters . o 12
Sound
BEEP.. . Lo . . . Lo . 4
BEEPING. b

SORT. 55
Square root. . Lo L . 55
Starting programs. 3550
Station number 38
STOP. D55
Strings
CHRS$ 7
FILLS. -.23
INSTR. - ..29
LEN. L. .31

length. 31
stfRP.56
subroutines. L Lo L o 15,16

T

TAN. b6
Tangent.... . - b6
THEN.26
Time
clock adjust.. ,2
clock reset b2
date.1
PAUSE.

|
TURNTO. 5
T,\rt-G graphlcs

TUMO-: r-£

J

Unconditional jump. 26

UNDER. b7

Underlining. 57
V

Value absolutes. 1

\A/

Windows
AT 3
BLOCK. 5
BORDER. 6
CSIZE. 12
Character size. 12
cear,9
cursor control. 3,12
FILL. .. 23
FLASH. 24
INK . 27
MODE. 36
OVER. 40
overprinting. 40
PAN. L. ..M
PAPER. 41

print position
SCROLL
STRIP
UNDER
underlining
WINDOW

52
56
57
57
58

— g [— |

L

Con®epts

The Concept Reference Guide describes concepts relating to SuperBASIC and the QL
hardware It is best to think of the Concept Guide as a source of information If there
are any questions about SuperBASIC or the QL itself which arise out of using the
computer or other sections of the manual then the Concept Guide may have the answer
Concepts are listed in alphabetical order using the most likely term for that concept
If the subject cannot be found then consult the index which should be able to tell you
which page to turn to

Where an example is listed with line numbers, then it is a complete program and can
be entered and run Examples listed without numbers are usually simple commands
and it may not always be sensible to enter them into the computer in isolation. Examples
which demonstrate stippies will not work properly on a television set.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sine/air Research Limited)

array’s

Arrays must be DIMensioned before they are used When an array is dimensioned the
value of each of its elements is set to zero or a zero length string if it is a string array
An array dimension runs from zero up to the specified value There is no limit on the
number of dimensions which can be defined other than the total memory capacity of
the computer. An array of data is stored such that the last index defined cycles round
most rapidly

the array defined by example
DIM array(2,A)
will be stored as

0,0 low address

2,4 high address

The element referred to by array(a,b,c) is equivalent to the element referred to by
array(a)(b)(c).

Command Function
DIM dimension an array
DIMN find out about the dimensions of
an array

12/84

BASIC

comment

SuperBASIC includes most of the functions, procedures and constructs found in other
dialects of BASIC Many of these functions are superfluous in SuperBASIC but are
included for compatibility reasons

GOTO use IF, REPeat, etc
GOSuB use DEFine PROCedure
ON GOTO use SELect

ON GOSuB use SELect

Some commands appear not to be present They can always be obtained by using
a more general function For example there are no LPRINT or LLIST statements in
SuperBASIC but output can be directed to a printer by opening the relevant channel
and using PRINT or LIST

LPRINT use PRINT*

LLIST use LIST*

VAL not required in SuperBASIC

STR$ not required in SuperBASIC ,
IN not applicable to 68008

ouT not applicable to 68008

Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be
able to convert the internal codified form of the'value of a string expression to or from
the internal codified form of the value of a numeric expression

These functions are redundant in SuperBASIC because of the provision of a unique
facility referred to as 'coercion' The VAL and STR$ functions are therefore not provided

If at any time the computer fails to respond or you wish to stop a SuperBASIC program DiCOR
or command then

hold down
CTRL
and then press

L SPACE J

A program broken into in this way can be restarted by using the CONTINUE command

CDcinnvlio

A channel is a means by which data can be output to or input from a QL device Before

a channel can be used it must first be activated (or opened) with the OPEN command
Certain channels should always be kept open these are the default channels and allow
simple communication with the QL via the keyboard and screen. When a channel is
no longer in use it can be deactivated (closed) with the CLOSE command

A channel is identified by a channel number A channel nhumber is a numeric expression
preceded by a # When the channel is opened a device is linked to a channel number
and the channel is initialised Thereafter the channel is identified only by its channel
number For example

OPEN #5,SER1

Will link serial port 1 to the channel number 5 When a channel is closed only the channel
number need be specified For example

CLOSE ffS

Opening a channel requires that the device driver for that channel be activated Usually
there is more than one way in which the device driver can be activacted for example
the network requires a station number This extra information is appended to the device
name and passed to the OPEN command as a parameter, see concept device and
peripheral expansion

Data can be output to a channel by PRINTmg to that channel, this is the same
mechanism by which output appears on the QL screen PRINT without a parameter
outputs to the default channel # 1 For example

10 OPEN #5, mdvl test fi te
20 PRINT #5, "this text isinfile test_fi Le"
30 CLOSE #5

will output the text this text is in file tesLJile® to the file test_file tt is important to close
the file after all the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT Data can be input
from a channel a character at a time using INKEY$

A channel can be opened as a console channel, output is directed to a specified window
on the QL screen and input is taken from the QL keyboard When a console channel
is opened the size and shape of the initial window is specified If more than one console
channel is active then it is possible tor more than one channel to be requesting input
at the same time. In this case, the required channel can be selected by pressing CTRL
C to cycle round the waiting channels The cursor in the window of the selected channel
will flash.

The QL has three default channels which are opened automatically Each of these
channels is linked to a window on the QL screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

Monitor Television
Command Function

OPEN open a channel for /O

CLOSE close a previously opened channel
PRINT output to a channel

INPUT input from a channel

INKEY$ input a character from a channel

The cursor controls are not built in to the operating system, however, if these functions
are to be provided by applications software, they should use the keys specified, also
the specified keys should not normally be used for any other purpose

12/84

Decimal

O WOy NMWNEO

N
a > wWN P

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
M
42
43
a4
45
46
47

Hex

00
01
02
03
04
05
06
07
08
09
OA
OB
ocC
00
OE
OF

10
11
12
13
14
15
16
17
18
19
1A
1B
1C
10
1E
1F

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

Keying

CTRL £
CTRL A
CTRL B
CTRL C
CTRL D
CTRL E
CTRL F
CTRL G
CTRL H
TAB (CTRL)
ENTER (CTRL J)
CTRL K
CTRL L
CTRL M
CTRL N
CTRL ©

CTRL P
CTRL O
CTRL R
CTRL S

CTRL T
CTRL U
CTRL V
CTRL W
CTRL X
CTRL Y

CTRL Zz

ESC (CTRL SHIFT |)

CTRL SHIFT \
CTRL SHIFT]
CTRL SHIFT £

CTRL SHIFT ESC

Space

SHIFT 1
SHIFT '
SHIFT 3
SHIFT 4
SHIFT 5
SHIFT 7

SHIFT 9
SHIFT 0
SHIFT 8
SHIFT =

Display/Function

NULL

change input channel (see note)

Next field
New line/Command entry

Enter

Abort current level of command

Space

character set

ullQ KCys

Decimal

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

9%
97
98
9
100
101
102
103
104
105
106
107
108
109
110
111

Hex

30
31
32
33

36
37
38
39
3A
3B
3C
3D
3E
3F

40

41

42
43
44
45
46
47
48

49
4A
46

4C
4D
4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
5F

61
62
63
64
65
66

67
68
69
6A
68

6C
6D
6E
6F

Keying

© O ~NOOUI>WNRO

4]
L
M
—

SHIFT

SHIFT
SHIFT

-

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT

CZZIrX«—~—ITOmTMmMUoUOWm>N

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
SHIFT U
SHIFT V
SHIFT W
SHIFT X
SHIFT Y
SHIFT Z
[

\

|
SHIFT 6
SHIFT

"W xuOoO T

CZZIrX«“~"ITO@TMTmMUOwD>tth

Display/Function

v ©®NOUIA®WNRO

-~

OZIrACTIOTMUOOW>E

> T N<XXS<cHO DO T

SO ToaOocoth

0 s 3~ x—

12/84

Decimal

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

Hex

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

80
81
82
83
84
85
86
87
88
89
8A
68

8C
BD
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
OF

AO
Al
A2
A3
Al
AS
A6
A7
AS
A9

A6
AC
AD
AE
AF

Keying

N<XxXxs<cHwnw=momom

SHIFT |
SHIFT \
SHIFT |
SHIFT £
SHIFT ESC

CTRL ESC
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL '
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL ,
CTRL -
CTRL

CTRL /

[N

N bW

| © O ©

CTRL 0
CTRL 1
CTRL 2
CTRL 3
CTRL 4
CTRL 5
CTRL 6
CTRL 7
CTRL 8
CTRL 9
CTRL SHIFT ,
CTRL ,
CTRL SHIFT ,
CTRL =
CTRL SHIFT .
CTRL SHIFT /

CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT
CTRL SHIFT |
CTRL SHIFT J
CTRL SHIFT K
CTRL SHIFT L
CTRL SHIFT M
CTRL SHIFT N
CTRL SHIFT 0

I OTMMOO®m>N

Display/Function

—‘N\<><§<;:"'m*£-o

3 —cCc OO0 D9 oo)

Q
0]

® QP

Q@z>CcO0ocom>»>>

alpha
delta
Iheta
lambda

Decimal

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

192
193
194
195
19
197
198
199
200
201
202
203
204
205
206
207

208
209
210

211
212
213
214
215
216
217
218
219
220
221

222

223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

Hex

80
Bl
82
B3
84
85
86
87
88
B9
BA
BB
BC
BD
BE
BF

CcO
C1
Cc2
C3
c4
C5
C6
c7
Cc8
C9
CA
CB
cC
CD
CE
CF

DO
D1
D2
03
D4
05
D6
07
D8
09
DA
DB
DC
DO
DE
DF

EO
El
E2
E3
E4
E5
E6
E7
E8
E9

EB
EC
ED
EE
EF

Keying

CTRL SHIFT P
CTRL SHIFT Q
CTRL SHIFT R
CTRL SHIFT S
CTRL SHIFT T
CTRL SHIFT U
CTRL SHIFT V
CTRL SHIFT W
CTRL SHIFT X
CTRL SHIFT Y
CTRL SHIFT Z.
CTRL (

CTRL \

CTRL |

CTRL SHIFT 6
CTRL SHIFT -

Left

ALT Left

CTRL Left

CTRL ALT Left

SHIFT Left

SHIFT ALT Left
SHIFT CTRL Left
SHIFT CTRL ALT Left
Right

ALT Right

CTRL Right

CTRL ALT flight
SHIFT Right

SHIFT ALT Right
SHIFT CTRL Right
SHIFT CTRL ALT Right

Up

ALT Up

CTRL Up

ALT CTRL UP
SHIFT Up

SHIFT ALT Up
SHIFT CTRL Up
SHIFT CTRL ALT Up
Down

ALT Down

CTRL Down

ALT CTRL Down
SHIFT Down

SHIFT ALT Down
SHIFT CTRL Down
SHIFT CTRL ALT Down

CAPSLOCK

ALT CAPSLOCK

CTRL CAPSLOCK

ALT CTRL CAPSLOCK
SHIFT CAPSLOCK
SHIFT ALT CAPSLOCK

SHIFT CTRL CAPSLOCK

Display/Function

mu
pi
phi

Cursor left one character
Cursor to start of line
Delete left one character
Delete line

Cursor left one word
Pan left

Delete left one word

Cursor right one character

Cursor to end of line

Delete character under Cursor
Delete to end of line

Cursor right one word

Pan right

Delete word under & right of cursor

Cursor up
Scroll up
Search backwards

Top of screen

Cursor down
Scroll down
Search forwards

Bottom of screen

Toggle CAPSLOCK function

SHIFT CTRL ALT CAPSLOCK

F1

CTRL H

SHIFT F1
CTRL SHIFT F1
F2

CTRL F2
SHIFT F2
CTRL SHIFT F2

12/94

Decimal Hex Keying Display/Function

240 FO F3

241 F1 CTRL F3

242 F2 SHIFT F3

243 F3 CTRL SHIFT F3

244 F4 F4

245 F5 CTRL F4

246 F6 SHIFT F4

247 F7 CTRL SHIFT F4

248 F8 F5

249 F9 CTRL F5

250 FA SHIFT F5

251 FB CTRL SHIFT F5

252 FC SHIFT space 'Special space

253 FD SHIFT TAB Back tab (CTRL ignored)
254 FE SHIFT ENTER Special newline (CTRL ignored)
255 FF See below

Codes up to 20 hex are either control characters or non-printing characters Alternative
keyings are shown in brackets after the main keying

Note that CTRL-C is trapped by Qdos and cannot be detected without changes to the
system variables

Note that codes CO-DF are cursor control commands

The ALT key depressed with any key combination other than cursor keys or CAPSLOCK
generates the code FF, followed by a byte indicating what the keycode would have been
if ALT had not been depressed

Note that CAPSLOCK and CTRL-F5 are trapped by Qdos and cannot be detected without
special software

12/84

10

clock

comment

The QL contains a real time clock which runs when the computer is switched on

The format used for the date and time is standard ISO format

1983JAN0112:09:10

Individual year month, day and time can all be obtained by assigning the string returned
by DATE to a string variable and slicing it The clock will run from 1961 JAN 01 00 00 00

For a description of the format see BS5249 PART 1 1976 and as modified in Appendix
D21 Table 5 Serial 5 and Appendix E 2 Table 6 Serials 1 and 2

Command

SDATE
ADATE
DATE
DATES
DAYS

Function

set the clock

adjust the clock

return the date as a number
return the date as a string
return day of the week

12/84

If necessary SuperBASIC will convert the type of unsuitable data to a type which will
allow the specified operation to proceed

The operators used determine the conversion required For example if an operation
requires a string parameter and a numeric parameter is supplied then SuperBAStC will
first convert the parameter to type string It is not always possible to convert data to the
required form and if the data cannot be converted an error is reported

The type of a function or procedure parameter can also be converted to the correct
type For example the SuperBASIC LOAD command requires a parameter of type name
but can accept a parameter of type string and which will be converted to the correct
type by the procedure itself Coercion of this form is always dependent on the way the
function or procedure was implemented

There is a a natural ordering of data types on the QL see figure String is the most
general type since it can represent names, floating point and integer numbers Floating
point is not as general as string but it is more general than integer since floating point
data can represent integer data (almost exactly) The figure below shows the ordering
diagramatically Data can always be converted moving up the diagram but it is not always
possible moving down

A
ot always stnng
possible
name
floating point
always possable
nteger
¥

a=b+c (no conversion is necessary before performing the
addition Conversion is not necessary before assigning
the result to a)

a% =b+c (no conversion is necessary before performing the
addition but the result is converted to integer before
assigning)

a$ = b$ + c$ (b$ and c$ are converted to floating point, if possible,
before being added together The result is converted to
string before assigning)

LOAD "mdvl_data" (the string "md\rt__clata" is converted to type name by

the load procedure before it is used)

Statements can be written m SuperBASIC which would generate errors in most other
computer languages In general it is possible to mix data types in a very flexible manner

| PRINT "1" + 2 + "3"
ii LET a$ =1 + 2 + a$ + "4"

12'84

coercion

example

comment

colour

Colours on the QL can be either a solid colour or a stipple - a mixture of two colours
to some predefined pattern' Colour specification on the QL can be up to three items,
a colour, a contrast colour and a stipple pattern.

Single colour. composite_colour

The single argument specifies the three parts of the colour specification The mam colour
is contained in the bottom three bits of the colour byte. The next three bits contain the
exclusive or (XOR) of the main colour and the contrast colour. The top two bits indicate
the stipple pattern.

stpple

contrast XOR maint {mix)

‘ —coou

bit 7 € 5 4 3 2 1 0

By specifying only the bottom three bits (i.e. the required colour) no stipple will be
requested and a single solid colour will be used for display.

<Joubl8 colour.= background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple
is assumed (stipple 3).

triple colour= background, contrast, stipple
Background and contrast colours and stipple are each defined separately.

colours The codes for colour selection depend on the screen mode in use:

code bit pattern composition colour

8 colour 4 colour

0 000 black black
1 001 blue blue black
2 010 red red red

3 011 red + blue magenta red

4 100 green green green
5 101 green + blue cyan green
6 110 green + red yellow white
7 111 green + red + blue white white

Colour Composition and Coctes

Stipples Stipples mix a backgound and a contrast colour in a fine stipple pattern. Stipples can
be used on the QL in the same manner as ordinary solid colours although stipptes may
not be reproduced correctly on an ordinary domestic television. There are four stipple

o S

Stipple 0 Stipple 1 Stipple 2 Stipple 3

Stipple 3 is the default.

example i. PAPER 255 . CLS
i, PAPER 2,4 : CLS
i PAPER 0,2,0 : CLS
warning Stipples may not reproduce correctly on a domestic television set which is fed via the
UHF socket.

communications

The QL has two serial ports {called SER1 and SER?2) for connecting it to equipment _ MAM A
which uses serial communications obeying EIA standard RS-232 C or a compatible nO"*IOfc*W
standard

The RS-232-C 'standard' was originally designed to enable computers to send and receive
data via telephone lines using a modem However, it is now frequently used to connect
computers directly with each other and to various items of peripheral equipment, eg
printers, plotters, etc

As the RS-232-C 'standard® manifests itself in many different forms on different pieces
of equipment, it can be an extremely difficult job, even for an expert, to connect together
for the first time two pieces of supposedly standard RS-232-C equipment This section
will attempt to cover most of the basic problems that you may encounter

The RS-232-C 'standard refers to two types of equipment

1 Data Terminal Equipment (DTE)
2 Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the DTE) and the modern (usually
the DCE) would both have the same type of connector

2| Wm0 (oupu) wE— | 2

3 | R RxD (npuy) I |

T - GND (ground) _ 7

DTE DCE

The diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE must
receive data on its pin 2 (which is still called transmit data) Likewise, the DTE receives
data on pin 3 whilst the DCE must transmit data on its pin 3 (which is still called receive
data’) Although this is confusing in itself, it can lead to far greater problems when there
is disagreement as to whether a certain device should be configured as DCE or DTE

Unfortunately, some people decide that their computers should be configured as DCE
devices whilst others configure equivalent computers as DTE devices This obviously
leads to difficulties in the configuration of the serial ports on each piece of equipment

SER1 on the QL is configured as DCE, while SER2 is configured as DTE Therefore
it should be possible to connect at least one of the serial ports to a given device simply
by using whichever port is wired the 'correct’ way The pin-out for the serial ports is given
below A cable for connecting the QL to a standard 25-way 'D' type connector is available
from Sinclair Research Limited

SER1 SER2
pin name function pin name function
1 GND signal ground 1 GND signal ground
2 TxD input 2 TxD output
3 RxD output 3 RxD input
4 DTR ready input 4 DTR ready output
5 CTS ready output 5 CTS ready input
6 - +12V 6 - +12V
TxD Transmit Data DTR Data Terminal Ready
RxD Receive Data CTS Clear To Send

12/84 13

14

Once the equipment has been connected to the 'correct® port, the baud rate, (the speed
of transmission of data) must be set so that the baud rates for both the QL and the
connected equipment are the same The QL can be set to operate at

75
300
600
1200
2400
4800
9600
19200 (transmit only) baud

The QL baud rate is set by the BAUD command and is set for both channels The baud
rates cannot be set independently

The parity to be used by the QL must also be set to match that expected by the peripheral
equipment Parity is usually used to detect simple transmission errors and may be set
to be even odd, mark, space or no parity IB all 8 bits of the byte are used for data

Stop bits mark the end of transmission of a byte or character. The QL will receive data
with one, one and a half, or two stop bits, and will always transmit data with at least
two stop bits Note that if the QL is set up to 9600 baud it will not receive data with
oniy one stop bit at least 1%2 stop bits are required

It may be necessary to connect the handshake lines between the QL and a piece of
equipment connected to it This allows the QL and its peripheral to monitor and control
their rate of communication They may need to do this if one of them cannot cope with
the speed at which data is being transmitted The QL uses two handshaking lines

CTS Clear to Send
DTR Data Terminal Ready

If the DTE cannot cope with the rate of transmission of data then it can negate the DTR
line which tells the DCE to stop sending data Obviously when the DTE has caught up
it tells the DCE, via the DTR line, to start transmitting again. In the same way, the DCE
can stop the DTE sending data by negating the CTS line If additional control signals
are required they can be wired up using the 12V supply available on both serial ports

Although transmission from the QL is often possible without any handshaking at all,
the QL will not receive correctly under any circumstances without the use of CTS
on SER1 and DTR on SER2.

Communications on the QL are lull duplex; that is both receive and transmit can operate
concurrently

The parity and handshaking are selected when the serial channel is opened

command function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept device for a full specification

12/84

Integers are whole numbers in the range -32768 to +32767 Variables are assumed
to be integer if the variable identifier is suffixed with a percent % There are no integer
constants in SuperBASIC so all constants are stored as floating point numbers

syntax- identified/a
example. i counter%
i size_liimt%
in thns_is_an_integer_van ablLe%
Floating point numbers are in the range +(10-*°to 10*®%) with 8 significant digits

Floatmg point is the default data type in SuperBASIC All constants are held in floating
point form and can be entered using exponent notation

syntax- identifier \ constant

example: i current_accumu Lation
n 76.2356
in 354E25

A string is a sequence of characters up to 32766 characters long Variables are assumed
to be type string if the variable name is suffixed by a $ String data is represented by
enclosing the required characters in either single or double quotation marks

syntax: identifiers \ "text"
example: i string_variables$
I "this is string data"
in "this is another string"

Type name has the same form as a standard SuperBASIC identifier and is used by the
system to name Microdrive files etc

syntax: identifier
example: i mdvl_data_fi Le
ii serle

12/84

data types
variables

integer

floating point

string

name

uUvVIV/UO

define

example

CON__ wXhaxXy_/c

16

A device is a piece of equipment on the QL to which data can be sent (input) and from
which data can be output

Since the system makes PO assumptions about the ultimate /O (input /output) device
which wtll be used, the 1/O device can be easily changed and the data diverted between
devices. For example, a program may have to output to a printer at some point during
its run if the printer is not available then the output can be diverted to a Microdrive
file and stored The file can then be printed at a later date /O on the QL can be thought
of as being written to and read from a logical file which is in a standard device-
independent form.

All device specific operations are performed by individual device drivers specially written
for each device on the QL The system can automatically find and include drivers for
peripheral devices which are fitted These should be written in the standard QL device
driver format, see the concept peripheral expansion

When a device is activated a channel is opened and linked to the device. To correctly
open a channel device basic information must sometimes be supplied This extra
information is appended to the device name.

The file name should conform to the rules for a SuperBASIC type name though it is
also possible to build up the file name (device name) as a SuperBASIC string expression

In summary the genera! form of a file name is:
identifier [information]

where the complete file name (including the extra information) conforms to the rules for
a SuperBASIC identifier.

Each logical device on the system requires its own particular 'extra information® although
default parameters will be assumed in each case where possible

device = name

where the form of the device name is outlined below

for console device

Select Console Device
Underscore

Window Width
Separator

Height

Separator - read as AT
Window X coordinate

Separator
Window Y coordinate
Separator
length of keyboard type
ahead bulfer
con_wXhaxXy__k

Console 1/O

[wXh] - window width, height

[AxXy] - window X,Y coordinate of upper left-hand corner

[K] - keyboard type ahead buffer length (bytes)

default: COn_448x180a32x16_128

example; OPEN #4, con_20x50a0x0_32

OPEN #8,con_20x50
OPEN #7,con_20x50alux10

12/8d

Screen Output SCR__u/XftaxXy

[WX/?] - window width, height
[AxXy] - window X.Y coordinate
default: scr__448x180a32x16
example: OPEN #4, scr_10x1ua20x50
OPEN #5, scr_10x10
Serial (RS-232-C) SERnphZ
n port number (1 or 2)
\p\ parity [h\ handshaking [z] protocol
e - even i - ignore r - raw data no EOF
o - odd n - handshake z - control Z is EOF
m - mark c - as z but converts
S - space ASCIl 10 (Qdos
newline character)
to ASCII 13
<CR>)
default: serlrh (8 bit no parity with handshake)
example: OPEN #3, seMe
OPEN #4, sere
COPY mdv1l_test fiLe TO serlc
Serial Network 1/0 NETd__S
[d] indicates direction s station number
i - input 0 - for broadcast
0 - output own station - for general listen
(input oniy)
default: no default
example: OPEN #7, neti_32
OPEN #4, neto_0O
COPY serl TO neto_21
Microdrive File Access MDVn____name

n Microdrive number
name Microdrive file name

default; no default

example: OPEN #9, mdvl_data_ fHe
OPEN #9, mdvl test_ program
COPY mdvl_test fife TO scr_

Keyword Function

OPEN initialise a device and activate it for
use

CLOSE deactivate a device

COPY copy data between devices

COPY_N copy data between devices, but do
not copy a file's header information

EOF test for end of file
WIDTH set width

12/84

direct

GUI if I'idl U SuperEASIC makes a distinction between a statement typed in preceded by a line number
and a statement typed in without a line number Without a line number the statement
is a direct command and is processed immediately by the SuperBASIC command
interpreter For example, RUN is typed in on the command line and is processed, the
effect being that the program starts to run. If a statement is typed in with a line number
then the syntax of the line is checked and any detectable syntax errors reported A correct
line is entered into the SuperBASIC program and stored These statements constitute
a SuperBASIC program and will only be executed when the program is started with
the RUN or GOTO command

Not all SuperBASIC statements make sense when entered as a direct command, for
example, END FOR, END DEFine, etc.

ernor

Errors are reported by SuperBASIC in a standard form MQIIUNI iy

At line line__number error__text

Where the line number is the number of the line where the error was detected and the
error text is listed below

(O Not complete
An operation has been prematurely terminated (or break has been pressed)

(2) Invalid job
An error return from Qdos relating to system calls controlling multitasking or 1/O

(3 Out of memory
Qdos and/or SuperBASIC has insufficient free memory

(4) Out of range
Usually results from attempts to write outside a window or an incorrect array

index

(5) Buffer full
An /O operation to fetch a buffer full of characters filled the buffer before a record
terminator was found

(6) Channel not open
Attempt to read, write or close a channel which has not been opened

Can also occur if an attempt to open a channel fails.

(7) Not found
File system, device, medium or file cannot be found

SuperBASIC cannot find an identifier. This can result from incorrectly nested
structures

(8) Already exists
The file system has found an already existing file with the same name as a new
file to be opened for writing

© In use
The file system has found that a file or device is already exclusively used

(200 End of file
End of file detected during input

(A1) Drive full
A device has been filled (usually Microdrive)

(12) Bad name
The file system has recognised the name but there is a syntax or parameter value
error.

In SuperBASIC it means a name has been used out of context For example, a
variable has been used as a procedure

(13) Xmit error
RS-232-C parity error.

(14) Format failed
Attempted format operation has failed, the medium is possibly faulty (usually a
Microdrive cartridge).

(15) Bad parameter
There is an error in the parameter list of a system or SuperBASIC procedure or
function call

An attempt was made to read data from a write only device,

(16) Bad or changed medium
The medium (usually a Microdrive cartridge) is possibly faulty

(17) Error in expression
An error was detected while evaluating an expression

(18) Overflow
Arithmetic overflow, division by zero, square root of a negative number; etc.

(19) Not Implemented

12/34

(20) Read only
There has been an attempt to write data to a shared file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared
This is a message which is for information only and is not reporting an error It
is reporting that the program has been stopped and subsequently changed forcing
SuperBASIC to reset its internal state to the outer program level and so losing any
procedure environment which may have been in effect.

error recovery After an error has occurred the program can be restarted at the next statement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program
can be restarted at the statement which triggered the error. Type

RETRY

SuperBASIC expressions can be string numeric, logical or a mixture, unsuitable data
types are automatically converted to a suitable form by the system wherever this is
possible

monop= |+
INOT

expresston:= \ [monop] expression operator expression
\ (expression)
atom

atom = | variable
constant
function {(expression *\, expression] *)}
| array_element

variable = [identifier
identifier %
identifier $

function = | identifier
| identifier %
identifier $

constant = digit * [digit] *
*(dtgtt\ * . * [digit] *
* [digit]* [.] * [digit]* E * [digit]*
The final value returned by the evaluation of the expression can be integer giving an
integer__expression, string giving a string__expression or floating point giving a
floating__expression Often floating point and integer expressions are equivalent and
the term numeric__expression is then used

Logical operators can be included in an expression If the specified operation is true
then a one is returned as the value of the operation If the operation is false then a zero
is returned Though logical operators can be used in any expression they are usually
used in the expression part of an IF statement

example: i test_data + 23.3 + 5
I "abcdefghi jk Imnopgrstuvwxyz"(2 TO 4)
in 32.1 * (cotour=1)
iv count = -Limit

12/84

expressions

define

21

22

file types

nHco All I/O on the QL is to or from a logical die. Various file types exist

data SuperBASIC programs, text files Created using PRINT, SAVE, accessed using INPUT,
INKEYS, LOAD etc

exec An executable transient program. Saved using SEXEC, loaded using EXEC, EXEC__W
efc.

code Raw memory data, screen images, etc Saved using SBYTES, loaded using LBYTES

12/84

SuperBASIC functions and procedures are defined with the DEFine FuNction and
DEFine PROCedure statements A function is activated (or called) by typing its name
at the appropriate point in a SuperBASIC expression The function must be included
in an expression because it is returning a value and the value must be used A procedure
is activated (or called) by typing its name as the first item tn a SuperBASIC statement

Data can be passed into a function or procedure by appending a list of actual parameters
after the function or procedure name This list is compared to a similar list appended
after the name of the function or procedure when it was defined This second list is
called the formal parameters of the function or procedure The formal parameters must
be SuperBASIC variables The actual parameters must be an array, an array slice or
a SuperBASIC expression of which a single variable or constant is the simplest form

Since the actual parameters are actual expressions, they must have an actual type
associated with them The formal parameters are merely used to indicate how the actual
parameters must be processed and so have no type associated with them The items
in each list of parameters are paired off in order when the function or procedure is called
and the formal parameters become equivalent to the actual parameters There are three
distinct ways of using parameters

if the actual parameter is a single variable and if data is assigned to the formal parameter
in the function or procedure then the data is also assigned to the corresponding actual
parameter

If the actual parameter is an expression then assigning data to the corresponding formal
parameter will have no effect outside the procedure Note that a variable can be turned
into an expression by enclosing it within brackets

If the actual parameter is a variable but has not previously been set then assigning data
to the corresponding formal parameter will set the variable specified as the actual
parameter

Variables can be defined to be local to a function or procedure with the LOCal statement
Local variables have no effect on similarly named variables outside the function or
procedure in which they are defined and so allow greater freedom in choosing sensible
variable names without the risk of corrupting external variables A local variable is available
to any inside function or procedure called from the procedure function in which it is
declared to be local unless the function or procedure called contains a further iocal
declaration of the same variable name

Functions and procedures in SuperBASIC can be used recursively That is a function
or procedure can call itself either directly or indirectly

Command Function
DEFme FuNction define a function
DEFine PROCedure define a procedure
RET leave a function or procedure
Htiurn (return data from a function)
define local data in a function or
procedure

12/84

functions and

QroCcGQUrGs
r

23

24

*%

graphics fill

It is important to realise that the QL screen has non square pixels and that changing
mode will change the shape of the pixels Thus if the graphics procedures were simply
pixel based they would draw different shapes in the two modes For example in one
mode we would have a circle while the same figure in the other mode would be an ellipse

The graphics procedures ensure that whatever screen mode is in use, consistent figures
are produced It is not possible to use a simple pixel count to indicate sizes of figures

so instead the graphics procedures use an arbitrary scale and coordinate system to
specify sizes and positions of figures

The graphics procedures use the graphics co-ordinate system ie draw relative to the
graphics origin which is in the bottom left hand corner of the specified or default window
Note that this is not the same as the pixel origin used to define the position of windows
and blocks etc The graphics origin allows a standard Cartesian coordinate system to
be used A graphics cursor is updated after each graphics operation subsequent
operations can either be relative to this cursor or can be absolute, IB relative to the
graphics origin

100

00) x

The Graphics Coord nale System

The scaling factor is such that the full distance in the vertical direction in the specified
or default window has length 100 by default and can be changed with the SCALE
command The scale in the x direction is equal to the scale in the y direction However
the length of line which can be drawn in the x direction is dependent on the shape
of the window increasing the scale factor increases the maximum size of the figure which
can be drawn before the window size is exceeded If the graphics output is switched
to a different size of window then the subsequent size of the output is adjusted to fit
the new window if a figure exceeds its output window then the figure is clipped

It is useful to consider the window to be a window onto a larger graphics space in which
the figures are drawn The SCALE command allows the graphics origin to be set so
allowing the window to be moved around the graphics space

The graphics procedures are output to the window attached to the specified or default
channel and the output is drawn in the INK colour for that channel

Command Function

CIRCLE draw an ellipse or a circle

LINE draw a line

ARC draw an arc of a circle absolute
POINT plot a point

CIRCLE_R draw an ellipse or a circle \
LINE_R draw a line / ati
ARC R draw an arc of a circle { relative
POINT R plot a point ;
SCALE set scale and move origin

FILL fill in a shape

CURSOR position text

Figures drawn with the graphics and turtle graphics procedures can be optionally Tilled'
with a specified stipple or colour If FILL is selected then the figure is filled as it is drawn

The FILL algorithm stores a list of points to plot rather than actually plotting them When
the figure closes there are two points on the same horizontal line These two points are

12/84

connected by a line in the current ink colour and the process repeats. Fill must always
be reselected before drawing a new figure to ensure that the buffer used to store the

list of points is reset.

The following diagram illustrates FILL:

{75.50)

FILL1:LINE 10,20 TO 75,50 TQ 50,80

There is an implementation restriction on FILL FILL must not be used for re-entrant
shapes (i.e a shape which is concave). Re-entrant shapes must be split into smaller
shapes which are not re-entrant and each sub-shape filled independently.

12/84

warning

25

26

Identifer

warning

A SuperBASIC identifier is a sequence of letters numbers and underscores

define- letter = a Z
AZ

number=|1]2|3 4|5 6 7 8 90|

identifier = letter *\\ letter \ number _ |]*
example. i a

n limit_1

in current_guess

iv counter

An identifier must begin with a letter followed by a sequence of letters, numbers and
underscores and can be up to 255 characters long Upper and lower case characters
are equivalent

Identifiers are used in the SuperBASIC system to identify variables, procedures functions
repetition loops etc

NO meaning can be attributed to an identifier other than its ability to ‘'identify’ constructs
to SuperBASIC SuperBASIC cannot infer the intended use of an identifier from the
identifier's name'

12/84

The joystick ports, marked CTL1 and CTL2, allow two joysticks to be attached to the QL J y

The joysticks are arranged to generate specific key depressions when moved in a specific
way and any program which uses a joystick must be able to adapt to these keys The
QL keyboard can be read directly using the KEYROW function

CTL1 CTL2
mode key key
up cursor up F4
down cursor down F2
left cursor left F1
right cursor right F3
fire space F5

The joystick ports can be used for adding other more general purpose control devices comment
to the QL

Joysticks for other computers using a 9-way D' connector require an adaptor to be used
with the QL Such an adaptor is available from Sinclair Research

12/84

keyword

SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword
Reference Guide Keywords have the same form as a SuperBASIC standard identifier
The case of the keyword is not significant. Keywords are echoed as a mixture of upper
and lower case letters and are always reproduced in full The upper case portion indicates
the minimum required to be typed in for SuperBASIC to recognise the keyword

The set of SuperBASIC keywords may be extended by adding procedures to the QL,
It is a good idea to define these with their names in upper case, procedure names defined
this way will always be reproduced by SuperBASIC in upper case, and this will indicate
their special function in the SuperBASIC system. Conversely, ordinary procedures should
be defined with their names in lower case

Existing keywords cannot be used as ordinary identifiers within a SuperBASIC program
SuperBASIC keywords are

warning

List of Keywords

ABS DEFine PROCedure LEN RANDOMISE
ACOS, ASIN END DERne LET RND
ACOT, ATAN DEG LIST RECOL,
ADATE DELETE LOAD REMark
ARC,ARC_R DIM LOCal RENUM
AT DIMN LN, LOG10 REPeat,
AUTO DIR LRUN END REPeat
BAUD DIV MERGE RESPR
BEEP DLINE MOD RETurn
BEEPING EDIT MODE RETRY
BLOCK ELLIPSE, MOVE RUN
BORDER ELLIPSE_R MRUN SAVE
CALL EOF NET SIN
CHR$ EXEC, EXEC_W NEW SCALE
CIRCLE EXIT NEXT SCROLL
CIRCLE_R EXP ON GO TO SDATE
CLEAR FILL ON GO suB SELect
CLOSE FILLS OPEN, OPEN_IN END SELect
CLS FLASH OPEN_NEW SEXEC
CODE FOR OVER SORT
CONTINUE END FOR PAN STOP
RETRY FORMAT PAPER STRIP
COPY, COPY_N GO SuB PAUSE TAN
CcOos GO TO PEEK, PEEK_W TO

CoT IF, THEN, ELSE PEEK_L TURN
CS/ZE END IF PENUP TURN TO
CURSOR INK PENDOWN UNDER
DATA, READ, INKEY$ PI VER$
RESTORE INPUT POINT, POINT_R WIDTH
DATES$, DATE INSTR POKE, POKE_W WINDOW
DAY$ INT POKE_L

DEFine FuNction, KEYROW PRINT

END DEFine LBYTES RAD

SuperBASIC has the standard trigonometrical and mathematical functions

math§
functions

Function Name

COoSs cosine

SIN sin

TAN tangent

ATAN arctangent

ACCT arcotangent

ACOS arcosine

ASIN arcsine

CcoT cotangent

EXP exponential

LN natural logarithm

LOGI10 common logarithm

INT integer

ABS absolute value

RAD convert to radians

DEG convert to degrees

PI return the value of n

RND generate a random number
RANDOMISE reseed the random number, generator

12/84

memory map

warning

The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyte
of memory, IB. from 00000 to FFFFF Hex. The use of addresses within this range are
defined by Sinclair Research to be as follows-

FFFFF
RESERVED gxpansion /O
Co000 o
RESERVED addon RAM
40000
RAM
manRAM
25000 96 Kbyles
RAM
screen RAM
20000 32 Koytes|
o QL O
18000
ROM |
plug in ROM
0C000 16 Kbytes
ROM
system ROM
00000 48 Kbyles

Physical Memory Map

The screen RAM is organised as a series of sixteen bit words starting at address Hex
20000 and progressing in the order of the raster scan, i.e from left to right with each
display line and then from the top to the bottom of the picture. The bits within each
word are organised so that a pixel to the left is always more significant than a pixel to
the right (i.e. the pixel pattern on the screen looks the same as the binary pattern). However,
the organisation of the colour information in the two screen modes is different.

fugh byte low byte
AD=0Q AO=1 mode

GGGGGGGG| RRRRRRRA | 512 moede (Migh res)

GFGFGFGF | RBRBRBRB | 256 mode (low res)

G—qgreen B—blue R-—red F—Hash

Setting the Flash bit toggles the flash state and freezes the backgound colour for the
flash to the value given by R, G, and B for that pixel. Flashing is always reset at the
beginning of each display line.

In high resolution mode, red and green specified together is interpreted by the hardware
as white.

Use of reserved areas in the memory map may cause incompatibility with future Sinclair

products. Spurious output to addresses defined to be peripheral I/O addresses can cause
unpredictable behaviour. It is recommended that these areas are NOT written to and
not used for any other purpose. Poking areas in use as Microdrive buffers can corrupt
Microdrive data and can result in a loss of information. Poking areas in use such as
system tables can cause the system to crash and can result in the loss of data and

programs,

All /O should be performed using either the relevant SuperBASIC commands or the
Qdos operating system traps.

Microd rives provide the main permanent storage on the QL Each Microdrive cartridge
has a capacity of at least 100 Kbytes Available free memory space is allocated by Qdos
as Microdrive buffers when necessary to improve performance

Each blank cartridge must be formatted before use and can hold up to 255 sectors
of 512 bytes per sector Qdos keeps a directory of files stored on the cartridge Each
Microdrive file is identified using a standard SuperBASIC file or device name

A cartridge can be write-protected by removing the small lug on the right hand side
On receiving new blank QL Microdrive cartridges format them a few times to condition
the tape

Physically each Microdrive cartridge contains a 200 inch loop of high quality video tape
which is moved at 28 inches per second The tape completes one circuit every 7/2

seconds
NEVER touch the tape with your fingers or insert anything into the cartridge
NEVER turn the computer on or off with cartridges in place
ALWAYS store cartridges in their sleeves when not in use
ALWAYS insert or remove cartridges from the Microdrive slowly and carefully
ALWAYS ensure the cartridge is firmly installed before starting the Microdrive
NEVER move the QL with cartridges installed - even if not in operation
NEVER touch the cartridge while the Microdrive is in operation
DO NOT repeatedly insert and remove the cartridge without running the Microdrive
If a tape loop appears at either of the two places shown in figure 1 then gently ease

it back into the cartridge Use a non-fibrous instrument for this, eg the side of a pen
or pencil. NEVER touch the tape with your fingers for this or any other reason

—— tape loop

\..
write protect lu
tape loop —— ' P 9

label

. F a2 Microdnve carnidge
labe} ————

CONTINUED

12/84

Microdrives

general care

tape loops

31

32

warning

Command Function

FORMAT prepare a new cartridge for use
DELETE delete a file from a cartridge
DIR lists the files on a cartridge

SAVE
SBYTES saves data from a cartridge

SEXEC

LOAD
i DVTPQ

tAtLO

MERGE

OPEN_IN

OPEN__NEW opens and closes files
OPEN

CLOSE

PRINT
INPUT SuperBASIC file /O
INKEY$

loads data from a cartridge

If you attempt to write to a cartridge which is write protected then the QL wii! repeatedly
attempt to write the data but will eventually give up and give a "bad medium" error.

12/84

A monitor may be connected to the QL via the RGB socket on the back of the computer
Connection is via an Sway DIN plug plus cable for colour monitors or a 3-way DIN
plug plus cable for monochrome The RGB socket connections are as in the following
table, and the column indicating wire colour refers to the colour coding used on the
Sway cable and connector available from Sinclair Research Limited Pin designation
is as shown in the diagram below

sleeve colour

pin function signal on QL RGB
colour lead

1 PAL composite PAL 4) orange

2 GND ground green

3 VIDEO composite monocrhome video (3) brown

4 CSYNC composite sync) yellow

5 VSYNC vertical sync 1) blue

6 GREEN green @ red

7 RED red @ white

8 BLUE blue @ purple

A monochrome monitor can be connected using a screened lead with a 3-way or as
8-way DIN plug at the QL end Only pins 2 (ground) and 3 (composite video) need
to be connected via the cable to the monitor The connection at the monitor end will
vary according to the monitor but is usually a phono plug The monitor must have a
75 ohm 1V pk pk composite video non-inverting input (which is the industry standard)
Both 3-way DIN plugs and phono plugs are commonly available from audio shops

T e . ——— —— -
POWER 7 (red) RGB
I-6 {green} T
3 {composite -1 {composite PAL)
mcnochron:le) 4 {composite synch)
@ 1 [blue}
5 {verlical synch}
2 (ground)
—————-— -

Diagram of Monitor Connector as Viewed from rear of QL Showing pin numbers and functons

An RGB (colour) monitor can be connected using a lead with an 8-way DIN Plug at
the QL end The connection at the monitor end will vary according to the monitor (there
is no industry standard) and will often be supplied with it A suitable cable with an 8 way
DIN plug at one end and bare wires at the other end is available from Sinclair Research
Limited

A composite PAL monitor, or the composite video input on some VCR's, may work with
the QL Only pins 2 (ground) and 1 (composite PAL) need to be connected via a cable
to the monitor or VCR

1284

monitor

33

network

comment

The QL can be connected with up to 63 other QLs If there are more than two computers
on the network then each computer (or station) must be assigned a unique station number
On the QL this can be done using the NET command

Information is transmitted over the network in blocks For normal communication between
two stations the receiving station must acknowledge correct reception of the block If
a block is corrupted then the receiving station will request retransmission

Using a network station number of zero has a special meaning Sending to neto—0
is called broadcasting any message sent in this way can be read by any station which
is listening to neti__ 0 Note that the normal verification that a message has been received
is disabled for broadcasts, so that broadcasting messages of length more than one block

(255 bytes) is unreliable

A network station which listens to its own station humber (eg NET3 LOAD neti—3) can
receive data from any station sending to it

Command Function

NET assign a network station number >

OPEN open a network channel
CLOSE close a network channel

PRINT
INPUT network 1/O
I N KEYS

LOAD

SAVE

LBYTES

SBYTES

EXEC load and save via network
SEXEC

LRUN

MRUN

MERGE

If you are planning to connect several QLs on the network, or use a long piece of cable,
then you should wire it up with low-capacitance twin core cable, such as 3 amp light-flex
or bell-wire Take care to connect the centres of each jack to each other, and the outsides
to each other You will find that although the software can handle 63 stations, the hardware
will not drive more than about 100m of cable, depending on what type it is

If you are only connecting a few machines with the leads supplied, you need not worry

Operator

+ 1l

OR
AND
XOR
NOT
MOD
DIV

INSTR

»

+

Type

floating string
numeric string
numeric
numeric
numeric
numeric
numeric string
numeric string
numeric string
numeric string
numeric string
string

bitwise
bitwise
bitwise
bitwise

logical

logical

logical

logical

integer
integer

string

floating
floating
floating

Function

logical type 2 comparison

almost equal** (type 3 comparison)
addition

subtraction

division

multiplication

less than (type 2 comparison)
greater than (type 2 comparison)
less than or equal to (type 2 comparison)
greater than or equal (type 2 comparison)
not equal to (type 3 comparison)
concatenation

AND

OR

XOR

NOT

OR

AND

XOR

NOT

modulus

divide

type 1 string comparison

raise to the power

unary minus

unary plus

"almost equal - equal to 1 part in 1(y

If the specified logical operation is true then a value not equal to zero will be returned.
If the operation is false then a value of zero will be returned

The precedence of SuperBASIC operators is defined in the table above. If the order
of evaluation in an expression cannot be deduced from this table then the relevant
operations are performed from left to right. The inbuilt precedence of SuperBASIC
operators can be overriden by enclosing the relevant sections of the expression in
parentheses

12 84

highest unary plus and minus
string concatenation

lowest

INSTR
exponentiation

multiply, divide, modulus and integer divide

add and subtract
logical comparison

NOT (bitwise or logical)
AND (bitwise or logical)
OR and XOR (bitwise or logical)

operators

precedence

35

36

peripheral

PXDdnSIOnN
WVPUIi i«7iwi

T
connections available at the connector are

J

GND a 1 b
D3 a 2 b
D4 a 3 b
0s a 4 b
Dé a § b
b7 a 6 b

A9 a 7 b
A8 a 8 b
A7 a 9 b
Al6 a 10 b
CLKCPU a 1" b
RED a 12 b
Al4 a 13 b
A3 a 14 b
Al2 a 15 b
ANl a 16 b
AlD a 7 b
A9 a 8 b
A a 19 b
A7 a 20 b
AG a 21 b
AS a 2 b
Ad a 23 b
A3 a 24 b
DBGL a 25 b
SP2 a 28 b
DSMCL a 27 b
SH a 28 b
SP0 a ¥ b
VP2 a 30 b
VM12 a M b
ViIN a 32 b
A |

GND

D2

D1

Do

ASL
DsL
ROWL
DTACKL
BGL
BRL

A5
RESETCPUL
CSYNCL
E
VEYNCH
VPAL
GHEEN
BLUE
FC2

Fo

FCO

AD
ROMOEH
Al

AZ

SP3
IPLOL
BERRL
IPLIL
EXTINTL
VIN

VIN

The connector on the QL is a 64-way (male) DIN-41612 indirect edge connector

An U appdended to a signal name indicates that the signal is active low,

Signal Function

AO..A19 68008 address lines
RDWL Read / Write

ASL Address Strobe

DSL Data Strobe

BGL Bus Grant

DSMCL Data Strobe - Master Chip
CLKCPU CPU Clock

E 6800 peripherals clock
RED Red

BLUE Blue

GREEN Green

CSYNCL Composite Sync
VSYNCH Vertical Sync
ROMOEH ROM Output Enable
FCO Processor Status

FC1 Processor Status

FC2 Processor Status
RESETCPUL Reset CPU

QL Peripheral Output Signals

he expansion connector allows extra peripherals to be plugged into the QL The

12/84

Signal Function

DTACKL Data acknowledge

BRL Bus request

VPAL Valid Peripheral Address
IPLOL Interrupt Priority Level 5
IPL1L Interrupt Priority Level 2
BERRL Bus Error

EXTINTL External Interrupt

DBGL Data bus grab

QL Peripheral Input Signals

Signal Function
DO D7 Data Lines

QL Peripheral Bi-directional Signals

Signal Function

SPO SP3 Select peripheral 0 to 3

VIN 9V DC (nominal) 500mA
maximum

VM12 -12Vv

VP12 +12V

GND ground

Miscellaneous

It is not intended that the following description of the QL peripheral expansion mechanism
be sufficient to implement an actual expansion device, but rather be read to gain a basic
understanding of the expansion mechanism

Single or multiple peripherals may be added to the QL up to a maximum of 16 devices
A single peripheral can be plugged directly into the QL Expansion Slot while multiple
peripherals must be plugged into the QL Expansion Module, which in turn is plugged
into the QL Expansion Slot via a buffer card

In this context the term device also includes expansion memory Although the areas
of the QL memory map allocated to expansion memory are different from those allocated
to expansion devices, the basic mechanism is the same Only one expansion memory
peripheral can be plugged into the QL at any one time The address space allocated
for peripheral expansion in the QL Physical memory map allows 16 Kbytes per peripheral
This area must contain the memory mapped I/O required for the driver and the code
for the driver itself

Qdos includes facilities for queue management and simple serial 1/O which may be of
use when writing device drivers

The position of each peripheral device in the overall memory map of the QL is determined
by the select peripheral lines SPO, SP1, SP2 and SP3 These select lines generate a
signal corresponding to the slot position in the QL expansion module, thus for a device
to be selected the address input from address lines Al4, A15, A16 and A17 must be
the same as the signals from SPO SP1, SP2 and SP3 respectively

1284

37

38

pixel
PONi*"! jnatp
WIA/IN\JII ICIIv

CX/otpm
OydICl 11

The pel coordinate system is used to define the positions and sizes of windows, blocks
anc] cursor positions on the QL screen. The coordinate system has its origin in the top
'en lianc: corner ogtne gafayit window (or screen) and always assumes that positions
are specified as though the screen were in 512 mode (high resolution mode). The system
will use the nearest pixel available for the particular mode set making the coordinate
system independent of the screen mode in use,

Some commands are always relative to the default window origin, e.g. WINDOW, while
some are always relative to the current window origin, eg BLOCK.

»

©0 X 0512

v (2560}

The Pyl Coordinate Sysiem

. 12/84

A SuperBASIC program consists of a sequence of SuperBASIC statements, where each
statement is preceded by a line number Line numbers are in the range of 1 to 32767

Command Function
RUN start a loaded program
LRUN load a program from a device and
start it
force a program to stop
syntax: line_number = *[digit** (range 1 32767J
* [line__number statement *{.statement} *\ *
example: i 100 PRINT "This is a valid Line number"
RUN
n. 1Q0 REM a small program

110 FOR foreground =0 TO 7
120 FOR contrast =0 TO 7

130 FOR stipple =0 TO 3

140 PAPER foreground, contrast, stipple
150 CURSOR 0,70

160 FOR n =0 TO 2

170 SCROLL 2,1

180 SCROLL -2, 2

190 END FOR n

200 END FOR stipple
210 END FOR contrast
220ENDFORforeground
RUN

\2 84

program

39

40

Qdos

memory map

Qdos is the QL Operating System and supervises

Task Scheduling and resource allocation
Screen 1/O (including windowing)
Microdrive 1/0

Network and serial channel communication
Keyboard input

Memory management

A full description of Qdos is beyond the scope of this guide but a brief description is
included

The system RAM has an organisation imposed by the Qdos operating system and is
defined as follows

SV_RAMT 1

Reskdent
procedures

SV_RESPR Lis

Transient
pragrams

SV__TRANSP :

SuperBasic command
interpreter dala
and
SuperBasic programs s
SV_BASIC *

| fills

Fiing subsysem
slave block

Sv_FREE

Channels and other
heap tems

SV__HEAP fis

System tables
and
Syslem Vanables

28000 Hex

Oisplay Mermory

QACOS Mamory Map

The terms SV_RAMI SV_RESPR, SV_TRNSR SV_BASIC, SV_FREE, SV_HEAP
are used to represent addresses inside the QL These terms are not recognised by
SuperBASIC or trie Qdos operating system Furthermore the addresses represented are
liable to change as the system is running

sv_ramt RAM Top

This will vary according to the memory expansion boards attached to
the system

SV___respr Resident Procedures
Resident procedures are loaded into the top of RAM Space can be
allocated in the resident procedure area using the RESPR function,
but thts space cannot be released except by resetting the QL Resident
procedures written in machine code can be added to the SuperBASIC
name list and so become extensions to the SuperBASIC system

12»»

Sv__trnsp Transient Programs
Transient programs are loaded immediately below the resident
procedures Each program must be self contained, le it must contain
space for its own data and its own stack It must be position
independent or must be loaded by a specially written linking loader
A transient program is executed from BASIC by using the EXEC
command or from Qdos by activating it as a job

The transient program area may be used for storing data only but this
data will still be treated by Qdos as a job and therefore must not be
activated

SV__basic SuperBASIC Area
This area contains all loaded SuperBASIC programs and related data
This area expands and contracts using up the free space as required

SV__free Free Space
Free space is used by the Qdos file subsystem to create Microdrive

Slave Blocks, le copies of Microdrive blocks which can be held in RAM

SV__heap System Heap
This is used by the system to store data channel definitions etc and
also provides working storage for the I/O subsystem Transient programs
may allocate working space for themselves on the heap via Qdos
system calls

System Tables / System Variables
This area is directly above the screen memory The System Tables and
supervisor stack are resident above the system variables

System calls are processed by Qdos in supervisor mode When in supervisor mode system calls

Qdos will not allow any other job to take over the processor System calls processed
in this way are said to be atomic, i e the system call will process to completion before
relinquishing the processor Some system calls are only partially atomic, le once they
have completed their primary function they will relinquish the processor if necessary
Unless specifically requested all the /O system calls are partially atomic

The standard mechanism for making a system call is by making a trap to one of the
Qdos system vectors with appropriate parameters in the processor registers The action
taken by Qdos following a system call is dependent on the particular call and the overall
state of the system at the time the call was made

Qdos supports a multitasking environment and therefore a file can be accessed by more
than one process at ? time The Qdos filing sub-system can handle files which have
been opened as exclusive files or as shared files A shared file can not be written to
QL devices are processed by the serial /O sub-system The filing sub-system and the
serial /O sub-system together make up the redirectable /O system As its name suggests
any data output via this system can be redirected to any other device also supported
by the redirectable I/O system

The device names required by Qdos are the same as the device names required by
SuperBASIC and are discussed in the concept section devices The collection of standard
devices supplied with the QL can be expanded

The standard devices included in the system are discussed in this guide in the section
devices Further devices may be added to the system, given a name (eg SER1, NET)
and then accessed in the same way as any other QL device

Jobs will be allowed a share of the CPU in line with their priority and competition with

other jobs in the system Jobs running under the control of Qdos can be in one of three

states

active Capable of running and sharing system resources A job in this state may
not be running continuously but will obtain a share of the CPU in line
with its priority

suspended The job is capable of running but is waiting for another job or I/O A job
may be suspended indefinitely or for a specific period of time

inactive The job is incapable of running, its priority is 0 and so it can never obtain
a share of the CPU

12'84

input/output

devices

multitasking

41

Qdos wilt reschedule the system automatically at a rate related to the 50 Hz frame rate.
The system will also be rescheduled after certain system calls,

example: This program generates an on-screen readout of the real-time clock,
running as an independent job.

First RUN this program with a formatted cartridge in microdnve 2. This
generates a machine code title called "clock" Wait for the Microdrive to
stop. Next, set the clock using the SDATE command

Then type:

EXEC mdv2_c Lock

and a continuous time display will appear at the top right of the command

window.

100
110
120
130
140
1000
1010
1020
1030
1040
1050
1060

¢c=RESPR(100)
FOR i =0 TO 68 STEP 2
READ x:POKE_U i +c, x

END FOR
SEXEC mdv2 _clock, ¢, 1Q0, 256

DATA 29439, 29697, 28683, 20033, 17402
DATA 48, 13944, 200, 20115, 12040
DATA 28691 , 20033, 17402, 74,-27698
DATA 13944, 236, 20115, 8279, -11314
DATA 13944,208, 20115, 16961, 16962
DATA 30463, 28688, 20035, 24794
DATA 0,7, 240,10, 272, 200

N.B. Line 1060 governs the position and colour of the clock window - the data items

are, in order:

border colour/width, paper/ink colour, window width, height, x-origtn, y-ongin
These are pairs of bytes, entered by POKE__W as words.

The x-ongin and the y-origin (the last data ttem) should be 272 and 202 in monitor mode,
or 240 and 216 in TV mode.

Generate the paper and ink word, for example, as 256 * paper + ink. Thus white paper,
red ink is 256 * 7 +- 2 = 1794.

Repetition in SuperBASIC is controlled by two basic program constructs Each construct
must be identified to SuperBASIC

REPEAT identifier FOR identifier = range
statements statements
END REPEAT identifier END FOR identifier

These two constructs are used in conjunction with two other SuperBASIC statements
NEXT identifier EXIT identifier

Processing a NEXT statement will either pass control to the statement following the
appropriate FOR or REPeat statement or if a FOR range has been exhausted to the
statement following the NEXT

Processing an EXIT will pass control to the statement after the END FOR or END REPeat
selected by the EXIT statement EXIT can be used to exit through many levels of nested
repeat structures EXIT should always be used in REPeat loops to terminate the loop
on some condition

A combination of NEXT, EXIT and END statements allows FOR and REPeat loops to
have a loop epilogue added A loop epilogue is a series of SuperBASIC statements
which are executed on some special condition arising within the loop

FOR wentifier = for__hst
statements exit
NEXT «dentifier next
epogue
END FOR dentiher
The loop epilogue is only processed if the FOR loop terminates normally If the loop
terminates via an EXIT statement then processing will continue at the END FOR and
the epilogue will not be processed

It is possible to have a similar construction in a REPeat loop

REPeat identifier o 1
statements

IF condition THEN NEXT identifier —I
epilogue

END REPeat identifier

This time entry into the loop epilogue is controlled by the IF statement The epilogue
will or will not be processed depending on the condition in the IF statement A SELect
statement can also be used to control entry into the epilogue

repetition

ROM

CortridQG SIOt
vui 11 iwyw w w»

pin out

warning

Allows software to be used in the QL. system from a Sinclair QL ROM cartridge The
ROM cartndge can contain SOftware to directly change the behaviour of the SuperBASIC

system The cartridge can contain
i Software to be used instead of or with the SuperBASIC system For example

assemblers
compilers
debuggers
application software
etc

u Software to expand the SuperBASIC system For example

special procedures
€etc

It is not possible to use ZX ROM cartridges on the QL

— a 1 b | vDD
At2 a 2 h| A4
A7 a 3 b | A3
AbB a 4 b | A8
AS a 5 b | A9
SLOT ja 6 b[sLoT
Ad a 7 b | AN
A3 a 8 b | ROMOEH
A2 a 9 b | A0
Al a 10 b | Al5
AD a 11 b|D7
Do a 12 b |Ds
Dt a 13 b D5
D2 a 14 b |03
GND a 18 b|D3

Side b is the upper side of the connector, side a is the lower

Signal Function

AO Al5 Address lines

DO D8 Data lines
ROMOEH ROM Output Enable
VDD 5V

GND Ground

Never plug or unplug a ROM cartndge while the QL power is on

Screen

The screen is 512 pixels across and 256 pixels deep Only the solid colours 512 mode

black
red
green
white
can be displayed in this mode.

Low resolution mode also has a hardware flash

The screen is 256 pixels across and 256 pixeis deep. The full set of solid colours is 256 mode
available in this mode:

blue

red
magenta
green
cyan
yellow
white

A domestic television is not capable of displaying the complete QL screen Portions of warning
the screen at the top and the sides will not be reproduced The default initial window

will take account of this and will reduce the effective picture size. Trie full size can be

restored with the WINDOW command

Command Function

MODE set screen mode

12/84

45

slicing

warning

Under certain circumstances it is possible to refer to more than one element in an array
i e slice the array The array slice can be thought of as defining a subarray or a series
of subarrays to SuperBASIC Each slice can define a continuous sequence of elements
belonging to a particular dimension of the original array The term array in this context
can include a numeric array a string array or a simple string

It is not necessary to specify an index for the full number of dimensions of an array
If a dimension is omitted then slices are added which will select the full range of elements
for that particular dimension le the slice (0 TO) SuperBASIC can only add slices to
the end of a list of array indices

syntax index = numeric__exp (single element)
numeric__exp TO numeric__exp \range of elements]
| numenc_exp TO {range to endj
I TO numeric__expression [range from beginning)
array_reference = | variable

| variable ([index *[,mdex*)

An array slice can be used to specify a source or a destination subarray for an assignment
statement

example' i PRINT data_array
Il PRINT lettersSd TO 15)
ill PRINT two_d_array (3) (2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays

Thus

a$(n) will select the nth character

a$(n TO m) will select all characters from the nth to the mth
inclusively

a$(n TO) will select from a character n to the end inclusively

a¥{! TO m) will select from the beginning to the nth character,
inclusively

a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MtD$, RIGHTS These are not
necessary in SuperBASIC Their equivalents are specified below

SuperBASIC Other BASIC

a$(n) MIDS (a$n,1)

a$(n TO m) MIDE (a$,n,m+1-n)

a$(1l TO n) LEFTS (a$,n)

a$(g TO) RIGHTS$ (a$,LEN(a$)+1-n)

Assigning data to a sliced string array or string variable may not have the desired effect
Assignments made in this way will not update the length of the string The length of
a string array or string variable is only updated when an assignment is made to the
whole string

start up

Immediately after switch on (or reset) the QL will perform a RAM test which will give
a spurious pattern on the display If the RAM test is passed then the screen will be cleared
and the copyright screen displayed

F1 ... monitor
F2 ... TV

©1983 S1nclair Research Ltd.

After start up the QL displays the copyright message and asks whether it is being used
on a television or a monitor The QL will set different initial screen modes and window
sizes depending on the answer

Press F1 if you are using a monitor and F2 if you are using a television set

The QL has the ability to boot" itself up from programs contained in either the ROM
cartridge slot or in Microdrive 2 If the ROM cartridge slot contains a self starting program
then start up will continue under the control of the program in the ROM cartridge If
nothing suitable is found then the QL will check Microdrive 1 for a cartridge If a cartridge
is found and if it contains a file called BOOT it is loaded and run

The QL has three default channels which are linked to three default windows default screen
1 2
Monitor Television

Channel 0 is used for listing commands and error messages, channel 1 for program warning
and graphics output and channel 2 for program listings The default channel can be
modified using the optional channel specifier in the relevant command

It is important NOT to switch on the QL with a Microdrive cartridge in position If booting

from a Microdrive cartridge is required then the cartridge must be inserted between
switching on and pressing either F1 or F2

Vvi/ig4

a7

48

sound

Sound on the QL is generated by the QLs second processor (an 8049) and is controlled
by specifying

up to two pitches
the rate at which the sound must move between the pitches the ramp

how the sound is to behave after it has reached one of the specified pitches, the wrap
if any randomness should be built into the sound, le deviations from the ramp
if any fuzziness should be built into the sound i e deviations on every cycle of the sound

Fuzzmess tends to result in buzzy sounds while randomness depending on the other
parameters, will result in melodic' sounds or noise

The complexity of the sound can be built up stage by stage gradually building more
complex sounds This is, in fact, the best way to master sound on the QL

Specify a duration and a single pitch The specified pitch will be beeped for the specified
time
LEVEL 1

prch

hrme

This is the simplest sound command other than the command to stop the sound on
the QL

LEVEL 2 A second pitch and a gradient can be added to the command The sound will then
‘bounce’ between the two pitches at the rate specified by the gradient

The sounds produced at this level can vary between semi musical beeps, growls, zaps
and moans It is best to experiment

pitch2

pltch

— pitch 1

time

LEVEL 3 A parameter can be added which controls how the sound behaves when it becomes
equal to one of the specified pitches The sound can be made to 'bounce' or ‘wrap'
The number of wraps can be specified, including wrap forever It is even more important

to experiment

prich 1

brne

pitch2

|
] T

tme

12w

Randomness can be added to the sound This is a deviation from the specified step LEVEL 4
or gradient

Depending on the amount of randomness added in relation to the pitches and the
gradient, it will generate a very wide and unexpected range of sounds

—

pilch?

piich

ptch 1

tirme

More variation can be added by specifying fuzziness' Fuzziness adds a random factor LEVEL 5
to the pitch continuously Fuzzfness tends to make the sound buzz

Combining ail of the above effects can make a very wide range of sounds, many of
them unexpected QL sound is best explored through experiment By specifying a time
interval of zero the sound can be made to repeat forever and so a sequence of BEEP
commands can be used until the sound generated is the sound which is required A
word of warning slight changes in the value of a single parameter can have alarming

results on the sound generated

statement

A SuperBASIC statement is an instruction to the QL to perform a specific operation, for
example:

LET a = 2
will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual
statements from each other by a colon (.), for example:

LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result back in a.
The answer will then be printed out

If a line is not preceded by a line number then the line is a direct command and
SuperBASIC processes the statement immediately. If the statement is preceded by a
line number then the statement becomes part of a SuperBASIC program and is added
into the SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over the rest
of the logical line in which they appear ie. IF, FOR, REPeat, REM, etc. It is meaningless
to use certain SuperBASIC statements as direct commands

String arrays and numeric arrays are essentially the same, however there are slight

differences in treatment by SuperBASIC The last dimension of a string array defines

the maximum length of the strings within the array. String variables can be any length
up to 32766 Both string arrays and string variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are
not the same then either the right hand string is truncated to fit or the length of the left
hand string is reduced to match. If an assignment is made to a sliced string then if
necessary the 'hole defined by the slice will be padded with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the
dimension selects the whole string while specifying a single element will pick out a single
character and specifying a slice will define a sub string

Unlike many BASICS SuperBASIC does not treat string arrays as fixed length strings,
If the data stored in a string array is less than the maximum size of the string array then
the length of the string is reduced.

Assigning data to a sliced string array or string variable may not have the desired effect,
Assignments made in this way will not update the length of the string and so it is possible
that the system will not recognise the assignment. The length of a string array or a string
variable is only updated when an assignment is made to the whole string.

Command Function
FILL$ generate a string
LENS find the length of a string

12/24

string arrays

ctfinfl
Qil 1l ly

comment

warning

VFIPIJIhIpC
VQI iQUICV

51

52

string
comparison

order

types of comparison

usage

(decimal point/full stop)

digits or numbers in numerical order
AaBbCcDdEeFf GgHhl i Jj KkLI MmNnOoPpQgqRr SsTt UuVvWwXxYyZz

space ' "# S %N &' <)*+,-. /1 ;<=>*@[|]*_/(]|JI-©
other non printing characters

The relationship of one string to another may be

equal All characters or numbers are the same or equivalent

lesser The first part of the string, which is different from the corresponding
character in the second string, is before it in the defined order

greater The first part of the first string which is different from the corresponding
character in the second string, is after it in the defined order

Note that a ' may be treated as a decimal point in the case of string comparison which
sorts numbers (such as SuperBASIC comparisons) Note also that comparison of strings
containing non-printable characters may give unexpected results

type O case dependent character by character comparison
type 1 case independent - character by character
type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system

type 1 File and variable comparison
type 2 SuperBASIC <,<=,=,>=,> INSTR and < >
type 3 SuperBASIC == (equivalence)

12124

syntax

SuperBASIC syntax is defined using a non-rigorous 'meta language' type notation Four fjpfinitlOHS
types of construction are used Wl Vs

| | Select one of
[1 Enclosed item(s) are optional
** Enclosed items are repeated

Range
() Comment
eg AjB| AorB
[A] A is optional
A A is repeated
A.Z A B, C, etc

[this is a comment]
Consider a SuperBASIC identifier

A sequence of numbers, digits, underscores, starting with a letter and finishing with an
optional °/o or $

letter= \ A Z
laz

(a letter is one of ABCDEFGHIJKLMNOPQRSTUVWXY?Z]
or abcdefghykimnopgrstuvwxyz

digit=]10|21j2]|3 4|5|6|7 8]9]
(adigitisOor1 or2or3or4or5o0r6or7or8or9
underscore = ___

(an underscore is__j

identifier=tetter *[letter \ digit \ underscore J* | % | $ |

must start—'
with a letter J

a sequence of letters
digits and underscores
i e repeat something
which is optional

windows

parts

Windows are areas of the screen which behave, in most respects, as though each
individual window was a screen in its own right, i e the window will scroll when it has
become filled by text it can be cleared with the CIS command, etc

Windows can be specified and linked to a channel when the channel is opened The
current window shape can be changed with the WINDOW command and a border
added to a window with the BORDER command Output can be directed to a window
by printing to the relevant channel Input can be directed to have come from a particular
window by inputting from the relevant channel if more than one channel is ready for
input then input can be switched between the ready channels by pressing

[CTRL] C

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time The non
graphic output is relative to the current cursor position which can be positioned anywhere
within the specified window with the CURSOR command and at any line-column
boundary with the AT command The graphics output is relative to a graphics cursor
which can be positioned and manipulated with the graphics procedures

Certain commands (CLS, PAN etc) will accept an optional parameter to define part of
the current window for their operation This parameter is as defined below

part description

0 whole screen

1 above and excluding cursor line

2 bottom of screen excluding cursor line
3 whole of cursor line

4 line right of and including cursor

Command Function

WINDOW re-define a window

BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents

SCROLL scroll a windows contents

AT position the print position

CLS clear a window

CSIZE set character size

FLASH character flash

RECOL recolour a window

~erBASIC has a set of turtle graphics commands

mmand Function
zNUP stop drawing
iINDOWN start drawing
VE move the turtle
"RN turn the turtle
, RNTO turn to a specific_heading

- set of commands is the minimum and normally would be used within another
;edure to expand on the commands For example

100 DEFine PROCedure forward(distance)
110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards(distance)
140 MOVE -di stance

150 END DEFine

160 DEFine PROCedure Left(angle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right(angle)

200 TURN -angle

210 END DEFine

-se will define some of the more famous turtle graphic commands.

aliy the turtle's pen is up and the turtle is pointing at 0°, which is to the right-hand
~ of the window

- FILL command will also work with figures drawn with turtle graphics Also ordinary
-pnics and turtle graphics can be mixed, although the direction of the turtle is not
dified by the ordinary graphics commands

turtle

flfrinfliP~

Concepts Index

A

Array /s
Vv

scin9
srings

Storage
D
D

BASIC

Baud rates

BEEP

Monochrome monitor
Booting

Break

C

Cartridges
Rom
Microdrive
Channels
Character set
Circles
Clock
Coercion
Close channels
Commands

keywords
direct

turtle graphics
windows
screen
Codes
characters
colour
Communications
~hamels
devices
networking
Comparisons
Console device
Control characters

P.Xel
Efdor

D

Data
structures
types

Data storage
Microdnves
arrays

date

DCE

DEFine FuNction

Defaults

DEFine PROCedure

Devices
console (con)

46
52

13

48
33

50

44
31

24

10
11

28

18
55
56

45
12
13

16

34
53

16

36

15

31
10
13
23

23

16

i/o
Microdnves (mdv)
network (net)
peripherals
screen (scr)
serial (ser)
channels
file types
Dimension
Direct command
DTE

=

Elements
Error handling
EXIT
Expansion
ROM cartridge
peripherals

Expressions
p

Rles

Filename
FIH|ng shapes
Floating point
FOR
Functions

/-\
«
Graphics

turlse

LI
M

Handshaking
Hgx codeg

High resolution montor

TM

™\
anne|s

Devices
windows

Integers
Tl

devices
monitor
peripherals
Qdos
windows

J
Joystick

I/\

Keyboard conventions
Keywords

1631
1634

16
13,16

22

18
13

19
43

a4
36

21

22

1626
24

15
43
23

24
55

13

33

15

16
33
36
40
56

27

12/84

L

Lines

Line numbering
direct commands

Local variables

Loops

M

Maths functions
Memory

map
expansion
Microdnves

Modes
Monitor

Multitasking
N

Name
/\E]
Network
NEXT

n
LJ
OPFN

Ssysten,

Output
monitor
channels

Ordering
coercion
precedence

P

Parameters
Peripheral expansion
Pictures

Pixel coordinates
Points

Power up
Precedence
Procedure
Programs

Q

Qdos

R

RAM
Repetition
RGB
ROM
RS-232-C
RTS

RXD

12'84

24
3951
18
23
43

29

30
36
31
45
33

41

26
34

34
43

11
35

40

30
43
33
30
13
13
13

S

Scaling
Scheduler
Screen
con
scr
windows
colours
modes

Serial communications
Signals

Slicing

Sound

Start up

Statements

Stipples

Stnngs
variables
slicing
arrays
comparisons

Switching on

Syntax definitions

T

Time

Trig functions
Turtle graphics
TXD

Type converse

\J
Variables

local
string

W

Windows

24
39
45
16
16
56
12
45

13
13
46

48
50
51
12

52
46
52
53

50
54

10
29
55

15
23
15

56

oL

QL Quill

CHAPTER 1
ABOUT

_ cated wordprocessor It has been designed to give you the maximum Vxt VJCUI1-L
z ty, yet is still easy to learn and to use As you will see later, you will
crmed as to what you can do next and how to do it

-e"processor in any circumstance where you would otherwise use a

" machines are very similar in function, although the wordprocessor

=395 that are not matched by a conventional typewriter Perhaps the

= ence is the ease with which mistakes can be corrected Since the
*'mediately as you type it in, you can make as many corrections as

-: only print the text when you are sure that it is exactly what you want
os assured of perfect results every time

..orking through this manual there are a number of other advantages
* jsmg a typewriter it is necessary to press the carnage return key
ne In Quill, this function is performed automatically Whenever the

-~ the end of a line a new line is started, you press ENTER when
new paragraph Whenever a new line is started you will notice that

- exi in the last line will be adjusted so that the left and right margins
cpout the text This process, which is known as justification gives a
- appearance to the final result, without any effort on your part Like
, es of Quill, the form of justification that you use can be modified

- requirements

__are not sure what to do remember that you can ask for Help by

eTiember that you can cancel any partially completed operation {eg
oy pressing ESC

CHAPTER 2
GETTING
STARTED

LUAUINuU UL QUILL Load QL Quill as described in the QL Program Introduction When loaded the following
message will be displayed

LOADING QL QUI LL
VEersion x. xx
Copyright © 1984 PSION SYSTEMS

wordprocessor

where x xx is the version number eg 200

Quid will only need to access the cartridge in Microdrive 1 whenever you print a document
or ask for Help

When a document is being entered Quill will only reauire a cartridge in Microdrive

2 when the text is longer than about three pages Quill will ask for a cartridge when
necessary Once the cartridge is inserted it should not be removed until the document
is saved or abandoned

HELP CURSOR TEXT Insert Type at[] || TYPEFACE COMMANDS
press F1 noue — Hew para Press ENTER press Fl
PROMPTS witht L Delete CTRL & ~ 1. — || Press Fé& ESCAPE
press F2 kays — Change mode SHIFT & fé press ESC
U S IO O S SR SIPE-SUPUY UMD SIS DU S TR SR N DU
[l
MODE: INSERT WORDS: 0 LINE: 1 PAGE: 1
TYPEFACE: NDRMAL DOCUMENT: no name

Figure 21 The man display wilh a monnor (80 characiers)

GENERAL

ArrhAHANUN Initially the Quill display should look like that shown in Figure 21 or Figure 22 This
is known as the main display

Quill can show 80, 64 or 40 characters per line of the screen If you are using a domestic
television the display may not be clear enough for you to see 80 characters per line
If this is the case you will need to use 64 or 40 characters The 64 character screen
is very similar to that for 80 characters. The 40 character screen is arranged differently
and the main display will look like Figure 2 2

CURSOR TEXT Insert Type at[] TYPEFACE
rove — New para Press ENTER
witht !l Delete CTRL & ~ 7L~ Press Fé
keys — Change mode SHIFT & £4
[hecert][prowerr2 COMMANDS F3 I ESCAPE ESC
D T S T

U

MODE: INSERT WORDS: 0 L: 1 LH|
TYPE: no name

Figure 2.2 The main display wilh 40 characters

Quill initially selects either an 80 or a 64 character display - depending on whether
you pressed F1 or F2 when you switched on the computer You can change from one
form of display to another at any time with the Design command which is described later.

Apart from the difference in appearance, Quill works in exactly the same way with all
three forms of display. Most of the diagrams in this manual are shown for the 80 character
display.

The screen is divided into three main sections: the display area, the status area and
the control area.

SRS PSR- FUIS. S TR, TR . S SN

Frguns 23 The display area Figure 2 4 The ruler

The largest area, in the centre of the screen, is reserved for the text of your document. The Display Area
Almost everything that you type at the keyboard will appear in this area

Across the top of the display area is the ruler. This is a row of dots, marking each character
space across the screen. Every fifth space on it is marked with a colon () and every

tenth space is numbered.

12'84

Getting Started

The Status Area The status area, which uses the bottom three lines of the screen, shows information about

your current document For example it normally shows its name Initially you will not
have given a name to a document and Quill shows no name Quill will show this for
any text that you type, until you give the document a name

The status area also shows that Quill is currently in insert mode, which means that anything
you type into your document will be inserted (as opposed to writing over any following
text) It also shows that there is no special typeface, ie that you are using a normal
typeface Bold (emphasised), underlined, subscript and superscript typefaces are also
available and we shall see how to use them later on

In addition, the status area shows the number of words in the current document, and
the line and page number of the position of the cursor It initially shows that you are
at line 1 of page 1 of a document which contains no words

The status area is also used tor showing any special text that is typed in during the
use of commands (the set of instructions available when you press F3) For example
the section of text being searched for when you use the Search command (see Chapter
5) will appear in the status area

Figurg 25 The status arsa Figure 26 The contral area

The Control Area The control area occupies the top few lines of the screen it shows the normal options

to obtain Help (F1), to turn the prompts on and off (F2). to select a command (F3) and
to cancel any incomplete operation (ESC) In addition there are three options that are
specific to Quill These are displayed in the three central boxes of the control area and are

Cursor - move the cursor
Text - add or remove text
Typeface - change the typeface

I rib UUHoUN On the top line of the central display area you will see a small rectangle This is known

I CA Il

as a cursor and marks the position where the text you type will be placed

The control area shows that you can move the cursor around the text area by use of
the four cursor keys on the keyboard When you have some text in your document, each
time that you press one of these keys, the cursor will move by one space in the direction
indicated by the arrow The cursor will not pass the end of the text If there is no text
in your document you will not be able to move the cursor from its original position

You can also move the cursor around the text in larger steps If you hold down SHIFT
and, press the left or right cursor keys the cursor will move left or right by units of one
word When you press SHIFT together with the up or down cursor keys the cursor will
move backwards or forwards by one paragraph

The option shown at the centre of the control area indicates the various ways in which

you can change the text of the document Simply typing at the keyboard will insert the
text at the cursor position

12/84

Fgure 27 Moving the cursor Figure 28 The Iext optons

The second line of the Text option shows that pressing ENTER is used to mark the start
of a new paragraph You do not need to press ENTER when you reach the end of
a line of text If you continue typing in words until you reach the end of the first line,
the new words will automatically appear on the second line and the spacing of the words
on the first line will be adjusted This is justification which controls the way the text is
aligned with respect to the left and right margins

Try pressing ENTER and then typing in some text to see the effect of starting a new
paragraph Do not worry if the indentation of the new paragraph is not as you wish
- you will find how to change it in Chapter 4

You can include characters in your document which are not shown on the keyboard
They are selected by pressing CTRL or CTRL and SHIFT and another key The Concept
reference guide contains a full list of the usable characters together with the relevant
keying

You can delete text, one character at a time, to the left or right of the cursor position
Hold down CTRL and press either the left or the right cursor keys

While you were typing in text you may have noticed some changes taking place in the
status area at the bottom of the screen The word and line counts will always agree with
the contents of the document The remainder of the status area will not have changed
In particular, the document will still be unnamed You give a name to a document when
you save it on a Microdrive cartridge, (as described in Chapter 7)

Now that you have some text in your document, you can try moving the cursor around
the text area by use of all four cursor keys When you have finished, move the cursor
to the end of the text

A further option in the control area is headed typeface and is used to modify the
appearance of the text in your document

Press F4 and you are given five choices

to use bold (or heavy) type

to display high script (superscript)
to display low script (subscript)
to produce underlined text

to 'paint’ existing text

Any one of these is brought into effect by pressing F4 and then a single key from the
list shown in the control area As an example let us use this option to produce underlined
text Press F4, then the U key

The display returns to normal and nothing seems to have changed except that the
typeface is marked as UNDERLINE' in the status area If you now type in some more
text you will see that it is underlined as it is displayed

In Quill you see exactly what will appear in the final printed version The only things
that are not always shown on the screen are the upper and lower page margins, and
the spacing between lines (when you select double or triple spacing) Quii) does not
show these since they would reduce the amount of text visible on the screen at any
one time

12/84

Getting Started

Il YrhrAUDb

Getting Started

To turn off underlining, press F4 and then the U key again If you now type in a few
more words you will see that they are not underlined - the underlining option works
like a simple on-off switch, or toggle

You will find a fuller description of underlining, and the other three typeface options,
tn Chapter 4

RS SRR FURNE TR, TN . SO SO | RS [JP: PRI SRR DI DO SN .
b
Figura 29 Fpeface Figure 210 The commands

OUMIVIANL/O You select a command by pressing F3 The list of commands in the control area is known
as the command menu

You can select any of the commands shown in the menu (list) at the centre of the control
area by pressing the key corresponding to its first letter

Quill has more commands than can be displayed in the command menu. You are
therefore given two alternative lists and can switch between therm with the Other
command

Since some commands start with the same letter it is important to check that the
command you want is displayed in the control area before you select it.

HELP COMMANDS Erase Header Marging Save COMMANDS
press F1 Copy Footer Justify Print Tabs press F3
PRONPTS Design Gato Load Quit ESCAPE
press F2 Qther Press first letter press E£5¢

NP S R S S . T SR SN M. DU O . PPN SO DR SO .

In the heginming [

command >
MODE: INSERT WORDS: 3 LINE: t PAGE: 1
TYPEFACE: DOCUMENT; no name

Figure 2 11 the firsl command meanu

12/84

The descriptions of the various commands will take up much of the rest of this manual

For the moment we will describe the use of just two commands Quit and Zap

Quit is used when you have finished with Quill Press F3 and then the Q key to use
quit and return to SuperBASIC Quit will ask whether you want to save your current
document on a Microdrive cartridge before quitting Press ENTER to save it or press

A to abandon it

You can press ESC to cancel the command and return to your document

The Zap command is in the commands Il menu and so you will have to use the Other
command before selecting Zap You must press F3, O and then Z Zap clears from

memory the text of the current document but does not return to SuperBASIC

HELP | commancs Merge Search COMMANDS
press Fi Files Page press 3
PROMPTS Hyphenate Replace Zap ESCAPE
press F2 Other Press first letter || press ESC
U DU U - S U TUPUE DU SRR S, T S . SO SN SO SO
[n the beginming []
command >
MODE: INSERT WORDS: 3 LIME: 1 PAGE:
TYPEFACE: DOCUMENT: no name

Figure 212 The second command meny

If you clear the text before you have saved it on a Microdrive cartridge you will not be
able to recover it without typing it in again Quill will therefore ask you to confirm your
choice by pressing ENTER You have the alternative choice of pressing ESC to cancel

the command and return to your document

1284

Getting Started

CHAPTER 3
CURSOR

Cul I HiVj

INSERTING TEXT

DELETING TEXT

OVERWRITING

in this chapter you will learn how to use Quill's simple editing facilities The changes

to the text will always occur at the position of the cursor You must therefore use the
cursor keys to move the cursor to the place you want to alter before making any changes

This form of editing is known, for fairly obvious reasons, as cursor editing You may practise
using these techniques on a piece of text that you type in yourself, or you may use the
text provided with Quill If you type in your own text, do not worry about any mistakes
you make In fact it may be a good idea to add deliberate mistakes - each mistake
will give you extra practice in using the editing facilities

Quill is initially in insert mode so that any text you type is automatically inserted at the
cursor position To insert letters or words into the middle of the text, do the following

Move the cursor, by using the four cursor keys, to the point where you want to
make the insertion

Type the letters or words that you want to insert The characters are inserted
immediately under the cursor position and any existing text moves to the right
to make room for them

The text is rejustified automatically as you make the insertion

If you wished to insert several words, it would be annoying to have to wait until the text
was adjusted each time you pressed a key Quill detects this situation and reacts by
splitting the line at the point where you are inserting text This is known as an automatic
text split You can then type in as much text as you like

Quill will restore the text when you finish inserting text at that point (ie when you press
a cursor key, a function key or ESC)

The deletion of text at the cursor position is also very simple You use the CTRL key
together with the cursor keys

To see the action of the left cursor key, position the cursor immediately after the character
or characters that you want to delete Now hold down CTRL and press the left cursor
key briefly The letter immediately to the left of the cursor position will be deleted and
the cursor will move one space to the left Each time you press the left cursor key, with
the CTRL key held down, one more letter will be deleted If you wish to delete'several
letters you can hold both the CTRL and the left cursor key down using the auto-repeat
facility Always press the CTRL key before the cursor key

If you use CTRL together with the right cursor key text will be deleted, character by
character from beneath the cursor position and the text to the right will close up to
fill the gap

You can delete whole words at a time, to the left or to the right of the cursor, by using
SHIFT and CTRL together and pressing either the left or the right cursor key

You can delete the whole line to the left or right of the cursor Hold down the CTRL
key and press the up cursor key The line to the left of the cursor will disappear Similarly
pressing the down cursor key will delete the whole of the line to the right of the cursor

In all cases the text will be rejustified automatically
In overwrite mode you can write over existing text and replace it with the new text

You can change to overwrite mode by holding down SHIFT and pressing F4 The mode
indicator at the left hand side of the status area will change from INSERT to OVERWRITE
indicating that text typed at the keyboard will replace existing text Pressing SHIFT and
F4 again will change back to insert mode

With Quill set to overwrite mode, position the cursor at the start of the text to be replaced
and type in the replacement When you have finished making replacements, return to
insert mode by pressing SHIFT and F4 again, otherwise you will write over text that
you want to keep

12/84

this 15 a sentifjece to be ammended

HELP CURSOR TEXT Insert Type at[] || TYperace | COMMANDS

press Fl mave + New para Press ENTER press F3

PROMPTS witht | belate CTRL & ~ 1L — || Press F& ESCAPE

press F2 keys — Change mode SHIFT & Fé& i| press EsC
IR S P - S Y SUE SRS DU SN . JUDIE DI DR S

NOOE: INSERT
TYPEFACE:

WORDS:

7

LINE: 1 PAGE: 1
DOCUMENT: no name

Figure 31 Overwning

Figure 31 shows a typical situation where you would want to use the overwrite mode.

With the display as shown, with the cursor on the 'n' of 'sentnece! you can overwrite

with €' and 'n' to correct the word. (You can also practice deleting a character by removing
one of the 'm's from 'ammendedl)

CHAPTER 4
TEXT

~IVIHI | UNO This chapter is concerned with the format of the text, that is the layout and appearance

as opposed to the actual content You will find out how to use the different typefaces,
Bold, Underline, High and Low script You will also learn how to move the position of
the left, right and indent margins and how to change the justification which affects the
way the text is aligned with respect to the margins

TYPEFACE The underlining facility has already been used as an example of the use of the typeface
option In this section we shall examine its use more fully, together with the options to
use bold characters high script (superscript) and low script (subscript)

(HELP TYPEFACE To change typeface press key COMMANDS
press Fi Blald}, HGigh), Liow) or Ulnderline) press F3
PROMPTS ESCAPE
press F2 ar P to pawnt or change existing text press ESC

P S DT DO S DU L FUU S A SO, SIS SUNDDY. S DU R S 8

In the beg1nn1ng God created the heaven and the earth And the earth
was without form, and voird, and darkness was upon face of the deep And the
spirit of God moved upon the face of the waters.

And God said, {Tlet there be Light: and there was light.

And God saw the light , that it was good : and God divided the laight
from the darkness. And God called the light Day, and the darkness he called
Night, And the evening and morning were the first day.

And Bad said
TYPEFACE >
MODE: INSERT WORDS: 95 LINE: & PAGE; 1
TYPEFACE: UNDERLINE DOCUMENT: no name

Figure 41 Salectng a typelace

In general you can select any of these options by pressing F4 and then the appropriate
letter - Bold, Underline High script or Low script If one of these options is currently
switched on you can turn it off again by exactly the same method as you used to turn
it on - by pressing F4 and then the appropriate letter

Note that any text that you type will always appear in the typeface shown in the status
area If you move the cursor into a region which is in bold type, for example the status
area will show Bold typeface, and any further text that you type within this region will
also be in bold type the typeface changes automatically as soon as you move to a
region containing a different typeface

Of course, you can only use one of High script or Low script at any one time If you
select one of these, the other is automatically switched off

There are three ways in which you may want to use the typeface option

Insert new text in a particular typeface
Alter existing text to a new typeface,
Change or remove an existing typeface

If you want to type in some text in a particular typeface you should press F4 and select
the typeface you want Any text that you then type in will appear in the typeface you
have selected When you want to return to normal text you should switch off the typeface
by pressing F4 followed by the appropriate typeface letter(s)

12/84

It is easy to change the typeface used in existing text The method is known as painting
since you use the cursor like a paint brush changing the typeface of any text over which

it moves

First you must move the cursor to the start of the text to be changed press F4 and
then press the P key Next, select the combination of typefaces you want Use the right
and down cursor keys to move the cursor across the text to be changed When you
reach the end of the text you want to alter, leave the option by pressing ENTER You
do not need to switch off the typeface selection it will revert to the correct typeface as
soon as you move away from the area painted in the new typeface Figure 4 2 shows
the appearance of the screen while painting text with underlining

HELP TYPEFACE To change typeface press key COMMANDS

press 1 Blold}, H{1gh), Llow) or Ulnderline) press 3

PROMPTS then use . = o pant existing text ESCAPE

press F2 ENTER to end press ESC
G S I S-S ST U SO S PUDN. T SUNIN . FUDUE DU SR SRS

In the beginning God created the heaven and the earth And the earth
was without form, and void, and darkness was upon face of the desp And the
spirit of God moved upon the face of the waters.

And God said, Let there be Light: and there was Light.

And God saw the light , that 1t was good : and God drvided the light
from the darknass. And God called the Light Day, and the darkness he called
Night. And the eveming and morning were the first day-

And God sa1d Let there he[]

TYPEFACE >
MODE: INSERT BORDS: 95 LINE: & PAGE: 1
TYPEFACE: UNDERLINE DOCUMENT: no name

Figure 4 2 Panting underline typeface

You can change, or remove, an existing typeface in the same way in which you add
a new typeface to existing text Again you should move the cursor to the start of the
text before pressing F4 Press the P key and then select (or switch off) the typeface
combination you require Move the cursor through the text you wish to change and then
press ESC

When you change text from an existing typeface to a new one, Quill does not remember
the original typeface Suppose, for example, you change text which was originally
underlined to being in bold characters If you later remove the bold typeface the final
text will be in plain characters, and will not revert to being underlined

You change the widths of the margins with the margin command Each new margin
position takes effect from the current paragraph and remains in force for all following
paragraphs, until you make another change to the position of the margin

Press the command key (F3) and then the M key to start this command In addition
to other changes in the control area you will see that three choices - LEFT, INDENT
and RIGHT will appear and that the LEFT option is highlighted These options represent
the three margins, and the one that is highlighted is the one that you can move You
can step the highlighting from option to option by pressing the space bar or you can
select a particular option by pressing the key corresponding to its first letter When the
name of a margin is highlighted in the control area you can move that margin with the
left or right cursor keys

Suppose you wish to move the left margin to the right by three characters, starting with
the second paragraph of your document

12/84

MARGINS

Text Formatting

JUSTIFICATION

First move the cursor to any point in the second paragraph and then type

23]M

As indicated by the highlighting, the left margin is the one you can move so you just
have to press the right cursor key three times The change in the margin takes place
immediately, so that you can see the effect before you leave the command

You can leave the command straight away by pressing ENTER or you can continue
to make further margin changes Press the space bar until the correct margin is selected
and move it with the left and right cursor keys You can use the up and down cursor
keys to move the cursor to another paragraph and make further changes to the margins
After you have made all the changes you want you can leave the command by pressing
ENTER

The indent margin marks the character position which is used for the start of a new
paragraph For an 80 character display it is initially set at the fifteenth character position

There is no restriction on the relative positions of the indent and left margins If you do
not want to use indented paragraphs you may move them so that they are both in the
same place You may even place the indent margin to the left of the left margin This
is useful for producing numbered paragraphs as shown in the following example

Indent Margin

| Left Martin

(I

1) This is the first of two
paragraphs to show how you can
use indent margins

2} The indent margin is three
characters to the left
of the left margin

In this case, starting a new paragraph (by pressing ENTER) will allow text to be typed
at the 'indent" position All following text will be displayed between the left and right

margin positions until you press ENTER again

The justify command allows you to alter the type of justification used in your document
Like the margins command, all changes take effect from the current paragraph (that
containing the cursor) and remain in force until the end of the document, or until the
next change of justification When you select this command you will see that you are
offered the choice of left right or centred justification

Initially, it assumes right justification, the text is aligned on both the left and right margins,
producing text with an appearance like that of this manual If there are not
sufficient characters on a line to make the margins match extra spaces will be added
between the words until they do The final effect is very professional However,
if you use an unusually large quantity of extra-long or hyphenated words in a document,
unpleasant-looking spaces may result

To choose left justification, press the L key after calling the Justify command

This wtll produce text which looks like the text in this paragraph The left margin is
aligned, but the spacing of the text within a line is not adjusted, so that the right
hand margin is left uneven

Centre justification, selected by using the C option
of the Justify command, causes the text of each line to be centred between the left
and right margins The text could then appear as shown in this paragraph
Centre justification is useful, for example, in centering headings
and titles, or for adding labels to diagrams

As with the margins command you may press the up or down cursor keys to move
to another paragraph and make further changes of justification Press ENTER to leave

the command

12/84

CHAPTER 5
COMMAND

This chapter will extend your knowledge of the editing facilities to include block copies, CL/I | 1IN\3
moves and erasures In addition, the extremely powerful technigue of search and replace

editing will be tntroduced These faciliies are available through the Quill editing commands

- copy, erase, search and replace

In addition to copying a block of text from one place in the document to another the COPY
copy command also allows you to move blocks of text

The only difference between copying and moving text 15 that, in the case of a copy
the original text is left in position so that you end up with two copies You would use
this, for example if you wanted to create a table with a piece of text repeated a number
of times, or if you wanted to see the best place to include a particular paragraph

If you move some text, the new copy is inserted and the old copy is deleted, so that
you are left with only one version

The copy command gives you the option of either keeping or deleting the old copy
and therefore gives you both facilities in a single command

When you select the copy command (by pressing F3 and then the C key) you must
first move the cursor to the beginning of the text you want to copy, and then press ENTER
Move the cursor to the end of the text to be copied When you move the cursor the
text that will be affected by the command is highlighted so that ft ts easy to see how
much text will be copied If you accidentally mark too much text you may use the left
or up cursor keys to move backwards, but you may not pass the start of the marked
text After you have marked the text you should again press ENTER

In response to the next prompt you should move the cursor to the point where you want
the selected text to be inserted and press the C key The copy will be made and inserted
immediately You are then asked if you want to delete the old copy You should press
the K key to keep the old version (to produce the effect of a copy) or press ENTER
to accept Quill's suggestion to delete it

You can then end the command by pressing ENTER, which will take you back to the
main display

However you also have an option of making further copies of the same text at other
places in your document All you have to do is to move the cursor to the point where
you want another copy and press the C key You can repeat this as many times as you
want While you are making these extra copies you are not asked whether to keep or
delete the old copy When you have finished making copies you should press ENTER
to leave the command

As is normal in Quill, pressing ESC will cancel any partially completed action but will
not undo anything that has been completed All copies that you have made will be left
in the text if you press ESC

You should use this command (press F3 and then E) if you want to remove any large LnAoL
blocks of text from your document Remember that it is simpler to delete small bits of
text with the cursor editing facilities described in Chapter 3

As with the copy command, you are asked to move the cursor to the start of the text
to be erased and then to press ENTER You then have to move the cursor to the end
of the text - agam the text which will be affected is highlighted When you are satisfied
that you have marked the correct amount of text you should press ENTER and the
marked text will be erased immediately

The search command allows you to look for a particular word or phrase, through all bbNnnUnN
or part of your document You can use it, for example, to check whether you have used

a particular word or phrase too often The first search will start at the beginning of the

text but can then be continued from the current cursor position

The search command is in the second command menu so you select it by pressing
F3, 0 and then S

When you use the command you are asked to type in the text which you want to find,
finishing with ENTER Quill will immediately start searching your document from the
top until it finds the first occurrence of the text The cursor \$ left positioned at the start

12/84

of the found text If this is the occurrence you want, you can leave the command by
pressing ENTER

However, once you have given the search command some text to look for you can use
it again to find the next occurrence of that text Instead of pressing ENTER, just press
the C key If you do this Quill continues to search from the current cursor position until
it finds the next occurrence of the given text You can repeat this as many times as you
like, finding successive occurrences Press ENTER to leave the command when you
have found the occurrence you want

If at any stage, Quiff does not find another occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the mam
display

ntr LAOh The replace command is similar to the search command, but also gives you the ability

to replace some or all of the occurrences that are found The command is in the second
command menu, so you select it by pressing F3, 0 and then R

You are asked to type tn the text to be found When you press ENTER at the end of
the text, Quill immediately finds the first occurrence and asks you to type in the
replacement text (dont forget to press ENTER at the end)

Quill then asks if you want to replace the found text Press the R key to replace the text
- if you press the N key the text is not replaced In either case Quiii then continues
the search for the next occurrence and offers you the same choice of keeping or replacing
the found text This continues until no further occurrences are found, or until you press
ENTER

If, at any stage, Quill does not find another occurrence of the text in your document
it tells you so and waits for you to press the space bar and will then return to the main
display

You can use the command to make multiple replacements, insertions or deletions as
illustrated in the foilowing examples
To replace occurrences of 'river' by 'stream; give 'river' as the text to be found and
'stream’' as the replacement text
To insert 'or stream! give 'river' as the text to be found and 'river or stream' as the
replacement text
To delete 'river! give 'river' as the text to be found and give no replacement text
(just press R)

CHAFER 6
MORE

In this chapter we shall cover the remaining options for modifying the appearance of nNnWV/flIIVIMI ' M »V3
the text It includes setting tab stops and page breaks and using bold characters

underlining, subscripts or superscripts In addition there is a section on the design

command which you can use to change the settings of various options (such as the

page size) that control the overall appearance of your documents

TABS

A very common way of controlling the layout of a document is by tab stops These are Using Tab Stops
marked positions at particular columns of the text of your document When you press

the TABULATE key, the cursor will move to the right from its present position to the

next tab stop in the line If you have passed the last tab stop, then pressing the TABULATE

key will move you to the start of the following line

So that you know where the tab stops are, Quill draws the tab positions and their types
(as described below) in the line immediately below the ruler

Quill allows you to use several different types of tab stop and to position them in any >
column You can have up to sixteen tab stops in a line

There are four different types of tab stop Tab Stop Types

The most common type is known as a left tab stop and this works in exactly the same
way as the tab positions on a normal typewriter When you press the TABULATE key
the cursor will move to the next tab position and any text you type in will start at the
tab column 1t is called a left tab since lines of text at such a tab stop are aligned at
their left hand edges

A second type is a right tab stop When you move to such a tab stop and start typing,
the cursor will remain at the tab position and the text will appear to the left, so that it
ends at the tab position This will continue until the text to the left of the tab position
has filled the space available or until you press the TABULATE key again to move to
the next tab position Lines of text at such a tab stop are aligned at their right hand edges

There is also a centred tab stop Text typed at such a tab position will be adjusted so
that its central character is positioned on the tab stop Again the aligning of the text wtfl
continue until the available space (to existing text or to the left margin) is filled, or you
press the TABULATE key again

The fourth type of tab stop is a decimal tab, and is used for typing in numerical values
When you type a number at such a tab stop it is positioned so that its decimal point
is at the tab column If you do not type a decimal point in the text, it will behave like

a Right tab

Figure 61 shows the appearance of text typed at each of the four different types of tab

stops
Left Centre Right Decimal
| | | |
a a a a
piece of piece of piece of piece of
text text text text
| | | |
12345 12345 12345 12345
1234 1234 1234 1234
123456 123456 123456 123456

F gure 61 The four [ypes of lab stop

Initially tab stops are set at every tenth character position and are all Left tabs You can The Tabs Command
change the number; position and type of tab stops with the tabs command

You can place tab stops at any point in the line and mix the different types in any way
you like The only limit is that you may not have more than sixteen tab stops in the line
The new tab stops take effect from the current paragraph (that containing the cursor
when you called the tabs command) to the end of the document, or to the next change
of tab positions

12/84 15

More Formatting

16

When you select the tabs command (F3 and T) the positions are drawn in the display
immediately beneath the ruler

Each tab stop is marked by a letter (L C, R or D) to indicate its type The cursor is
positioned at the beginning of the line and you can move it to the left or right using
the appropriate cursor keys

You can make as many changes to the tab stops as you like You may also press the
up or down cursor keys to move to another paragraph and make more changes to the
tab stops When you have made all the changes you want press ENTER to leave the
command and return to the main display

Inserting a Tab To insert a tab stop, select the type you want, use the left and right cursor keys to move

Deleting a Tab

UhblbN

the cursor to the position the tab is required, and press T
When you have selected the Tabs command the types are shown in the control area

The control area contains the words (L)eft, (R)ight, (C)entre and {D)eomal and the word
{L)eft is highlighted This shows that the next tab stop to be inserted will be a Left tab

You can change the type of tab stop to be inserted either by pressing the space bar
(each time you press it the highlight moves from one type to the next) or by 'pressing
the key corresponding to its first letter For example, if you want to change to a Right
tab, you can either keep pressing the space bar until the word (R)ight is highlighted,
or just press the R key

Remove a tab stop by moving the cursor until it is over the tab marker that you want
to delete and pressing the X key

You use the Design command to change features in the main display, such as"

characters per tine
line spacing
lines per document page

The command is illustrated in figure 62 and a full description of each option appears
in Chapter 8,

Press F3 and then D to select the design command Quill then shows the list of options
if, for example, you want to select a 40 character display, press the D key for the 'Display
Width' option This option will be highlighted and Quill waits for you to press 4, 6 or
8 to select a display width of 40, 64 or 80 characters. It will not allow you to select any
other option until you have chosen one of these three

HELP DESIGN the FORMAT of the printed pape COMNANDS
press F1 Press the first letter of optian press F3
PROMPTS ESCAPE
press F2 When finished press ENTER press ESC
Bottom margin (type No. & END. 3
Display width 80,64,40, (8,6,4). 8
Gaps between Lines (0,1,2,). 0
Page size (type No. tines & ENT). 66
Start page no. (type No. & ENT). 1
Type cotour-Green or White. GRN
Upper margin (type No. & ENT). 6

Figure 6 2 The design command
You then have the option of changing any or all of the items listed m the display. When

you have made all the changes you want you should leave the command by pressing
ENTER.

12/84

If you move the right margin so that the number of characters in a line is greater than
the screen width, Quill cannot show the full width of your document on the screen In
this situation the display area acts like a window, through which you see only part of
the full document As you move the cursor along a line the window will slide across
the width of your document, so that it always shows the region containing the cursor

One of the options n the design command is to set page size, in terms of the maximum
number of lines of text that can appear on a page of your document In addition to
the text, frits number of lines ncludes the upper and lower margins any header or footer
and the lines of space between them and your text

Suppose for example that you have an upper margin of 3 lines a header separated
by 2 blank lines from your text a footer separated from the text by 4 blank lines and
a bottom margin of 5 lines This takes up a total of 3+1+2+4+5=16 lines If you have
a page size of 66 lines then there will be 66-16=50 lines of text on each page If you
were then to use the design command to set the gaps between Ithes to be 1 (double
spacing) you would have only 25 lines of text on each page

A page break marks the point n your document where a new page will start depending
on the length of the page that is set in the design command ft is shown as a horizontal
Sine across the screen and includes the page number Quill allows for the upper and
lower margins, headers and footers when calculating the length of a page In the above
example with the gaps between lines set to zero Quill will insert a page break after
each block of 50 lines of text

If you set a page size that does not leave space for five or more lines of text per page
Quill will turn off the paging No page breaks are shown and Quill treats the whole
document as a single page You can make sure that automatic paging is turned off by
setting the page size to zero

You can use the page command to force a page break to occur at a particular line
This is very useful for making sure that a section of text such as a list or a table is started
at the top of a new page and is not shown m two parts on different pages

You can set a page break in your text at any time by using the"page command which
is in the second command menu - press F3, the O key and then the P key You should
then position the cursor anywhere in the line at which you want the page to ertd and
press the P key Quid will insert a page break after the end of this line

You may set several forced page breaks at different positions but you may not set more
than one forced page break in any one line of your document When you have finished,
press ENTER to leave the command

You can remove a forced page break from your document at any time - you do not
use the page command for this purpose Remove a forced page break by moving the
cursor with the up cursor key until rt lies on the page break Then press CTRL and
while holding it down press the left cursor key

More Formatting

WIDE DOCUMENTS

Paging

Page Breaks

Forced Page Breaks

CHAPTER 7
FILE

vi tmnrtl Iv/lilO When you have produced a document you will probably want to save a copy of it on

a Microdrive cartridge At some later date you may want to make some changes and
keep a copy of the new version If you have a printer you will certainly want to produce
printed copies

Each document is saved on a Microdrive cartridge in the form of a file - a named
chunk of information This chapter describes the commands provided to save load and
print files

OAVb You use this command to save a copy of the text of a Quill document on a Microdrive

LUAU

riLbo ANU MbHub

18

cartridge If you do not save a document after you have written it you will lose its contents
when you leave Quill

When you use the save command (F3 and then S) you are asked to type in a name
for the document The simplest way to use the command is therefore to type tn something
like the following sequence

[HIS my Letter [ENTER]
This saves your document with the name 'myletter__doc' on the cartridge in Microdrive 2

If this name is the same as that of a document which is already saved on Microdrive
2 Quill will remind you that the document already exists and ask if you want to overwrite
it with the new one Press Y (yes) to replace the document or ESC to save the document
with a different name

When the document has been saved Quill asks you if you want to continue editing the
document press ENTER to continue and the space bar if you want to change to another
document

When you name a document to save it or if you load a previously saved document
Quiill displays the document name in the status area If, at some time later, you want
to save the document again, Quill suggests the current document name as the name
to be used If you type in a name of your own choice it will replace the one suggested
Alternatively you may accept Quill s suggestion by just pressing ENTER In such a case
you can just type in

fE3l S | ENTER|

The new version will then be saved on the Microdrive cartridge, replacing the old one

You should use the load command when you want to copy a document from a Microdrive
cartridge into the computer's memory so that it may, for example, be edited

You are first asked to type in the name of the document you want to load If you have
forgotten it you can type in a question mark, plus ENTER Quill will then display a list
of all the documents on Microdrive 2 and again asks you to type in the name

If the name you type in does not correspond to the name of an existing document
Quill will tell you that the document does not exist and give you another chance to type
the name

The files command includes four options

Backup - to copy a Microdrive document or other Microdrive file

Delete - to erase a Microdrive document or other Microdrive file

Format - to format a Microdrive cartridge

Import - to insert a Microdrive file, exported from Abacus, Archive or
Easel, into the current document at the position of the cursor

The merge command allows you to insert a document from a Microdrive cartridge into
the current document at the position of the cursor

With these commands you will often want to use a second data cartridge For example
you will usually want to make a backup copy of a document on a different cartridge
and an import file will not usually be on the same cartridge as your Quill document

You can remove the Quill cartridge in Microdrive 1 and replace it with another cartridge
but remember to replace the Quill cartridge before printing a document or asking for
Help If you are using additional Microdnves then normally it will be necessary to remove
the Quill cartridge in Microdrive 1

12/84

This command is used to produce a printed copy of all or part of a Quill document
It is, of course, necessary that you have a printer and that it is correctly connected to
the computer, otherwise nothing much will happen’

Quill suggests that you print the document you are currently working on and waits for
you to press a key Press ENTER to accept this suggestion or type in the name of
the document to be printed (which must be a document on the cartridge n Microdrive 2)

Quit! will ask you if you want the whole document to be printed Press ENTER to accept
the suggestion Otherwise you type the number of the page of the document at which
you want printing to start and also the page number of the last page you want printed
terminating each number by ENTER You can only print complete pages of your
document

The print command has an option to print to a Microdrive file instead of to the printer
Press ENTER to use the printer, or type a new file name if you want to send the text
to a file The file produced will contain all the characters and control codes that would
otherwise have been sent to the printer

The simplest use is to print all of the current document The keys you press in this case are

US P | ENTER | [ENTER] [ENTER]

To print pages 2 to 4 inclusive of a document called "myletter__doc to a new file
"rmyletter__lis" (both on drive 2) you should type

fE3l PnyLet ten| ENTERI 2\ ENTERI 4| ENTER! nytetter| ENTER]

Before starting to print Quill will read the current printer driver from the Quill cartridge
in Microdrive 1 This will tell Quill what facilities are available on a particular printer and
how they can be used Quill will work with most makes of printer and you wif! find details
of how to make changes for a particular type of printer in the Information section, where
the printer driver program is described

You may also wish to change things such as the line spacing and the number of lines
per page of the printed document These are alf included in the design command, which
is described in Chapter 6

12/84

PRINT

19

20

CHAPTER 8

QL QUILL
REFERENCE
THE FUNCTION

KEYS

THE COMMANDS

COPY

DESIGN

In addition to the standard use of F1 F2 and F3 function key 4 is used as follows

F4 change typeface
SHIFT & F4 switch between insert and overwrite

Quill does not use function key 5

Select a command by pressing F3 This switches Quill to display a command menu
You can still move the cursor but you are not allowed to insert or delete text

The control area display changes to show a list of the commands available You select
a command by typing its first letter A second set of commands (COMMANDS II) is
available and you can switch between them using the Other command

Since there are commands in the two sets that start with the same letter you must always
make sure that the command you want is shown in the control area before you select it

In general, you can leave any partially completed command by pressing ESC

At the end of most commands Quiill returns to the main display The exceptions are those
commands that have their own internal menu (eg Files) tn these cases you are left
in the internal menu and must press ESC to go back to the main display

In any command that requires text input (eg save, load, files, replace) you may edit
the text with the line editor, described in the QL Program introduction

The following commands are available -

They are listed in alphabetical order If they are part of the second command menu
then this is shown by a Il symbol after the command name

Use this command for either moving or copying text from one place in the document
to another

You are first asked to move the cursor to the start of the text to be copied and then
to press ENTER Next move the cursor to the end of the text you want to copy You
can move the cursor backwards with the up and left cursor keys but you cannot move
it back past the starting point The affected text is highlighted Press ENTER when you
have finished Press ENTER again to delete the original marked text or press K to keep
it Move the cursor to the position where you want the marked text to appear and press
the C key to insert the text at the new position

You can make further copies of the text at any other point in your document Position
the cursor where you want another copy to appear and press the C key You may make
as many copies as you like When you have finished press ENTER to end the command

This command allows you to set or change a number of features which control the overall
appearance of your document Within the command you are asked to choose, by
pressing the appropriate key, from the following options

Bottom margin type in the number of lines to be left blank at the bottom of each
printed page of your document Press ENTER when you have
typed in the number The initial setting is for a bottom margin
of 3 lines

Display width type in 4, 6 or 8 to select a display of 40, 64 or 80 characters
per line Quill will not accept any other characters The initial setting
is for either 80 or 64 characters depending on whether you are
using a monitor or a television

Gaps between lines type in 0, 1 or 2 to select how many blank lines will be printed
between each line of text in your document Quill will not accept
any other characters The initial setting is O

Page size type in the total number of lines to be used for each page of
your document and press ENTER. This number includes the
blank lines in both the upper and bottom margins. If you type

12/84

in a zero the document will not be split into pages The initial
setting is 66 (You can normally print 66 lines on a standard A4
page)

Start page number type in a number followed by ENTER This number is used to
number the first page of your document Successive pages are
numbered consecutively from this value You may wantto change
it if your document is a continuation of another document The
initial value is 1

Type colour to change colours used for normal and bold text Each time you
select this option the normal and bold text colours switch between
green and white The initial setting is tor ordinary text to be green
and bold text to be white

Upper margin type in the number of lines space to be left blank at the top of
each page of your document and press ENTER The initial setting
is for 6 lines

At the end of each option you may select another option, or press ENTER to leave
the command

This command allows you to erase text from your document You are first asked to move
the cursor (with the cursor keys) to the first character that you want to erase, press ENTER,
and then move the cursor through the text you want to erase The marked text is
highlighted When you have marked the text you should press ENTER again and the
text is erased immediately

There are four options provided in this command

Delete to delete a named document or file from a Microdrive cartridge
You are asked to type in the name of the file you want to delete
The file is deleted when you press ENTER

Format to format a cartridge in Microdrive 2 Since this erases all the
information on the cartridge you must confirm your selection

Warning, all information on the cartridge is erased when you
format it

Backup to make a second security copy of a document on a Microdrive
cartridge You are asked to type in the name of the document
and the name you want to give to the new copy You would
normally make the copy on a different cartridge and could
therefore use the same name again

Import to insert another file from a Microdrive cartridge into your
document, at the position of the cursor The file must be a file
exported from either QL Abacus or QL Archive, or a text file
produced say from SuperBASIC See the Information section

This command allows you to specify a line of text to be used as the bottom line on each
page It does not appear on the display screen—only on the printed page

You are first asked to select the position of the footer from the four options

None - no footer text

Left - at the left margin

Centre- centred in the page (the initial setting)

Right - at the right margin
Press the space bar until the required option is highlighted and then press ENTER
You are then asked to type the text for the footer, ending by pressing ENTER

If you have previously specified a footer then this list is shown in the status area You
have the option of altering it with the line editor, rather than typing in the whole of the
revised text

You can include a page humber anywhere in the text The position and type of humber
is marked by a three character code

12 84

ERASE

FILES 1l

FOOTER

21

22

GOTO

HEADER

HYPHENATE (Il)

Characters Page Number Style

nnn or NNN Arabic Numerals eg 1 2, 3, 4
rrr or RRR Roman Numerals eg |, II, lll, IV
aaa or AAA Alphabetic eg A, B, C, D

You are finally asked to type in a number, from 0 to 9 to indicate the number of iines
to be left between the bottom of the text and the footer

You may use this command to move the cursor to the top, bottom or to a specified page
in your document You are offered three options

Top to move the cursor to the beginning of your document
Bottom to move the cursor to the end of your document
a page number typing in a number, foliowed by ENTER moves the cursor to the

start of that page of your document If there are no page breaks
in your document this option will move the cursor to the end

This command allows you to specify a line of text to be used as the first line on each
page. Note that the header does not appear in the display of your document on screen
Quill does not automatically provide a header for your document

You are first asked to select the position of the header from the four options

None no header text (the initial setting)
Left at the left margin

Centre centred in the page

Right at the right margin

You press the space bar until the required option is highlighted and then press ENTER
You are then asked to type the text for the header, ending by pressing ENTER

If you have added a header at an earlier stage the existing text is shown in the status
area You then have the option of changing with the line editor, rather than typing in
the whole of the text

You can include a page number anywhere in the text The position and type of humber
is marked by a three character code®

Characters Page Number Style

nnn or NNN Arabic Numerals eg 1, 2, 3, 4
rrr or RRR Roman Numerals ag |, II, II!, IV
aaa or AAA Alphabetic eg A, B, C, D

This command allows you to specify a point within a word where it can be split, with

an automatically inserted hyphen, if it extends beyond the end of a line Words not marked
in this way will, if necessary, be moved to the next line in their entirety

Hyphenation is particularly useful when you are using right justification, to avoid large
gaps being left between the words

Move the cursor to the first character following the position where you want to allow a
split to be made and press the H key You may repeat this process as many times as
you want Press ENTER to leave the command

The command will have no apparent effect on the word if it is not at the end of a line

Use this command to select the type of justification you want ft takes effect from the JUSTIFY
start of the paragraph containing the cursor, and remains in effect to the end of the
document, or to the next change of justification

You are offered the following options, selected by pressing the key corresponding to
its first letter

Left the text is aligned at the left margin, but the right margin is uneven
Centre the text of each line is centred between the margins
Right additional spaces are inserted between words in each line so

that the text is aligned at both the left and right margins

You may make changes of justification to more than one paragraph Press the up or
down cursor keys to move up or down by a paragraph and change the justification as
described above Press ENTER to end the command

This command allows you to load a document into memory from a Microdrive cartridge, =~ LOAD
ready for printing or editing

Type in the name of the document (the name you gave it when you saved it) If you

just press "?" plus ENTER, Quill will show you a list of the names of all the documents

saved on Microdrive 2 Edit the suggested text, Microdrive 2 - if you want a list of the

files from a different Microdrive When Quill has shown the list, you are again asked to

type in a document name

Use this command to set or change the positions of the left, indent and right margins MARGINS
of your document All changes in the margins are shown in the text as you make them

The control area shows the words left, indent and right and on first entering this command
the word left is highlighted This means that you can use the left and right cursor keys
to move the (eft margin

You can select any of the three margins by pressing the space bar until the correct margin
name is highlighted You can move the selected margin by pressing either the right or
left cursor key

The change in each margin takes effect from the paragraph containing the cursor It
remains in effect to the end of your document, or to the next change of position of that
margin

You may make changes of margin positions to more then one paragraph Press the
up or down cursor keys to move up or down by a paragraph and change the margins
as described above Press ENTER to leave the command

The merge command takes a copy of a named Quill document from a Microdrive MERGE (II)
cartridge and inserts it, at the position of the cursor, in the document currently in memory

This command allows you the option to replace the Quill cartridge with a data cartridge
You must replace the Quill cartridge in Microdrive 1 at the end of the command

Position the cursor at the point where you want the document to be inserted before
selecting the command Quill asks you to type in the name of the file you want to insert
If you insert the document in the middle of a paragraph, QuiH will split it into two
paragraphs at the position of the cursor and insert the document between them

This command allows you to switch to the display of a second set of commands in the OTHER
control area The list of commands in the control area alternates between the two lists
each time you use Other

Since several commands start with the same letter, you must make sure that the
command you want is one of those displayed, before you choose it.

You can use this command to mark a point in your document where you want a new PAGE (II)
page to start

Move the cursor to the point where you want the new page to start and press P

You may add such page breaks at several points in your document Move the cursor
to the point where you want another page to start and press the P key Press ENTER
to leave the command

<004

23

?4

Do not use the page command for deleting a forced page break You can cancel a
page break by moving the cursor to any point on the page break line and then pressing
CTRL and the left cursor key together

PRINT This command prints all or part of the document currently in the computers memory,

QUIT

REPLACE (Il)

SAVE

SEARCH (Il)

or any other document on the cartridge in Microdrive 2

Press ENTER to print the current document, or type in the filename of the document
to be printed, followed by ENTER

Quill then suggests printing the whole document If you reply by pressing ENTER the
whole document will be printed If you only want to print some of the pages, type in
the number of the first page you want printed, followed by ENTER Then type the number
of the last page you want printed, again ending by pressing ENTER

Finally, press ENTER to send the text to a printer, or type the file name of a new file,
followed by ENTER to send the output to a Microdrive file

Before printing, Quill will read a 'printerdat’ file entering the printer driver information

This command allows you to leave Quill and return to SuperBASIC You have three options

ENTER to save your current document before returning to SuperBASIC
You are given the further option of typing in a name for the saved
document If you just press ENTER the document will be saved
with its old name, replacing the original version of the document
on the Microdrive cartridge

A to abandon your current document and return to SuperBASIC
without saving it

ESC to cancel the command and return to your document
You can use this command to replace some or all occurrences of one piece of text by
another

First type in the word(s) to be replaced followed by ENTER Then type in the replacement
word(s), again followed by ENTER

Quill searches from the start of the document until the first occurrence of the old text
is found It then offers you the option of replacing the old text with the new Press the
R key to replace the text, or N if you do not want to replace it

Qutll will then search for the next occurrence and again offer you the option to make
the replacement This process will continue until you reach the end of the document
or until you end the command by pressing ENTER

You use this command to save a copy of your document on a Microdrive cartridge

Type in a name for your document so that it can be identified The document is then
saved under that name If, instead of typing in a name, you just press ENTER, the
document will be saved with its old name, replacing the original version

Quill then asks you if you want to continue editing the document you have just saved
If you press ENTER, the text of the document remains in the computer's memory and
you can continue working on it

Alternatively, press the space bar if you want to work with another document

This command searches your document for a particular word or phrase

First type in the text which you want to find When you press ENTER Qutll starts at the
top of your document and searches for the first occurrence of the text

You may press the C key to continue the search to find the next occurrence of the text
Press ENTER to end the command when you have found the occurrence you want.

17?'RJ

The tabs command allows you to specify the positions and types of tab stops on a line
of text The tabulate key will then take you straight to the next tab stop along the rule
which you have set Each change of the tab stops will take effect from the start of the
current paragraph (the one containing the cursor) It will remain in effect to the end of
your document, or until the next change of tab stops

There are four types of tab stop provided

Left the tab stop behaves like a left margin, the text is positioned to
the right of the tab stop

Centred the text will be centred around the tab stop

Right the tab stop behaves like a right margin, the text is positioned

to the left of the tab stop

Decimal this is used for aligning decimal numbers Each number will be
positioned so that its decimal point is at the tab stop Until a
decimal point is encountered it behaves like a right tab

The tab positions are drawn on the screen, below the ruler using the following symbols

L- left

C centred
R - right

D - decimal

The cursor is positioned at the start of that line You can move the cursor along the line
by using the left and right cursor keys

You can remove a tab marker by moving the cursor with the left and right cursor keys
until it is over the tab marker in the line under the ruler and then pressing the X key

To insert a tab marker you should first select the type you want by either pressing the
space bar until the correct type is highlighted in the control area, or pressing the L,
C R, or D key Then move the cursor to the appropriate point and press the T key

You can mix inserting and deleting tab markers in any combination You may also press
the up or down cursor keys to move to another paragraph and make further changes
to the tab stops When you have made all the changes you want you should press ENTER
to leave the command and return to the main display

TABS

This command deletes the whole of your current document, without saving it on a ZAP

Microdrive cartridge It allows you to discard your current document and start again

You can change the typeface of the text in your document by pressing F4 and then
the first letter of one of the four options listed below The selected typeface affects all
text subsequently typed in

Alternatively you may press F4 and then the P key to paint new text in a new style

You are offered the following options

Bold text is converted to a bold, or heavy typeface
High script text is printed in the upper half of the line
Low script text is printed in the lower half of the line
Underline text is underlined

You may select any combination of these options except, of course, that you can not
have both high and low scripts selected together ff you select either of these, the other
will be switched off automatically

If you want to select a combination of typefaces, you should select them one after another,
by pressing F4 and the appropriate tetters

If you press the P key to select the paint option, Quill allows you to select one or more
typeface styles Move the cursor to 'paint' the text to the new style and press ENTER
when you have finished Note that the original typestyle is restored after painting

You can switch off any of the typeface options in the same way that you use to turn
it on - that is by pressing F4 and then the appropriate key (B H, L or U)

1?Pd

TYPEFACE

INSERT AND

uvtnwnl 11 MUUto Initially Quill in insert mode and any text that you type in wifl be inserted into your document

at the position of the cursor Any surrounding text wiii be spread out to make room

If you hold down SHIFT and press F4, Quill will switch to overwrite mode In this mode
any text that you type in will replace, character by character, any text from the cursor

position onwards

You can switch back to insert mode by the same method, that is by holding SHIFT
down and pressing F4

THE START-UP

rAHAMcTCNO When you first load QUILL it is in the state described by the following list You can change

each of the properties by the method indicated in the right hand column

Feature Initially Change By
Mode insert SHIFT & F4
Display width 80(mon) 64(TV) Design
Left margin 10 0 Margins
Indent margin 15 5 Margins
Right margin 70 64 Margins (max 160)
Upper margin 6 Design
Bottom margin 3 Design
Justification Right Justify
Tab stops Left, cols 10,20 ,80 Tabs
Page size 66 Design
Gaps between lines 0 Design
Page header none Header
Page footer centred “"page nnn" Footer
Start page number 1 Design
Text colour

Normal green Design

Bold white Design
Typeface

Bold off F4

Underline off F4

High script off F4

Low script off F4

sirci=ir

QL ;tacus

©1984 PSION LIMITED
by Dick de Grandis-Harnson (Psion Limited)

CHAPTER 1
ABOUT

QL Abacus is a spreadsheet which can be used for planning budgeting, tabulating V*L MDMwUO
data calculation, information storage or for presenting information This information is

represented on a tabulated grid divided into 255 rows and 64 columns The data area

you see on the computer screen is a window through which you can see part of the

grid You can move this window across the grid The intersections of the rows and columns

represent more than 16,000 celts or boxes in the grid You can enter text into any cell

or cells, or the cells may be used for the storage of numbers or data

The real power of Abacus however comes from the use of rules or formulae, which
can connect different blocks, rows or columns of cells, or even individual cells of the
grid This means that information inserted in one area can immediately be evaluated
and represented in another form elsewhere

For example, you can use twelve of the columns to represent months of the year and
you can then enter sales data along a 'sales' row The next two rows can contain formulae
to calculate the cost of sales (as a percentage of sales plus a fixed cost, say) and the
profit The monthly profits will then be evaluated automatically each time you type in
a sales figure The yearly totals can also be summed by another formula so that a change
in the sates of say March will immediately lead to a completely different profit profile
and total for the year All the figures are evaluated by Abacus automatically

You can also represent the data from Abacus as graphics or in a table in the word
processor through the export commands of the Psion QL package

In many respects Abacus is like a visual programming language, but one which is easy
to use You may manipulate text, data or formulae, use input and output statements and
text variables

If, at any time you are not sure wnat to do, remember that you can ask for Help by
pressing F1 Also remember that you can cancel any partially-completed operation (eg
typing in a number or using a command) by pressing ESC

12'84

CHAPTER 2

GETTING
STARTED
LOADING

QL ABACUS

UulNtnAL
APPEARANCE

Load QL Abacus as described in the Introduction to the QL Programs don't forget
that Abacus requires a formatted cartridge m Microdrive 2 When loaded the following
message will de displayed

LOADI NG QL ABACUS
VEersion X.xx
Copyright © 1984 PSION SYSTEMS
spreadsheet

where x xx represents the version number (eg 1 02)

The program will then wait for a few seconds before starting

The Help information is not loaded into the computer's memory together with the
program It is only read from the Abacus cartridge when it is needed You should
therefore not remove the Abacus cartridge from Microdrive 1 if you intend to use
the Help facility.

When Abacus is first loaded the appearance of the screen is as shown in Figure 21
This is the mam display

Abacus can display 80, 64 or 40 characters per line of the display If you are using
adorTiesticia|ayisionthe display may not be clear enough for you to see 80 characters
per line and you should use 64 or 40 characters. The 64 character display is very
similar to that for 80 characters but the 40 character display is arranged slightly differently.
This is shown in figure 2 2

HELP CURSOR DATA & FORMULA TEXT type” || COMMANDS
press F1 press ~ 11— press F3
PROMPTS GOTO CELL enter directly folleowed by || ESCAPE

press F2 press F5 & press EXTER text & ENT. || press ESC

I:
-]
|
-
-
]
m
e
b ;]
—
(-3

MO0 R WA e W Y e

CELL A1 GAID USED AT:A1 MEMORY 23K
CONTEXTS ENPTY

Figure 21 The main display wilh a monitor (80 characters)

Abacus initially selects either an 80 or a 64 character display depending on whether
you started from SuperBASIC in the Monitor or the TV

12/84

Apart from the difference in appearance. Abacus works in exactly the same way with
all three display formats Most of the diagrams in this manual are shown for the 80
character display

CURSOR DATA & FORMULA TEXT type"
press =~ 7 —
GOTQ CELL enter directly followed by
press £3 & press ENTER text & ENT,
i HELP Fi I PROMPT F2 T |[COMMANDS F3 | ESCAPE ESC

A 8] ¢]

=
et BT
W L B = O D D] O WA LM RS e

CELL A1 GRID USED A1:A1 MEMORY 23K
CORTENTS EMPTY

Figure 2 2 The main display for 40 characters
The central area of the screen contains the window showing part of the grid

Across the top of the window you will see a line in which a number of letters appear
These letters label vertical columns of cells making up the grid As you can see, columns
A,BC and so on are visible Down the side of the window there is a series of numbers,
from 1 to 15 These numbers label the rows of cells in the grid

| | |

— |

Figure 23 The window Figure 24 The grid labels

A combination of a letter and a number will therefore identify one particular ceil, and
is known as a cell reference. For example, A1 This refers to the cell which is in column
A and row 1, {the top left hand cell in the window)

You will see that this cell is different from all the others in that it is filled by a large red
rectangle. This is known as the cursor and it marks the current cell, that is the cell which
will receive any data you type in

12,84

The Window

Getting Started

Figure 25 The cursor Fgure 26 The status area

The Status Area The bottom section ot the display contains the status area which gives information

The Control Area

MUVINu | Ht
CURSOR

about the current state of the grid

It contains the cell reference of the current cell and its contents This cell is empty when
you have just loaded Abacus In addition the status area shows the extent of the used
portion of the grid (as the cell reference of the bottom right cell of the used portion)
and the amount of memory left

The control area shows the normal options to obtain Help (F1) to turn the prompts

on and off (F2), to select a command (F3) and to cancel an incomplete selection (ESC)
In addition there are three options that are specific to Abacus These are

move (he cursor
type in data or a formula,
type in text

- - L
- 3
[23

Y ¥

Figure 2 7 The contral area Fiqure 28 Moving the cursar

The four cursor keys move the cursor around the grid Press the right cursor key once

ux_he cursor

mews one column to the right and the current cell indicator now shows
Bl If you then press the left cursor key once the cursor returns to cell A1 Pressing
the left cursor key again will have no effect because you are at the extreme left hand
edge of the grid

Move the cursor to the extreme right hand edge of the grid Pressing the right cursor
key again will not move the cursor but the letters across the top of the window will
change When you attempt to make the cursor leave the visible area of the grid the
window will move across the grid so that the cursor remains in view

The cursor keys are a useful way of moving the cursor provided you only wish to move
it one or two cells They are very inefficient for making large movements across the
grid For such large movements it ts more convenient to go directly to the required
cell You can do this by pressing F5, to select the goto option, and then typing the
required eel! reference, followed by ENTER

12/84

As an example of using the goto option, ask Abacus to move the cursor to cell D11
First press F5 to select the goto option The words goto AT will then appear in the
line immediately below the window Abacus is suggesting that the cursor be moved
to the top left hand corner of the grid If you accept this suggestion (by just pressing
ENTER) the cursor will move to that point To move the cursor to another cell type
in the cell reference - in this case type

dii

and press ENTER Note that the d may be in upper or lower case - Abacus will
accept either The ceil reference you type in replaces that suggested by Abacus and
the cursor moves directly to the cell you have specified

You should now move the cursor back to the top left hand corner of the grid by using
this option again This time you can accept the suggested celt reference (Al) so all
you have to type is

TsSIlENTERI

You will find that you go back to the original state of the display, with the cursor at
the top left hand corner of the window, in cell A1

Now move the cursor to cell Y1, by typing in

fESlyl |ENTER

Look at the letters labelling the columns across the top of the window and you will
find the column to the right of column Z is labelled AA, the next one is labelled AB,
and so on This enables you to refer to more than 26 columns

There are 64 columns in total and after AZ, the columns are labelled BA, BB and
so on The last column in the grid is labelled BL

You can also move down the grid to find the last row but you will have to go a long
way there are 255 rows in the grid

Return the cursor to cell A1 and then type

100

but don't press ENTER just yet The 'Data or Formula' option box in the control area
is now highlighted, to confirm your action The prompt value > followed by the number
100 will also have appeared in the line immediately below the window

All typed input and the text that Abacus shows while you are using a command,
appears in this line It is the input line

The small rectangle in the input line marks where the next input character will appear,
and is known as the input cursor to distinguish it from the main cursor in the window
If you make a mistake at any time during typing to the input line, you can correct it
by using the line editor, described in the Introduction to the QL Programs

When you press ENTER the value 100 will be transferred to the current cell (A1) and
the input line will clear ready for more input You will see that the value 100 also appears
in the status area, at the bottom of the display

Putting text into a cell is the same as entering a number except that text is preceded
by double quotation marks As soon as you type the quotation marks, Abacus responds
by emphasising the TEXT option box in the control area and showing text>" in the
input line You then type in exactly what you want to appear in the cell, followed by
ENTER There is no need for a closing quotation mark Try entering text into a few
cells and, in particular, notice the difference between entering, say

1000 [ENTER | (a number)
and
"1000 | ENTER | (text)

A number is shown at the right of the cell, whereas text is placed at the left The status
area also shows the type of information, text, numeric and so on, in the current cell

1284

Getting Started

ENTERING

NUMBERS

ENTERING TEXT

Getting Started

THE COMMANDS You select a command by first pressing F3

The central part of the control area shows a list, or menu, of the available commands
and is known as the command menu, illustrated Figure 29

Most of the commands are described in later chapters but we can take a quick look
at two of them These are Zap, which you use to clear the whole grid, and Quit, which
allows you to stop usino. Abacus and return to SuperBASIC

Try the Zap command first Press F3 and locate the Zap command in the displayed
menu If you press the Z key, the word Zap will appear in the input line - you need
never type more than the first letter of any command Also, the command box in the
controi area changes to show the menu for Zap Try pressing ESC first, to cancel the
command

Now return to the command menu by pressing F3 and then press Z to call the Zap
command again but this time press ENTER next to clear the grid You will be left
with a blank grid and with the cursor in cell A1 ready to start afresh

Whenever you want to leave Abacus and return to SuperBASIC, you must use the Quit
command This works in a similar way to Zap, (press F3 and then the first .letter of
the command (Q)) Quitting causes you to lose the contents of your grid so you are
again given the option of going back to the mam level by pressing ESC

HELP COMMANDS Echo Load Quit Window COMMANDS
press Fl Amend Fiies Merge Rubout Xecute press F3
PROMPTS Copy Grd Order Save Zap ESCAPE

press F2 Design Justrfy Print Units press ESC

n’s{c[uisirlﬁ

Bl e e Qe P
W R D e O WD) O e DR WY e Lk) e

L18:
comnand *» '

CELL A1 GRID USED A:A1 MEMORY 23K
COMYENTS EMPTY

Figure 29 Tha command menu

12/84

Much of the power of Abacus lies in its ability to handle whole rows columns or ranges
of cells in a single operation You do this by using simple expressions which allow you,
for example, to fill all or part of a row of cells The values in the cells may all be made
the same or they may vary in a regular way

This chapter describes some of the properties of cells and the ways in which you can
refer to them

The cell is the basic unit for holding information in Abacus Each cell can contain one
item of information which may be text a number or a formula

For each cell that contains information, Abacus also keeps a record of how that information
is to be displayed You can, for example, display numbers or text at the left, centre or
right of the celt, and you can display numbers in several different formats

You use the Justify command to change the position of the display within a cell It allows
you to select the position of numbers or of text within a cell or group of cells

Put a value of 100 in ceil A1 and then use the Justify command by pressing F3 and
then the J key Abacus first asks you to select between a Cells and a Defaults option
select the Cells option by pressing ENTER Abacus then asks you to choose between
either text or numbers Select numbers by pressing the N key Next you must select
Left Centre or Right justificaton Since Left is suggested by Abacus, select it by pressing
ENTER

Finally Abacus asks you to specify the range of cells that are to be affected In this case
just press ENTER You will see that the value of 100 in cell A1 will move to the left hand
side of the ceii

Note that you can change the numeric format or numeric justification of a cell which
currently contains text Nothing will appear to happen If, however, you later change the
contents of the cell to be numeric, it will be displayed with the format and justification
that you specified This also applies to a change of text justification for a cell which currently
contains numeric information

Cells that contain no information do not exist as far as Abacus is concerned, and use
no memory They can therefore have no properties If you attempt to use the Cells option
of either the Justify or the Units command on an empty cell they will have no effect
Numbers subsequently placed into such a cell will be displayed in the general default
format

If you want to change these defaults you must use the Defaults option of either the Justify
or the Units command (or both) For example, use the Defaults option of the Units
command (press F3, U and then D) to select a default of percent format with one decimal
place The choices are similar to those in the Cells option, but you are not asked for
a cell range

The Defaults option of the Justify command works in the same way Again you are not
asked to type in a cell range because Abacus will use the new default each time you
put informaton into any previously empty cell

The new default settings will remain in effect until you change them again, or until you
finish using Abacus and return to SuperBASIC

To restore the defaults to their original state - numbers justified right, text justified left
and numbers displayed in General format - use the following sequences

fE3lJ DN R [number right justified)

fEGIJ D | ENTER 11 ENTER | [text left justified)

[F3] U D G {number displayed in general formatj

Very often you will want to fill several celts in a particular row with a particular value,
or with values that vary in a regular way Abacus provides simple ways of doing this
One method is to refer to the cells of a row with a range identifier There are two range

1284

Getting Started

CHAPTER 3
CELLS,
ROWS,
COLUMNS

MU FiMIitvitX

L/tLLo

Justification

Empty Cells

nUVvVvO

Cells Rows Columns and Ranges

UULUiviNb

LAbbLb

identifiers, row and col They refer to the cells of the current row or column - the row
or the column that contains the cursor

As an example, let us fill the first row, from column B to column D with the value 100
We shall use the range identifier row as follows Place the cursor in cell A1 and then type

row = 100 | ENTER |

As soon as you press ENTER a prompt appears in the input line suggesting that the
row be filled starting at column A (the column containing the cursor) The system will
always make a reasonable suggestion for the starting point and this can be accepted
simply by pressing ENTER In this case, however we want to start at column B so you
should press

BI ENTER |

The input line changes to show that the filling of the row is to start at column B and
a further prompt appears with a suggestion of BL (the last column in the grid) for the
end column Again this will have to be changed, since we want to end at column D
so you should press

P iENTERI

The instruction is now complete and will be carried out - the value 100 will appear
in each of the cells from 61 to D1 inclusive and the input line will clear ready for your
next input

Filling a column follows a very similar pattern except, of course, that you refer to a column
by one or two letters rather than the number that identifies a row Suppose we want
to put the text 'hello’ in each of the cells of column D, from row 5 to row 11 We can
do this by using the second range identifier col Move the cursor to cell 05 and type

coL="hello"[ENTER

This time Abacus suggests the correct starting point (row 5) as this row contains the
cursor, and you can accept this suggestion by pressing ENTER Row 255 will then be
offered as a suggested end point and you should change this by typing

11|[ENTER

The text will appear in cells D5 to D11 inclusive and the input line will clear, ready for
the next input

Each time you use col you will be asked to specify the first and last row to be affected
You may as usual, accept or replace the values that Abacus suggests

In addition to this way of using the range identifiers row and col, you can also use them
to specify the range of cells for any function that needs such a range For example

For example put some numbers in all the cells of the rectangular area whose top left
hand corner is the cell A1 and whose bottom right hand corner is the cell C3 (ntne
numbers in all) Now move the cursor to cell D1 and type

col = sum(row) |ENTERI

This fills each cell of column D with the total of the values in the cells of the corresponding
row Abacus needs to know the ranges for both row and col It will therefore ask for
the range of columns for row (Abacus suggests column D to column D whtch is correct
- accept each by pressing ENTER) and then for the range of rows to be used by
col Abacus suggests from row 1, which is correct to row 255 (or to row 11 if you type
in this example immediately after the previous one) Accept the first by pressing ENTER
and type the correct value, 3 (don't forget to press ENTER) for the second Abacus
will then calculate the total for each of the three rows and display the results in the cells
of column D

The previous examples referred to rows and columns by an explicit use of their number
and letter cell references An important alternative for identifying rows or columns is to
use labels, that is names which you may choose yourself These labels are then used
to refer to specific rows, columns or cells

Any text that you put into a cell can be used as a label You can use labels in any
command or formula where you would otherwise use a letter and number reference
The advantage is it is much easier to remember names than numbers and letters when
you want to refer to a particular cell

12/84

Cells Rows Columns and Ranges

This is an extremely powerful and flexible method which you can use to great advantage
to simplify the setting out and operation of a grid The following two sections explain
how you can use these labels

A label may refer to either a row or a column, depending on the contents of the other Row and Column
cells in the grid The basic rule when you use a label to identify a row or column of Labels
figures is that Abacus searches below and to the right from the cell containing the label.

HELP CURSOR DATA & FORMULA TEXT type" [COMMANDS

press F1 press «fl— press 3

PROMPTS GOTO CELL enter directly followed by || ESCAPE

press Fé press FS & press ENTER text & ENT, | press £5C |
A’slclaislslsl

t

2

I

4 CosTS 100 00

5

&

7

8

9

10

1t

12

1%

14

15

CELL A1 GRID USED Aal:C4 MEMORY 23K
CCHTENTS EMPTY

Figure 31 Labelling a row

HELP CURSOR DATA & FORMULA TEXT type || COMMANDS
press F1 press ~H— press F3
PROMPTS 60T CELL enter directly followed by || ESCAPE
press F2 press £5 & press ENTER text & ENT. || press ESC
A[-slc!uls!r:!ﬁ

1 MARCH
2
3

4 100 00
5
&
?
8
9

10

i)
[T A Y
F- RV S TV gy

CELL A1 GRID USEC Al:C4 MEMORY 23K
CONTENTS EMPTY

Figure 32 Labeling a column

12'84

Cells, Rows, Columns arid Ranges

Labelling Cells

HANubo

10

The closest cell that contains a number, below or to the right of the position of the label,
determines whether the label refers to a row or to a cotumn Figures 31 and 3 2 should
help make this clear In Figure 31 the label refers to a raw and in Figure 32 it refers
to a column

In more complex cases for example where there are numbers both to the right and
below the label the nearest number (measured by the number of cells separating the
number from the label) determines whether it is a row or a column reference If the two
numbers are the same distance from the label Abacus shows the message

Cannot tet!| whether name is a rowor col

and wait for you to press the space bar Abacus will then put the text of your formula
back into the input line so that you can correct it with the line editor

You shou