RTINS .. Aty gt G % T

PYRAMIDE

" GRAPHIC TOOLKIT

by Mick Andon

©pyramide '86

INTRODUCTION

This 100)kit provides a range of functions and procedures aimed ai exploiling the
screen and graphic capabiiies of the QL. The extensions (occupying around 11 K of
code) are accompanied by several apphications and example routines. Most ol these
are described in delail in 1his manual. An aiphabetical index for the extensions can be
found at the back.

Place GRAPHIC TOOLKIT in mdv2_
Place a BLANK carindge in mavi_
Type: LRUN mdv2_bachup

Iainsiall the extensions ...
wmther : Reselthe QL, insent GRAPHIC TOOLKIT in mdvi__and press Ft or F2
or : Reserve memory for the extensions - addr«RESPR (11000) : CALL addr

or : Type - LRUN mdvi_boot

+ this manual, the syniax for descriptions contorms to these rules :

‘PER CASE words . . . should be typed as wrilten (in upper or lower case)
«/@r Case words. . . aie dascriptive
N indicates an oplional parameter

a1t from the boot and backup programs, the lilenames on the loolkit cartridge have
: tollowing descriptive sullixes :

oin® indicates a binary lile

nas" is a BASIC program

scrt is a 32 K scraen file
_sat” is a character set (font}
X is an 'EXEC'able file

page 1

POINTER x,y (Procedure)

XPOINT ’ (Function)
YPOINT (Functwan)
POINTKEY {Function)

Places a pointar at position x,y which can be moved around the screen using the four
cursor keys, joystick or mouse. The pointer will remain on screen until either SPACE,
ENTER or ESCape (or the corresponding mouse or joystick button) is pressed .

On return from the procedure POINTER, three variables are set -
XPOINT returns the last x co-ordinate of the pointer.
YPOINT returns the last y co-ordinate of the pointer.
POINTKEY returns a value of 0 if the key pressed was 'ESC’
1 it the key pressed was ‘SPACE’
2 if the key pressed was ‘ENTER'

Note: Examine the routine “pointer_demo_bas" for an exampie of ﬁsage.

POINTBUF (Function)

The pointer is defined on a matrix of 7 lines of 8 pixels (together with a mask ot the
same dimensions). It may be redefined by POKEing new values into the pointer buffer
(the relevant address is returned by the function POINTBUF). The pointer 1s intended
principally for use in mode 4 - since in moda 8 the matrix bacamas ettectively 7x4
pixels - h it is possible 10 define pointers (of use in mode 8 (attention musl be
paid 10 avoud setting flash bits).

The data for the delault arrow is as follows:

Arrow (binary) hex Mask (binary) hex

11111110 00000000 FEOO 00000001 11111111 OtFF
10000010 00000000 8200 00000001 11111111 OfIFF
10001110 00000000 BEOO 00000001 11111111 OIFF
10100110 00000000 A600 00000001 11111111 O1IFF
10110011t 00000000 B300 00000000 11111111 OOFF
11111001 00000000 F900 00000000 11111111 OOFF
00001111 00000000 OFDO0 11110000 11111111 FOFF

Note: Each line is delined by the high byte ol a word (all the bits in the low byte are
reset in the case of the shape and set in the case of the mask).

Example (mode 8 pointer):
100 RESTORE 120
110 FOR x=010 13 : READ num$: POKE_W POINTBUF + (2*x), DEC(num§$)

120 DATA "AA00", “B000", “8000", "8200°", “B0DO", “BB00", "0200" : REMark arrow
130 DATA "OOFF", "00FF", "00FF", "00FF~, "00FF", “00FF", "FCFF™ : REMark mask

page 2

POINTSPD value {Procedure)

POINTSPD sgls the pointer sgeed. Ten spgeds are available, from 1 (ﬁﬁwgd)
1o 10. On instaliation POINTSPD is gt at 5. The pointer spaed will remain unchanged
wntil a new value is set by POINTSFD.

FRAME w, h, X, y, scr_x, scf_y, virtual_screen_addr {Procedure)

FRAME sets up a “window"™ {w pixeis by h lines) at co-ordinates x.y and displays
“bahind’ that window, a section of a yintuaf $12x256 screen whose origin i) 0
vinual_scregn_addr, The vinual screen may consist of a 512x258 image that has been

in memory, Qr it may take its origin at any memory address - even within the
cutrent screen display (131072 to 163840). —

The_third and lourth co-ordinales indicate the point (meas{ureuglgy_w_to't_ne__\ginual
screen’s ongin) thal will coincide with the display windSw'a origin.

AH horizontai co-ordinates are roupded down 1o coincide with long word addresses.
This is in order to increase speed ol execution in shifting large sections of screen
maemory. The virlua) screen stant address may be anywhere in RAM, however, if is
imporant thatl the window defined by w,h.x,y lalls within the normal 512x256 screen
display of the QL wili probably crash. =

Exampla: 100 SETWIN 4 : LIST#0 : LIST#1: LIST
110 RECT#2, 128+SMODE2, 82, 45, 22,0
120 w=ai28 : h=80 : x=48 : y=24 : SCrx=48 : 8Cry=24 : addr=131072
130 REPeat loop
140 IF KEYROW(1)882 : scrxascrx-t6
150 IF KEYROW(1)8816 : scrxmscrx+16
160 IF KEYROW(1)884 : scry=scry-8
170 IF KEYROW(1)88128 : scry=scry+8
180 FRAME w, h, x, y, sCrx, scty, adde
180 END REPeat loop

Note: The FRAME routine is used by the program “transier_x" to parscroll the
second screen within 8 window.

PAINT x, y, colour, [source_colour] {Procedure)

PAINT wili paint an area of unilorm colour (where x.y is a point ingide that area). using
another colour {0 to 255). The two co-ordinates, x and y, shouid be given as absolute
(qased on a screen of 512x256) for poily mode 4 and mode 8. H the paim colour
specitied is \he same as the onginal colour found at x.y then the paint will not take
piace. ’

A tourth parameter may be spacified (source_colour) - in whigk case the paint will Onjy
fixgcyte if the colour lound at x,y has the sama value as that parameter.

page 3

e e e 7

g e

PAINT contd.

To-fill-mora_complex sk pes, more _than_ one_EAINLwaum,Lemxgpdliiggqye;__ng
memory is used by the routine for storing co-ordinales eic., and execution is

(easonably rapid. The procedure POINTER is an ideal means of positioning x and y
when using m 4.

Example: 100 INPUT#0,Colour ? *; colour : NOKEY : POINTER 250, 120
110 PAINT XPOINT, YPOINT, colour
120 POINTER XPOINT, YPOINT : IF POINTKEY=2 : GOTO 100
130 GOTO 110

ALCHP (nbytes) (Funcpon)
RECHP address {Procedure)

ALCHP is used to_allocate memory space (in the Common Heap) for use by machine
code programs, slorage 'of screens etc. lts use is similar to that of the function RESPR
(which reserves space in the Resident Procedure area), the Mmain ditterance being that
the memory may be later released to the Common Heap when no longer required.

Example: addr = ALCHP (32768) ... will reserve 32768 bytes

Since 32768 bytes is the screen memory size, you coukt for instance load a screen
directly from microdrnive into memory using LBYTES mdv1_neme_scr.addr and then
place the image on the screen using FRAME or PLACE.

RECHP is used to release memory allocated by the above. It is imponant to save the
base address (addr - returned by the function ALCHP) if you wish to use the procedure.
Type RECHP (followed by the address) to release the memory to the Common Heap.

Important note: The Common Heap may become fragmented by multiple
allocations . . .eg: PRINT FREE
q = ALCHP (40000) : PRINT FREE
aw ALCHP (512) : PRINT FREE
RECHPq
PRINT FREE

The RECHP ,apgga‘rs not to have worked - this is because the small space {(which is
reserved by “a°) is separating two sides of the Heap area. It you now type - RECHP a,
although you are only releasing 512 bytes, typing FREE will reveal that the heap has
been restored to one area. Using a directory device (eg: mdv2_) for the hirst time, will
sot up a “delinition block” in the Common Heap in the same way as the example
above.

It is advisabie to previously access all the directory devices likely to be used during
large allocations of the Common Heap.

page 4

FREE {Funcuon)

This tunction wilf return the approximate number of bytes free for use by Superbasic
{the largest singie free space), and is essential as a means of keeping check on

memory usage.

Example: 100 DEFine PROCedure pr
110 vevs!
120 AT 0.0 : PRINT FREE; " Bytes ioft " :pr
130 END DEFine
140 CLEAR :vat :pr

Atier a while the "Out of memoary” message will appear. It is often dillicult 1o locate a
causa of memory wastage in large programs. Using FREE (within a main loop) as
follows could helptodo so . . . IF KEYROW(3) = 18 : AT#0,0,0 : PRINT#0, FREE

BVAR (Function)
Uniike the QDOS System Variabies (located above the screen at $28000), the position
in memory of the Basic Variables is not fixed. The BVAR function returns the base
address of this area, thus giving access to the variables which are at fixed offsets from

that address.

QDOSs . . (Function)

This is the QDOS equivalent of the basic function VERS$ and will return the QDOS
version number for you QL (ie: 1.03).

STAMP mdv, n1, n2 (Procadure}
CHECK mdv,nt,n2 {Procedure)

These are used for anti-capy protection. To invisibly mark a previously formatted but
blank carntridge type STAMP - followed by 3 parametars - microdrive number (1 or 2},
then two numbers (each between 2 and 200). You must then save a program on the
cantridge before remaving it from the dnive.

To test for the two numbers, type - CHECK - followad by the microdrive number and
the two 'pass’ numbers. Ater reading the cartridge, if the numbers are carrect, nothing
wili happen - othecwise the error "Bad or changed medium” will occur.

This routine is very effective il incorporated within a Supercharge compiied program to
check for & ‘'master or ‘onginaf’ cartridge in one of the drives.

Example: 100 CHECK 2, 48, 58 : REMark the program will stop if 48 & 49 are not
found to be STAMPED on the cartridge in mdva_

page 5

SR

e e T T = E R

J——

AT

Pt e

LOCK

{Procedure)
UNLOCK (Procedure)
LOCKED . {Function)

LOCK will dis-enable ‘Break' caused by-CTRUSPACE as well as ‘pause’ normally
caused by CTRUFS. Il is important NOT to LOCK TWICE otherwise the computer will
crash (use the function LOCKED to check).

UNLOCK has the reverse eHect, ie: it will re-enable CTRL/SPACE & CTRUFS.
The function LOCKED retums a value of 1 if locked or Q if not locked.

Example: 100 IF NOT LOCKED THEN LOCK : ELSE PRINT “Already locked 1

DEVSTAT ("device") {Function)

This function tests and will return the status ol any directory device connected ta the
QL. It is a useful means of avoiding program crashes dunng directory or access from
non-axistant cartridges or disks etc. (the device name must be enclosed by inveried

commas). The status number returned in the event of an ertor is the QDOS error code
{a small negalive vaiue) - otharwise a zero is returned.

Exampla: 100 IF DEVSTAT ("mdv2_") < 0 : BEEP 3000,50 : Pnnt “Place a carlridge

in mdv2_ & press a key* : PAUSE : CLS : GOTO 100
110 PRINT".

REPORT [#n), error_number {Procedure)

REPORT will print the equivalent QDOS erfor message 10 the given channe! {the
delault is #0). Error codes are between -1 and -21,

Example: REPORT#2,DEVSTAT("lip1_")

... will print *Not found” in window #2 it a disk drive is not connected or there is no disk
in \he drive.

RESET (Procedure)

This is a sofiware equivalent of pressing the reset button on the side of the QL.

WAIT value {Procedure)

Suspends a program for a period depaending on the value given. Unlike the PAUSE
[+ d. WAIT is unalt d by use of the keyboard. in addion, the length of wait is
unalfected by compilation using Supercharge - (a value of 200 gives around 1
second, 1000 around § seconds, 2000 around 10 seconds efc.).

page 6

SCADDR (x,y) (Function)

Returns the addrass in the screen memory indicated by co-ordinales x and y. The
co-ordhnates must be given as absolute (512x256 pixels). This procedure is useful for
locating start and end addresses when saving just @ section of screen.

Example: 100 RAEMark to save screen from 0,22 1o 512,200
110 stan « SCADDR (0,22)
120 finish =« SCADDR (512,200)
130 length = finish - start
140 SBYTES mavi_screan_saction, stan, lengih

POKE_S x,y, value {Procadure)
PEEK S (x,y) (Function)

POKE_S pokes a word iength value to the screen at the given co-ordinates while
PEEK_S raads the screen at x.y. An example of application I8 10 stock values using the
screen as memory (8ither to save on RAM elsewhere or in order 10 read values from
“data boxes" on screen for menu seiection using a pointer).

DISP n {Procedure)

Switches the QL screen display according to the value given {between 0 and 4). The
corresponding effects are as follows:

- swiiches off the dispiay

- sats the 4 colour dispiay

gats the 8 colour display

- sets the 2nd screen 4 colour display
- sats the 2nd scraen 8 colour dispiay

P R- N U -
b

Changing between the displays does not atfect the screen RAM - only the way in which
it is interpreted. Swilching is instantaneous.

Example: 100 DISP O
110 LBYTES mdvi_screen_scr, 131072
120 DISP 1

SMODE (Function)

SMODE returns a value of either 4 or 8, depending on the QL's current mode. it is
useful for sefting variables that require diflerent values for mode 4 or mods 8, or
checking that the correct mods is set without re~calling the MODE command,

#: W SMODE < > 4 THEN MODE 4

page 7

WA s overeme .)

SETWIN n (Procedure)

This command selec’ one ol six screen layouts for the three windows opened at
swiich-on. The first iwo are identical 10 those that appear on pressing respectively F1 or
F2 after a resel (the screen mode is not changed by SETWIN). The third layout is-
similar to the second, but expanded to meet the edges of the screen. The lourth is the
same as that produced by pressing F1, but #1 is narrowsr and #2 wider (which 1s more
practical for displaying program listings). Display n°5 stacks the three windows lrom
top to bottom and n°6 sets a full screen (512x256a0x0) for #1.

To select one of the above window layouts, type SETWIN foliowed by a number
between 1 and 6. The INK/PAPER/STRIP colours and BORDERS are also set, and all
i A d by this p.

FONT {#n], addrt, addr2 {Procedure)

The procedure FONT sets the 2 character fonts for any screen or console channel. if no
channel is spacified, the default is #1. The two paramelers that follow are the base
addresses for font 1 (characters 31 10 127) and font 2 (characters 127 to 191). Either
one or both can be set - giving a 0 as one of these Iwo parameters (in place ol an
address) will set that font to the QL. ROM set. A character font normally requires 875
bytes (reserved using RESPR or ALCHP).

The format for a character font is as follows:

1st byte the lowest valid character value
2nd byte the number of valid characters -1

.. . lollowed by 9 bytes of definition for each of the characters (see "definer_bas").

FONT1BASE [(#n)] (Function)
FONT2BASE [(#n)] {Function)

These functions return the base addresses for respectively the first and second fonts
sel fof that given channel. if no new tonts have besn nstalied then the ROM fom
addresses are returned. (The ROM character set addresses vary depending on the QL
version).

CURSZ [#n),h,v {Procedure)

CURSZ sets the character spacing in horizontal and vertical increments for a given
window (default #1). In mode 4 for instance, the defauh increments for CSIZE 0.0 are 6
and 10. (By using CURSZ 6.9 in mode 4, it is possible to increas¢é the maximum
number of characier knes displayable by 10%).

Note: The commands NEW, MODE and CSIZE will cancel increments that have
been set by CURSZ.

page 8

XPIXS (#n) {Function)

YPIXS (#n) {Function)
XCHRS (#n) {Function)
YCHRS (#n) {Function)

Typing - PRINT XPIXS(#n), YPIXS(#n) - where n is a screen or console channel, will
print the wingow size in pixels (honzontally and vertically) of #n. This information can
be used o set sizes/limits eic. for objects placed within a window area.

XCHAS and YCHRS are simitar except that thay return the window size in terms of
characters, which will of course vary according to the characier size set by CSIZE.

XPIXP (#n) {Function)
YPIXP (#n) (Function}
XCHRP (#n) {Function)
YCHRP {(#n) (Function)

Thaese funclions return the current cursot pasition within the spacified channel. XPIXP
and YPIXP will return the x,y co-ordinates In pixets, and XCHRP and YCHRP will return
x and y in character co-ordinates.

Returns the QDOS channet identification for the given Basic channel ID. When |

convertad to a hex string - eg: PRINT HEXS {8, CHANID(#2)) - the QDOS channei !

}

CHANID (#n) (Function) l
¢

i

ID consists of - in the low word (RHS) a refatence to the location in the channel table, !

and in the high word, a "1ag" that increments each time that channel is opened. /
Example: (After switch-on) #2 wouki have a QDOS ID of $00020002 /
CURSEN #n (Proeedure}’
CURDIS #n (Procedurs)

The procedure CURSEN (followed by a screen channel) will enable the cursor in th.
window. CURDIS has the reverse effect - the cursor is “unprinted” and dis-enabied f
the given channel.

The function INKEY$ takes data irom tha keyboard without enabling the cursor. Usi
CURSEN 1t is passible 10 enable the cursor in a window so that when INKEYS$ is call
the keyboard queue wilt be switched to that window and the cursor will flash,

Example: 100 CURSEN#2
110 PRINT#2, “You have 10 saconds to press a key > > >*
120 hoy$ = INKEYS$(#2 500)
130 CURDIS#2 : CLS#2,3

page 9

v

MOVXY (Procedure)

{4 {Function)
YpP . {Function)
SPA) (Function)

The procedure MOVXY has the effect of reading 1he four cursof keys (and SPACE),
and incrementing/decrementing x and y values (which are returned as XP and YP
respectively). MOVXY is subject to previously set limils (LIMXY) and increments
{XYSTEP)}. }t is capable of replacing lengthy cursor moving loops with just a lew
instructions.

Example: 100 SETWIN G
110 REPeat foop : MOVXY : BLOCK 2, 1, XP, YP, 2 : END REPeat loop

SETXY x,y {Procecure)

SETXY followed by two co-ordinates sels respectively XP and YP for use with the
procedure MOVXY.

LIMXY left, up, right, down {Procedure)

It is usuaily necessary to set a limit to the possibie values of XP and YP. LIMXY is used
for this purpose. The parameters are {in order) - lowest possible values for XP and
YP, followed by the highest possible values for XP and YP. (When the extensions are
first installed, LIMXY is set at 0, 0, 504, 250). it is important to make sure that the
co-ordinates set in SETXY fall within the limits set by LIMXY.

XYSTEP xstep, ystep {Procedure)

XYSTEP sets the increments in x and y for the procedure MOVXY. When one of the
cursor kays is prassad, XP ar YP will increass/decrease by the amount sst in XYSTEP,
{On instaliation of the extensions, both steps are sat at 1).

Example: 100 IF SMODE <> 8 : THEN MODE 8
110 SETWIN 6:CLS
120 LIMXY 0, 0, 240, 100 : XYSTEP 8,4 ;: SETXY 0,0
130 REPeat loop
140 MOVXY
150 IF SPA : coloura0 : ELSE : colour=RND(7) : END IF
160 BLOCK 16, 8, 252-XP, 128-YP, colour
170 BLOCK 16, 8, 252+XP, 128+YP, colour
180 BLOCK 16, 8, 252+XP, 128-YP, colour
190 BLOCK 16, 8, 252-XP, 128+ YP, colour
200 END REPeat loop

page 10

CROSS [#n], x, y, colour {Procecure)

CROSS prints a cross-wire cursor in & channel (default #1) al window posilion x,y
using INK colour. It is subject 10 the value of OVER set tor that window - (so i! using
OVER -1, printing the cursor a sacond time at the same paosition will have the eflect of
unprinting &).

RECT [#n], width, height, x, y, colour {Procedura)

Prints a rectangle in a window {(default #1) in the specified colour, where x and y are
the pixel co-ordinates of the rectangle's top left corner. (RECT may be 'XOR'ed by
sating OVER (#n], -1).

GRID {[#n], [size] {Procedure)

GRID will print a grid over the whole or part of the screen which will remain displeyed
untll SPACE Is pressed. i is imended for use in measuring propartions for planning
screen layouls {opaning windows, placing cursors, selling limits etc.) and is printed in
XOR moda in order 10 preserve the screen image when it is unprinted.

GRID may be used without any parameters - in which case il will cover the whole
screen area with gridines every 32 pixeis/ines. i however one paramater is given, that
parameler is interpreted as the grid size (minimum B). When two parameters (window
and gridsize) are specified, the gnd will displayed only within thal window {the second
parameter is needed when specifying a window for the grid),

HEXS (no_ol_hex_digits, value) (Function)
DEC (hex$") {Function)

HEXS retumns the hexadecimal equivalent of a positive denary integer. The number of
hex digits required must be stated (between t and 8).
Example: PRINT HEXS (8, 179) ... gives 000000B3

DEC returns the denary {decimal) equivalent ol a hexadecimal string. The hex must be
enciosed by inverted commas;
Example: PARINT DEC ("20000%) ... gives 131072

DUMP {Procedure)
This is an extremely siow screen dump lor use with Epson compatibles. DUMP will
operate in mode 4 or 8 and will dump the whoia screen to a printer connected to ser?_
(senal port). N

Note: The process may be interrupted duning the course of operation by holding
down the ESCape key.

page 11

CNUM (colourA, colourB, stipple) {Function)

CNUM followed by two colour values (0 to 7) and a stipple pattern (0 to 3) will retum
the equivaiant colout/st ple combination as a single valus (between 0 and 255).

GETBRUSH x,y (Procedure)
PUTBRUSH x,y {Procecure)

These two procedures are for “reading from* and "writing to® the screen according to a -
delinable brush. The preset brush shape is circular with centre’al co-ordinales x.y.
Brushes may be redefined by directly POKEing new values (see later).

GETBRUSH reads the screen pixel by pixel along a set course covering the area
beneath the brush. The pixel colours are read into a butfer 10 be used by PUTBRUSH.
PUTBRUSH places the pixels (read by GETBRUSH) onto the screen at specified
co-ordinates x and y. This process is used by the program *transter_x" to copy iree
hand from one position to another on the screen.

Example: 100 LIMXY 8, 8, 504, 228 : SETXY 240, 120 : XYSTEP 4,4
110 WINDOW 512, 256, 0,0 : OVER -1
120 REPeat loop
130 MOVXY
140 IF SPA : GETBRUSH XP, YP : PUTBRUSH XP+100, YP+20
150 FORc=1TO2:CROSSXP,YP,7:ENDFORc
160 END REPeat loop

BRUSHBUF (Function)

BRUSHBUF gives the start address of the buffer used to define the path between each
constituent point of the brush. The format of the butfer is as follows :

Word - number of steps to take within the brush
then... Byte - paramater lor lirst x (horizontal) step

Byte - parameter for first y {vertical) step ...and so on for eachstep. ..
A negative movement in x or y (ie: left or up) must be o—p-
indicated by setting in addition the 8th bit of that byte "/ 7-8- g\ r
(this is done by adding 128 to the number to move). V4 é .
In the defaul brush the path starts at the centre and m f 9 ?
spirals outward, the first point read being the pixel 1 4-3 - 1 ¢ |I
just above the centre, and the last being that of the —] - 2 g—d u
centre. The butfer starts with a word vaiue 37, then z h-g-t v/
bytes 0. 129 {right 0, up 1) for step 1. Then 1, 1 y-x-w’

{right 1, down 1), and so on. The last step will be
2, 130 (right 2 pixels, up 2) to go from the outside (z) 1o read the centre pixel.

{The max. number of steps definable is 70, and the max. distance for each step is 127).

page 12

BCOLBUF (Function)

BCOLBUF returns the address of the bulfer used lor storing the colours read by
GETBRUSH.

Each pixel colour is stored as & word in sequence following the path taken by the
brush (see BRUSHBUF).

SVAR n, value (Procedure)
VAR (n) (Function)

SVAR and VAR provide a means of stocking a 32 bit value in memory which will not be
erased by the commands CLEAR or NEW, or by loading another Basic program. They
may be used for transfer of vanables between programs or into compiled programs,
storing ALCHP addresses or any other vanable function. 16 variables are available.

To set the value of one of these varnables, type SVAR - followed by the identifying
number (from 1 to 16) and then tha value you wish to store.

Example: Type - SVARS, 131072 ... then type NEW
Type - PRINT VAR(5) . . . which will give a value 131072
FLEN (#n) (Function)

Providing a channel is opened 1o a diractory device file, FLEN will return the length in
bytes of that file. it is a useful check before loading code into memory so that the exact
amount of space can be reserved.

The procedure is as follows:

Qpen the channel - eg: OPEN#3, mdvi_program

Cali the function . length =« FLEN (#3)
Close the channel - CLOSE®3
WAITMD (Procedure)

The command WAITMD will suspend a program while any of the microdrives are
turning. This can be used to avoid situations where scraen messages appear belore
intended because the microdrive motors are still running.

Example: 100 SAVE mdv2_program
110 PRINT “Wait tor the motor to stop . . .°
120 WAITMD : PRINT “Now the motor has definitely slopped™
*You can remove the cartridge from mdv2 "

page 13

————

NOKEY (Procedure)

NOKEY will suspend any action while any of the keys are pressed. It can be used to
prevent mulliple exits from nested loops elc. when polling the keyboard using the
function KEYROW.

Example: 100 REPeat ioop
110 AT#0, 0, 0: PRINT "Press 'SPACE' * '
120 IF KEYROW(1) :ATO0,0:PRINT *--x--- (o] CEFTEER * : NOKEY
130 END REPeat loop

STORE w, h, x, y, address {Procedure)
PLACE w, h, x, y, address, [n] (Procedure)
STORSIZ {Function)

These routines are intended for storing part or ail of the screen into memory, and
placing from memory to a position on the screen. The co-ordinates for the rectangle
(width, height, x, y) defining the image area, assume a 512x256 pixel display. STORE
can be used belore opening a window on screen, 10 store any images that ke beneath
that window. When the window is no longer required, PLACE may be used 10 restore
the image to the screen (see “pointer_demo_bas" which uses this pnnciple).

Another use for STORE/PLACE is to save a section only of screen to disk or microdrive
{eg: a block 152x100 requires only 3800 bytes - after having used STORE or PLACE,
STORSIZ will return the size in bytes ol the screen block).

Example: 100 addr «» RESPR (5000)
110 STORE 152, 100, 40, 25, addr
120 SBYTES mdv2_screen_section, addr, STORSIZ

The section may later be loaded from microdrive into memory and positionsd on
screen as deswed using PLACE. It is however necessary to keep note of the
proportions of the saved section, as severe dislortion will occur if these are changed.

Horizontal co-ordinate parameters are rounded down to the nearest word interval for
speed in moving screen memory. it is imperative that the parameters defining PLACE
fall within the screen display aree otherwise the QL will crash.

An optional fitth parameter (n] may be used with PLACE. it must comprise a vaiue of 0.’
1 or -1. if this parametsr is zero, the section is moved to the screen normatly
regardiess of the undarlying image. If the parameter is 1 the two images will be 'OR'ed.
Ititis -1, the two imagas will be "XOR'ed . . . which has a similar effect to printing wilh
“OVER -1°.

(Using a value of -1 can produce interesting results in mixing two or more images).

page 14

STORE, PLACE conid.

Another uselful application is in panning or scrolling with "wrap-around® ol opposite
edges.

Example: 100 addr = ALCHP(80) : SETWIN 6 : CLS
110 OPEN#¥3 scr_164x100a62x50 : BORDER#3,1,2 : INK132 LIST#3
120 OPEN#4.scr_164x100a254x50 : BORDER#4,1,2 : INK#4,4 : LIST¥#4
130 REPeat loop
140 STORE 160,1,64,51,addr : STORE 160,1,256,148,addr+40
150 SCROLL#3, -1 : SCROLLY4,1
160 PLACE 160,1,64,148,addr+40 : PLACE 160,1,256,51,addr
170 END REPeat loop

COMP [address) (Procedure)
DCOMP address {Procedure)
COMPSIZ (Function)
COMP is a screen compress routine designed to e ise on the normal 32K

required for storage. The savings on memory can be considerable, depending on the
compiexity of the image. However, very complex screens could require more than 32K.
By using COMP without any paramaelers, the image will be processed but not stored.

The function COMPSIZ relurns the number of byles required to store the compressed
screen. I this is satistactory, COMP - followed by the address of a reserved area in
memory, will store the compressed screen to that address. ,
The image can then be saved to microdrive il required by using (say) -

SBYTES mdv1_image_cmp,address, COMPSIZ

The procedure DCOMP together with a valid address will have the reverse effect, - the
image is decompressed from memory to the screen. COMPSIZ will return the size of
compressed image after either COMP or DCOMP.

Example: 100 REMark addr » ALCHP{20000)
110 COMP
120 IF COMPSIZ < 20000 : COMP addr : ELSE : PRINT "Screen too
complex ... " COMPSIZ;* bytes required™

PCOL (x,y) (Function)

PCOL returns the colour of the pixel localed at co-ordinates x.y. The co-ordinates must
be relative to the whole screen area (ie: 512x256 pixels). In mode 8 the x parameter
will be rounded down 10 an even value.

(Note - in mode 4, the colour returned will b 0, 2, 4 or 6).

For drawing routines, this function is extremely uselul for pen colour changes elc. as
colour can be indicated directly on screen by sa.mplo rather than by paletie or menu
selection.

page 15

MAG [#n], source_x, source_y, dest_x, dest_y (Procedure)

Magnities a section ol screen by a factor of 4 in x and in y (the area is magnified 16
times). The area that is to be magmied measures 28x20 pixels - and is magnilied to
112x80 pixels. The magnification is displayed within a window [#n] - if no window 1S
specilied the default is #1. The parameters source_x, source_y are the co-ordinates of
the top lett corner of the area (o be magnified (relalive to the whote 512x256 screen).
The nexi two parameters iocate the top ieft corner of the destination block (relative to
\he display window's origin - ie: 0,0 is the 10p left of the window #n). No error wiil take
place il the desunation co-ordinates are wholly or partially outside the window's kmits.

Example: 100 REMark To magnify from the top right hand corner of the screen
110 REMark and display the magnification in window #0
120 MAG#0, 484,0,0,0

Note: See the routine “zoom_bas" for an application example.

ROTATE address, nbytes (Procedure)

ROTATE will swap end rolale the bytes of the the first and last words of a sequence of
bytes (starting at the given address and ending at that address + nbytes), ... thenthe
second and the second (0 last words of the sequence, then the third and third from last
and 80 oOn.

The principal use is in rotating a string of words of screen memory.

For instance: ROTATE 131072,32768 . . . will result in the entire screen being
effectively turned through 180°. ROTATE 133248.128 will rotate just one line starting
at address 133248 - which is the same as mirroring that ine horizontally.

Example: 100 FOR y =0TO 255
110 ROTATE 131072 + (128 * y), 128
120 ENDFORYy

The effect of this wiil be to mirror the whole screen Ieft 1o right. Using combinations ot
individual line, and whole/parnt screen rotations, images can be turned or mirrored very
simply. It is important that nbytes (the length of sequencse 1o rotate) is divisable by 4,
that s 10 say - an even number of screen words and that the slant address is an even
number.

SFLASH n (Procedure)

The parameter n is either 0 or 1 and has the efect of setting or reselling (zero-ing) all
the tiash bits in the screen memory. In mode 8 - SFLASH 0 will cause any fiashing to
cease. The main use of SFLASH is lor reworking in mode 8, screen images created in
mode 4, 1o suppress flashing characteristic of the incompatible colour interpretauion.

page 16

SHRINK address {Procedure)

SHRINK will store a reduced image of the entire screen at the spacilied address. The
reduced “scréen” will require 1/4 of the normal 32 K (ie: 8192 bytes) for siorage
(reserved by ALCHP or RESPR). This image can then be positioned on screen using
the procedure PLACE. The new screen image will measure 256x128 pixels.

The procedure is not really suitable for use in mode 6 as fiashing will probably occur.
(However - this may be removed using SFLASH).

Example: 100 REMark °°° * first load an image onto the screen * * * *
110 addr = ALCHP(8192)
120 FOR c=1T05
130 SHRINK addr : DISP 0
140 FOR x = 0,256
150 FOR y =0,128 : PLACE 256,128, x, y, addr
160 ENDFOR x
170 DISP SMODE/4 : PAUSE 100
180 ENDFOR ¢

page 17

THE PROGRAMS

Transfer_x

This program is used for transfer and treatment of images between wo screens. One
unique feature is the ability 1o copy freefiand from one image to the other, using a
vanety of brushes.

To run the program - type EXEC_W mdvi_transier_x (Note: as lor all the
programs on this cartriige, the toolkil extensions must be instailed previously)

Transfer_x will not affect the current screen image - so it may be used from within a
Basic program (memory permitting). Transter_x reserves for itseil around 42000 bytes
1o hold the second screen and lor windowing elc.

Note: This will be released after exit from the program, providing no paw direciory
devices are accessed during the program (due to common heap
ragmentation - see ALCHP on page 4). This problem can be avoided by
previously accessing all tha devices likely to be used for SAVE-ing or
LOAD-ing screens.

Transfer_x has two modes. When the program starts, you are in INLAY moda. The

“help” window (which can be called during this mode anly by pressing F1) is displayed.

INLAY mode concerms functions such as loading and saving, positioning, panning,

scroiling etc. of the two screens - ie: the main display, and the second scieen
“(dispiayed behind a window inlayed in the main dispiay).

Press a key to remove the heip window.

Loading an image

Press £2 to load an image from disk or cartridge (either to the iniay or main screen).
After indicating the device from which 1o load, a directory of files is shown. Enter the file
name exacily as it appears in the directory (or just press ENTER if you do not wish to
load a file). You will then be asked whether to load o screen or inlay.

Note: Il you load a "mode 4" screen while using the program in mode 8 . . . severe
flashing will oocur. This may be removed by pressing the key “4".

Saving an image

After p g, the main may ba savad 1o disk or microdrive. Press F3 and
input the name of the device to save to. A directory of files already saved is displayed
and you are asked for a name for the image to save. If there is not anough room to
save the screan (64 sectors) or you have changed you mind - just press ENTER.
Otherwise, type a name for the screen and press ENTER.

Note: SAVE-ing will overwrite any previously saved file of the same nafme.

page 18

Transler_x contd.

Once both images have been loaded, the inlay window can be manipulated as tollows:

— T 10 parvscroll the inlay screen

— TL+SHIFT....... 10 adjust the size/shape of the window
—TLeALT......... 1o move the inlay window around the main screen

FS . rieiieiinnennnns will primt the image in the window 1o the screen beneath

Note: The inlay window may be removed trom the screen by reducing its height to
0 using SHIFT and T, after which «— Tl may be used to panvscroll the main
screen display.

COPY mode
This mode is concerned with freehand copying, drawing, transter and stretching of
screen imagesnextures. Press F4 to anter COPY mode.

You are presented with two supenmposed cross-wire cursors which may be moved
around the display in paraile! {using the CURSOR keys). One of these represents the
“reading” brush, and the other the “wriling* brush. To sel the relative positions of the
cursors, ihe function keys F1 10 F5 are used as follows:

F1 - writing brush right

F2 - wniing brush left

F3 - wniing brush down

F4 - wriling brush up

F5 - the writing brush assumes the same location as the reading brush

While the cursors are separated, prassing SPACE will transfer from one cursor to the
other, similar to a pantograph.

However - when the cursors aré suparimposed, the ALT key will cause the brush to
read the texiure/colours into the butier. Consequently, pressing the SPACE bar will
write those colours back 10 the screan. ft is then possible to draw with ihe stored
texwre.

Using this technique (and a skiltiut manipulation of ALT and SPACE), textures can be
stretched from (say) the side ot a tace to distont ils shape/comours. Each time ALT is
pressed - & new set ol colours 18 read by the brush into the bufler.

Step

For all cursor movement, the Slep rate may be altered by p ing SHIFT. B]
and 8 pixels per step are possible. While holding down SHIFT, the current step is
indicated at the top left of the screen.

page 19

Transfer_x conld.

Brushes .

A selaction of brushes is available - to change brush press CTRL. While the CTRL key
is prassed the brush shape/icon is displayed at the top of the screen. Eight brushes
and two arbrushes are provided - which, when used in conjunction with varying step
51285, gQives an enormous range ol possible textures for drawing, transter etc.

Note: when using the airbrushes, a step of 2 or 3 is recommanded. -

To EXIT from COPY mode - press ESCape
To QUIT the program (trom INLAY mode), and return to Basic - press CTRL + ESCape

Zoom_bas

Zoom_bas is a routine written in Basic to ilusirate the procedure MAG, used to
oxamine a 28x20 pixel block magnified to 16 times. The routine (which can be
incorporated within a larger program) is used as follows:

A block appears on screen, which will move in response 10 the cursor keys. This
should be positioned over the area 10 be examined.

Press SPACE - the block will be magnified in & window 10 one or other side of the
screen,

Inside this window a Hashing “pixel” indicates the current cursor position. R is possible
to draw within the window using the CURSOR keys and SPACE (ihe detault ink colour
is black but may be changed by pressing “C*). Any drawing will be d normal size
on the screen. Moving the cursor to an edge of the window will cause the area thai is
magnitied in the window 10 be scrolled or panned in that direction. (Pressing F5
indicates the screen location of the block).

To exit from the routine press ESCapae.

'Deﬁner_bas

This is a very simple character definer which (unusually) allows you 10 work with the
complete 9x8 character matrix (aithough only mode 4's CSIZE 1,0 and 1,1 ere
capable of using the full matrix).

Each screen channel has two character fonts. Normally the first contains characters 31
(ihe graphic square) to 127 (©) while the second contains characters 127 to 191 (O 10
1). Font 1 requires 875 bytes and font 2 requires 587 (see FONT on page 8). When
the program is loaded you are asked 1o select fonl 1 or 2 (which is then transtered lrom
ROM into an area pointed 10 by VAR(3)). On loading a font from mucrodnve for
redelining, this selection is made automatically.

page 20

Definer_bas contd.

The main display consists of four windows. in the top window the new sef of characters
is displayed beneath thair ROM set equivalents. These may be scrotled let or ngnt
using F1 or F2. The current character is also displayed in the next window down in a
selection of sizes together with its character code. To the feft is an enlarged dispiay of
the character's pixels. On releasing F1 or F2, atter a short pause - the curren
character wili be read into the large dispiay. (To prevent this - press TAB immedialely
afier releasing F1 or F2).

You can draw within this display to modify the character, using the CURSOR keys and
SPACE bar (FS clears the matnx}. You can wnie the modifications ta the character
delinition by pressing ALT.

The fourth window contains “help™ information, and is used for prompis when loading
(F3) or sawing (F4) character sets.

Note: Saving will overwrite a previously saved file of the same name.

Once a font has been edited or created and saved to disk or microdrive, it can be
installed using the command FONT. The process is as jollows:

Reserve enough space - ie: addr = RESPR(875)
Load ihs font LBYTES mdv1_symboi_set, addr
install the font for (say) #2 FONT#2, addr, 0
Note: it either fom address paramaeter is zero, that font will default to the ROM
character sel.

page 21

- . o —

EXTENSIONS (F or P indicate either funclion or procedure)

.age

f ALCHP 4
F BCOLBUF 13
F BRUSHBUF 12
F BVAR [
F CHANID 9
P CHECK 5
F CNUM 12
P COMP 15
F COMPSIZ 15
P CROSS "
P CURDIS 9
P CURSEN []
P CuRSZ 8
P DCOMP 15
F DEC n
F DEVSTAT [
P DISP 7
P DuMP 3]
FFLEN 13
P FONT 8
F FONTIBASE 8
F FONT2BASE a
P FRAME 3
F FREE - 5
P GEJBRUSH 12
P GRD n
F HEX$ n
P LMXY 10
P LOCK 6
F LOCKED 6
P MAG 16
P MOVXY 10
P NOKEY 14
P PAINT k]
F PCOL 15
f PEEK S 7
P PLACE 14
F POINTBUF H
P POINTER 2
Programs

Transtor x.......... page 18

Zoom_bas.......... page 20

Detiner_bas.......... page 20

M AN MMM AN TNV ONOVOOMNMDONNTOTCODMNOVTOP DN DODD™

Aiso on the GRAPHIC TOOLKIT microdrive ...

POINTKEY
POINTSPD
POKE S
PUTBRUSH
QDOS$
RECHP
AECT
REPORT
RESET
ROTATE
SCADDR
SETWIN
SETXY
SFLASH
SHRINK
SMODE
SPA
STAMP
STORE
STOASZ
SVAR
UNLOCK
VAR

WAIT
WAITMOD
XCHAP

Pointer_demo_bas Puzzle_bas
RPRINT_bas Reliet_sel
Symbol_set Screen_scr

page 22

* . -

FOR ALL USERS

The program Transfer_x contains a 'PAINT' function (accessed
during COPY mode)

PAINT (<) When the key '<' s pressed followed by a colour
between 0 and 7, a 'PAINT' will be executed at
the cursor's co-ordinates. If the '<' key is held
pressed, then the fi11 wWwill execute using the
colour selected for the previous PAINT.

FOR USERS WITH EXTRA MEMORY

The program Transfer x contains the following new features:

UNDO (W) When the program is first executed, a copy of the
screen 1s read into the ‘'undo' memory area. Any
changaes made to the main screen display can be
'undone' by pressing the key ‘U’

(during INLAY mode).

UPDATE (X) The 'undo’ area is updated only when the key 'X'
is pressed (in either INLAY or COPY nmode). After
the 'X' key has been pressed it is not possible to
UNDO any changes that have taken place. It is
recommended that you update the 'undo' area each
time you are satisfied with your image.

ERASE (?) The ERASE feature is another unique feature of the

program TRANSFER_x. It does not reveal a
background colour as it erases ... IT REVEALS THE
BACKGROUND PICTURE. In other words this 1is a
'freehand UNDO'. Some other graphics programs

offer what they <call a 'freshand UNDO' however
what they mean 1s that they undo a1l the freehand
drawing that was done since the Tlast function
change or ‘'undo update'. The eraser used in
TRANSFER_x 1s a true FREEHAND ERASER.

The erase function is switched on and off (during
COPY mode) by pressing the '?' key. When ERASE is
enabled, a medium pitched tone will be heard -
when disabled, a low pitched tone will be heard.
The current brush is used for the ERASER and any
of +the available brushes may be used, inecluding
the airbrushes.

A useful application is the transfer of a block of
image from one scresen to the other, after which
the edges of the block can be cut away / shaped
etc. using the eraser and the various brushes, to
blend the transfer into the surroundings.

page 1

)k];:r\ Tﬁ\"\}kl"“

r= Qo (£25 »E)
Lﬁ'nrfb yenen VY é,. ,’gf f"')g'

Cedl, ®

