TOOLKIT III (c) 1988 by Ultrasoft

TOOLKIT III for the Sinclair QL

This new Toolkit for the QL is intended to enhance the SuperToolkit IT
(QJump/T.Tebby) by providing many new facilities and making some of
it's old facilities even more powerful.

Although most of the extensions will work properly without TK2.

1. Contents of TOOLKIT III

The following list gives a comprehensive form of each extension. There
are often default parameters to make life easier. Parameters which may
be left out are put into square brackets.

Commands which need SuperToolkit II to operate are marked by an
asterisk (*).

Section 2: File Maintenance and Information

All of these commands make use of the DATA directory, which may be set
or changed by the TK2 commands DATA USE, DDOWN, DUP or DNEXT. The
current DATA directory could be found using the DATADS$ function or
executing the DLIST command. Please refer +to the SuperToolkit II

manual for a description of standard directories.
Commands starting with 'W' are wildcard commands and work interactive.
Thus they are not suitable for use in SuperBasic programs.

Commands

* DIR_USE name

USER number

SETUSER name, number

SETRO name

SETRW name

SETSYS name

SETDIR name

SETDIR A dev_

SETHOST name

SETNET name

WSETUSER #channel, name, number
WSETRO #channel, name
WSETRW #channel, name
WSETSYS #channel, name
WSETHOST #channel, name
WSETNET #channel, name

* X ¥ * X X

Functions

* FACC(#channel) or FACC(\name)

sets PROGDS$ and DATADS

select user number

sets the USER number of a file
set file to READ ONLY

set file to READ/WRITE

set file to SYSTEM status

set file to DIRECTORY status

set all files to DIRECTORY status

set file to HOST ONLY status
set file to HOST/NET status
wildcard SETUSER
wildcard SETRO
wildcard SETRW
wildcard SETSYS
wildcard SETHOST
wildcard SETNET

find file access byte

Section 3: Loading and Executing binary files

Some of binary load operations are extended to prevent from the
annoying 'not complete' message when executing a RESPR command.
Alternatively a program may be activated as a job instead of calling
it. The DATA directory is used.

Commands

LRESPR name load file into memory and call
MJOB address make job at address and start like EXEC
MJOB_W address make job at address and start like EXEC_W
ROM INIT address init ROMcode at address
Functions

RESPR (size) get space in resident procedure

area Or common heap

Section 4: Job Control

All multitasking facilities of QDOS are accessible through TK2, so
only one command is added.

Commands

RJOB A remove all jobs except SuperBasic

Section 5: Channels

There are several extensions to SuperBasic in order to access channels
which are currently open.

Commands

CHANNELS #channel list all open channels
CLOSE$% channel close an internal channel
CONPIPE #input, #output connect outputpipe with inputpipe
Functions

PEND (#channel) check channel for pending input
CH_BASE (#channel) find base of channel definition block
WN_BASE (#channel) find base of window definition block

Section 6: Keyboard Queue access

These commands are used to help the user in accessing the current
keyboard queue directly. The functions return a value or error code.

Commands
QWAIT wait for keyboard queue to change
Functions
QIN (byte) or QIN ('string') put byte/string into current queue
QouT get a byte from current queue

QTEST find status of current queue

Section 7: Memory Management and Access

TOOLKIT IIT has a set of commands to make several types of memory
access easier and faster. All these commands should be used with care
because they might crash the QL.

Commands

RESET value reset machine
POKES$ address,string put string at memory address
POKE_F address,float put float at memory address
MEMCOPY addrl,addr2,n copy n bytes from addrl to addr2
MEMSWAP addrl,addr2,n swap n bytes from addrl with addr2
Functions

PEEK$ (address,length) get string from memory address
PEEK _F (address) get float from memory address
BV_BASE find base of basic variable lists and stacks

Section 8: SuperBasic Programming and Editing

Some new commands should assist the wuser in writing and editing his
own SuperBasic programs.

Commands

BASREF #channel list all SuperBasic PROCs and FNs
REPLACE ranges, oldname,newname replace all oldnames with newname
REPLACES ranges, old$,new$ replace all o0ld$ with news$

Section 9: Database Handling

This group of powerful commands enable the SuperBasic User to write
his own database applications using 2 and 3-dimensional string arrays.
The functions return a value/position or an error code. The load/save
operations and the analytic functions work with any type of array.

All arrays handled by the new commands may be sub-arrays of their main
dimension.

Commands

SARRAY name,array save an array to a file
SARRAY O name,array SARRAY with overwrite
LARRAY name,array load an array from a file
SORT array$ sort 2-dimensional string array
SORT array$,field sort 3-dimensional string array by field
SORT I array$,field inverted SORT
Functions

ADIM (name) find no. of dimensions of a saved array
ADIMN (name,i) find dimension i of a saved array
ATYP (name) find type of a saved array
SEARCH (array$,search$,start) search 2-dimensional string array

from start for search$
SEARCH (array$,search$,start,field) search 3-dimensional string array
from start for search$ using field

Section 10: More Extensions to SuperBasic

There are various other extensions which might be of a very different
value to different users.

Functions

EDITS$ (#channel,buffer, string) edit a string with a buffer
KEYS$ (#channel,keylist$) wait for a key of keylist$
ISINT (string) return ERR.XP if string is no integer
ISFLT (string) return ERR.XP if string is no float
UPPERS$ (string) convert string to upper case
LOWERS (string) convert string to lower case
SGN (integer) signum function
FRAC (float) return fraction of a float
ROUND (float) round to nearest long integer
CINT (integer) convert integer to unsigned float
ODD (integer) return 1 for odd value, 0 for even
PRED (integer) return predecessor of an integer
PRED (char$) return predecessor of a character
SUCC (integer) return successor of an integer
SUCC (char$) return successor of a character
DIV_L (integer,integer) longword integer division
MOD L (integer,integer) longword modulo function
AND L (integer,integer) binary AND for long integers
OR_L (integer,integer) binary OR for long integers
EOR L (integer,integer) binary XOR for long integers

Section 11: Extras

Commands

TK3_EXT init TOOLKIT III and TK2 if present
DEVLINK link all additional devices
EXTRAS #channel list all extras linked to SuperBasic
Functions

QDOSS$ return QDOS version

Section 12: Extended Device Drivers

All drivers present at RESET time are enhanced to make full support of
the TK2 subdirectories (DUP, DDOWN etc.), so that every program is
bound to a selected subdirectory.

The file access byte is used for additional status information in the
file header.

Section 13: MEMory Device

Memory could now be accessed like a file using the unique MEM device.
To allow operation with commands which don't use the actual file
pointer (e.g. SBYTES) a relative base address can be specified.
Section 14: Extensions to QDOS

In order to handle the new file attributes directly wvia QDOS, there
are some new Traps and System variables.

2. File Maintenance and
Information

2.1 User Areas

TOOLKIT III is able to handle 16 different user areas, numbered 0 to
15, in order to make file accesses of different wusers on the same
medium (e.g. via the Fileserver) more reliable.

The user number has to be set by executing the USER command. This user
number 1is written to the fileheader automatically whenever a new file
is saved to a medium. The user number of a file could be changed by
the actual owner using the SETUSER or WSETUSER command.

The default user number is 0. User areas are ignored on Microdrive.

There are two simple rules to notice on user areas:

a. Any user could only access files which are part of his user area.
b. SYSTEM files could be read by any user.

Please refer to the SuperToolkit II manual (section 1.2 and 5.1) for a
description of wildcard names.

Commands

USER number select user number

SETUSER name, number sets the USER number of a file

* WSETUSER #channel, name, number wildcard SETUSER

Examples

USER 4 sets the actual user number to 4

SETUSER fred,7 sets the user number of 'fred' to 7

WSETUSER#1,fred ,1 prompts all files starting with 'fred ' in
channel #1 and sets them to USER 1 if confirmed

WSETUSER 3 prompts all files in command channel and

sets them to USER 3 if confirmed

Hints

PRINT PEEK(163894) returns the actual user number

POKE 163894,10 is equivalent to USER 10

2.2 SYSTEM files

Files which are set to the SYSTEM status are unvisible in the
directory listing but could be read by any user. They are especially
useful 1if several users need the same program to work with (e.g. a
wordprocessor), because it isn't necessary then to have a copy of the
program in each user area. SYSTEM files are automatically READ ONLY,
except for the user who is owner of the file.

The SYSTEM status of a file could only be changed by the user who owns
the file. It can't be changed via NETwork. The SYSTEM status is
ignored on Microdrive.

Commands

SETSYS name set file to SYSTEM status
SETDIR name set file to DIRECTORY status
SETDIR A dev set all files to DIRECTORY status

* WSETSYS #cEannel, name wildcard SETSYS

Examples

SETSYS john sets file 'john' to SYSTEM status
SETDIR test_exe resets SYSTEM status of file 'test_exe’

2.3 READ ONLY files

Because it's much more useful to make single files instead of the
whole medium write-protected, the READ ONLY flag is introduced.

If a file has been set to this status, deletion of this file is
impossible and any exclusive OPEN will act as OPEN_IN.

Commands

SETRO name set file to READ ONLY
SETRW name set file to READ/WRITE
* WSETRO #channel, name wildcard SETRO

* WSETRW #channel, name wildcard SETRW
Examples

SETRO flp2 myfile sets 'flp2 myfile' to READ ONLY
WSETRW test prompts all files starting with 'test ' in command

channel and sets them to READ/WRITE if confirmed

2.4 HOST ONLY status

If a file is set to HOST ONLY it couldn't be accessed via NETwork.

Commands

SETHOST name set file to HOST ONLY
SETNET name set file to HOST/NET
* WSETHOST #channel, name wildcard SETHOST

* WSETNET #channel, name wildcard SETNET

2.5 The file access byte
All information about the file status is stored in the file access
byte, which is part of the file header. Please refer to a QDOS manual

for further information about file headers.

The format of this byte is:

B7 B6 B5 B4 B3 B2 Bl BO
I I I | /
| | | | USER no.

I I I I

| | | unused

I I I

| | HOST ONLY status

I I

| SYSTEM status

I

READ ONLY status

The file access byte is completely ignored on Microdrive, because it
would slow down every access on this medium.

Functions

* FACC(#channel) or FACC(\name) find file access byte
Examples

PRINT FACC(\fred) prints file access byte of file 'fred'
PRINT FACC(#ch)&&128 returns READ ONLY status of a file channel
PRINT FACC(#ch)&&64 returns SYSTEM status of a file channel
PRINT FACC(#ch)&&32 returns HOST ONLY status of a file channel
PRINT FACC(#ch)&&l5 returns user number of a file channel

2.6 Setting the directory tree

So simplify operation with the PROG and DATA standard device, a new
command DIR USE is introduced, which sets them both to the same name.
The DATA device is used as the subdirectory name.

Please see the SuperToolkit II manual and section 12 of this manual
for further information on subdirectory structures.

Commands
* DIR _USE name sets PROGDS$ and DATADS
3. Loading and Executing

binary files
3.1 Memory allocation and loading
Because the original RESPR and LRESPR commands return an annoying 'not
complete' message whenever they are executed while a job is running,
they are redefined to work in any case. The reason for the error
message 1is that the resident procedure area (RPA) can't expand if
there is anything in the transient program area (TPA). The new
commands automatically allocate space in the common heap instead of
using the RPA if necessary. Every well-behaving program will run
properly in this area, too. But beware of the bad ones...
Commands

LRESPR name load file into memory and call

(see SuperToolkit II manual for further information.)

Functions

RESPR (size) get space in resident procedure
area or common heap

Examples

LRESPR flp2 codefile loads and executes 'flp2 codefile’

3.2 Executing binary files as jobs

There are two new commands to start binary files as jobs instead of
CALLing them. A jobheader is created automatically and the priority is

set to 32. The jobname is set to 'MakeJob'.

Caution: Only well-behaving programs will work properly!

Commands
MJOB address make job at address and start like EXEC
MJOB_W address make job at address and start like EXEC_W

3.3 Initing ROM code

ROMcode could be installed at any even memory address. If there is no
correct ROM header ERR.NF is reported.

Commands

ROM INIT address init ROMcode at address

4. Job Control

Because all multitasking facilities of QDOS are accessible through
SuperToolkit II, there is only one command added. Any open channels
owned by the particular job are closed before the job is removed.

Commands

RJOB_A remove all jobs except SuperBasic

5. Channels

5.1 General channel handling

There are two new commands and one function to access channels which
are currently open.

CHANNELS displays a list of all open channels, including the internal
channel number, the tag number, the owner Jjob and a detailed
description of the channel.

Example:

Chan tag owner name

0 0 0 CON_512x50a0x206 SuperBasic #0

1 1 0 CON_256x202a256x0 SuperBasic #1

2 2 0 CON_256x202a0x0 SuperBasic #2

3 3 0 CON (Slave Channel)

4 7 1 CON_512x256a0x0 Job 1 console window
5 8 1 RAM1 temp open file of job 1

6 11 0 SCR_100x50a200x100 SuperBasic screen

7 12 0 PAR channel to printer

8 13 1 *%* ANON *** what's that ?!?

9 17 2 NSV Net Server channel

The CLOSE% command enables the user to close a channel using it's
internal channel number. This is particulary useful when something
went wrong, e.g. a channel remains open after the owner job has been

killed. Slave channels should never be closed!

Commands
CHANNELS #channel list all open channels
CLOSE% channel close an internal channel

5.2 Pipe handling

Because SuperBasic isn't able to open the passive end of a pipe, a new
command is introduced. The CONPIPE command could be wused in two
different ways.

Type 1l: CONPIPE #input TO #output
creates an output pipe and connects it with an input pipe.
The output channel must already exist, e.g. as a SCR channel.

Example: 10 OPEN#3,pipe 256 create input pipe
20 OPEN#4,scr create dummy channel
30 CONPIPE #3 TO #4 connect pipe
40 PRINT#3,'Pipe Test' fill pipe
50 INPUT#4,a$ get string from pipe
60 CLOSE#3,#4 close both channels

Type 2: CONPIPE #channel
converts an input pipe to an output pipe.

Example: 10 OPEN#3,pipe 256 create input pipe
20 PRINT#3,'Hello pipe!'’ fill pipe
30 CONPIPE #3 convert pipe
40 INPUT#3,a$ get string from pipe
50 CLOSE#3 close channel

Depending on the application one of these types will be more or less
useful. Type 1 is to be prefered when a pipe is needed for more than
one operation. Type 2 should be optimal for simple operations.

Please refer to a QDOS manual for further information about pipes.

The PEND function checks a channel for pending input, which is normaly
quite the opposite of an EOF(#ch) call. It should be very useful for
pipe handling.

Commands
CONPIPE #input, #output connect inputpipe with outputpipe
Functions
PEND (#channel) check channel for pending input

Default channel is #1.

5.3 Accessing channel definition blocks

Two new function are intended to help the user to access the channel
definition blocks. CH_BASE returns the base address of the whole
channel definition block and WN_BASE returns the start address of the
window definition block. Of course the latter will only have a result
when used with a window channel.

On a standard QL the result of WN_BASE will allways be CH_BASE + $18,

but if extended screen drivers are used (for example QJump's Pointer
Environment) this might be different.
Please refer to a QDOS manual for further information.

Functions
CH_BASE (#channel) find base of channel definition block
WN_BASE (#channel) find base of window definition block

Default channel is #1.

Examples
PRINT PEEK_L(CH_BASE(#ch)+8) returns the owner job ID of a channel
PRINT PEEK(WN_BASE(#ch)+44) returns the paper colour of a window

6. Keyboard Queue Access
In order to access the current keyboard queue directly a command and
three new functions are introduced. All of the functions return an

error code, alternatively one of them returns a byte.

Possible return values/errors codes are:

0 0.K.
>0 extracted byte (QOUT only)
-1 ERR.NC Queue empty/full

-10 ERR.EF end of file

QIN puts a byte or string into the current keyboard queue, depending
on the type of the parameter. If a string value is desired, it should
be enclosed in apostrophes.

QOUT extracts a single byte from the current queue and returns it. If
the queue is empty ERR.NC is returned.

QTEST just checks the status of the current queue without changing
anything.

Sometimes it may be necessary to select or re-activate a queue. This
could be done by reading the channel for a short time.

Example: dummy=INKEYS$ (#0) will select the command channel (#0)

The command QWAIT is used to detect a changing of the keyboard queue.
This is particularly useful if you want to start another job using a
command string, which should be typed in after the job has loaded.

Example: EX flpl job exe : QWAIT : dummy=QIN('Hello job...')

This line starts 'flpl job _exe' as a job and types in 'Hello job...'
after loading, supposed that this job has an active cursor (and a
queue) after loading.

What's about starting Quill and automatically loading a document...
Please refer to a QDOS manual for a detailed description of queues.

Commands

QWAIT wait for keyboard queue to change
Functions

QIN (byte) or QIN ('string') put byte/string into current queue
QouT get a byte from current queue
QTEST find status of current queue

7. Memory Management and Access

All commands in this chapter should be used with great care because
they might crash your QL!

7.1 Advanced PEEKs and POKEs

In order to make storage of strings and floats in memory easier to
handle and faster in operation, some new commands and functions could
be used to do the hard work.

POKE$ and PEEKS$S are used to store/retrieve a string in/from memory.
Because there is no restriction on the type of string it could even be
used to store and restore an amount of memory (max. 32766 bytes).

The memory address must be even.

Examples:
TOOLKIT III Syntax SuperBasic Equivalent
10 a$=PEEK$(131072,32766) 10 DIM a$(32766)

20 FOR n=1 TO 32766
30 a$=a$&CHRS (PEEK(131071+n))
40 END FOR n

These programs store the actual screen image (except last two bytes)
in a$. To restore it simply type 'POKES$ 131072,a$' wusing the TK-III
syntax. Have you noticed the little difference?

10 PRINT PEEKS$(49148,PEEK W(49146)) 10 m=PEEK W(49146):DIM a$(m)
20 FOR n=1 tom
30 a$=a$&CHRS (PEEK(49147+n))
40 END FOR n
50 PRINT a$

or simply: 10 PRINT VERS

POKE_F and PEEK F enable you to store/retrieve floating point numbers
in/from memory using the internal QDOS format (6 bytes).

Commands
POKES$ address,string put string at memory address
POKE_F address,float put float at memory address
Functions
PEEKS$ (address,length) get string from memory address

PEEK_F (address) get float from memory address

7.2 MOVEing and SWAPing memory

Two new commands are intended to make handling of great amounts of
memory easier and faster.

MEMCOPY copies any amount of memory from one address to another
(intelligent if blocks are overlapping), and MEMSWAP simply does what
you expect it to do: it swaps two blocks of memory.

All used addresses and the length of a block must be even.

Commands
MEMCOPY addrl,addr2,n copy n bytes from addrl to addr2
MEMSWAP addrl,addr2,n swap n bytes from addrl with addr2
Examples

This nice little program rolls the entire screen image:

10 FOR n=1 TO 256 256 lines to roll
20 m$=PEEK$(131072,128) store 1lst line

30 MEMCOPY 131200,131072,32640 roll up 255 lines
40 POKES$ 163712,m$ put stored line

50 END FOR n
The following program turns the actual screen image upside down:
10 FOR n=0 to 127
20 MEMSWAP 131072+n*128,163712-n*128,128
30 END FOR n
7.3 Accessing the SuperBasic variable lists and stacks
In order to access Basic's variable lists and stacks (BV_VARS) it is

necessary to know the actual base address, because it tends to move
all the time. Please refer to a QDOS manual for further information.

Functions
BV_BASE find base of basic variable lists and stacks
Examples
123 PRINT PEEK_W(BV_BASE+104) prints the actual line number
100 PRINT BV_BASE+PEEK L(BV_BASE+24) prints the start address

of the name table

7.4 Intelligent RESET

The new RESET performs a standard system reset, but closes all open
channels properly, first. Optionally a memory reduction could be done,
using multiples of 32K, e.g. RESET 128 resets to 128 KB.

Commands

RESET value reset machine

8. SuperBasic Programming and
Editing

8.1 Replacement of names and strings

To assist the SuperBasic user in editing his programs two powerful
REPLACE commands have been built in, either to replace names (variable
names, device names) or strings. Every comment after a 'REMark’
statement is handled as a string, too. Optionally a range of line
numbers could be specified, using the same syntax as 'RENUM'.

When replacing strings the search string and the replacement string
must have the same length. Both strings must be enclosed in quotes or
apostophes. The name and string search is case independent.

Commands

REPLACE ranges, oldname,newname replace all oldnames with newname

REPLACES ranges, old$,new$ replace all o0ld$ with new$

Examples

Before After REPLACE 20 TO 40,a,byte
and REPLACE 10,flpl file,Test

10 OPEN#3,flpl file 10 OPEN#3,Test

20 BGET#3,a 20 BGET#3,byte

30 a=256-a 30 byte=256-byte

40 BPUT#3\0,a 40 BPUT#3\0,byte

50 CLOSE#3 50 CLOSE#3

Before After REPLACES 'test', 'DEMO’
and REPLACE Test,Number

10 REMark This is a Testprogram 10 REMark This is a DEMOprogram

20 Test=0 20 Number=0

30 REPeat loop 30 REPeat loop

40 IF Test=10:EXIT loop 40 IF Number=10:EXIT loop

50 PRINT 'Test Nr.';Test 50 PRINT 'DEMO No.';Number

60 Test=Test+l 60 Number=Number+l

70 END REPeat loop 70 END REPeat loop

80 REMark Test End 80 REMark DEMO End

8.2 Listing PROCedures and FuNctions

BASREF lists all existing SuperBasic PROCedures and FuNctions.

Commands
BASREF #channel list all SuperBasic PROCs and FNs
Example

Proc Test Line 100

Proc Long Name Procedure Line 320
FN SuperFunc Line 1340

9. Database Handling

9.1 SAVEing and LOADing Arrays

These powerful commands and functions enable the SuperBasic user to
save and load any type of arrays or subarrays (main dimension only).
The speed of these operations is comparable with SBYTES and LBYTES, so
that several minutes of sequential record 1loading is a thing of the
past. When loading back an array it has to be pre-dimensioned using
the same type and dimensions. The main dimension could be changed by
loading the array to a subarray.

Three analytic functions are implemented to ask for several data of a
saved array. These functions return either a value or an error code.
If a non-array file is accessed ERR.OR will be returned.

Please refer to Appendix A for the format of a saved array.

Commands
SARRAY name,array save an array to a file
SARRAY O name,array SARRAY with overwrite
LARRAY name,array load an array from a file
Functions
ADIM (name) find no. of dimensions of a saved array
ADIMN (name,i) find dimension i of a saved array
ATYP (name) find type of a saved array
Examples

This program fills an integer array, saves it to a file and analyses
it's structure:

10 DIM i%(100) dimension array

20 FOR n=0 TO 100 loop to fill array

30 i%(n)=RND(32767) fill with random integer

40 END FOR n end of loop

50 SARRAY flpl test ary,i% save array to 'flpl test ary'
60 CLEAR clear memory

70 PRINT ADIM(flpl test_ary) print No. of dimensions (1)

80 PRINT ADIMN(flpl test ary,1) print first dimension (100)

90 PRINT ATYP(flpl_ test_ary) print array type (3 = integer)

The following part of a program saves a floating point array, which
has been dimensioned using 'DIM £(10,10)' and loads it back into a
bigger array. Doing so could be used to enlarge a dimensioned array.

1000 SARRAY raml_ temp,f save array to 'raml temp'
1010 DIM £(20,10) enlarge array
1020 LARRAY raml temp,f(0 TO 10) load array as a subarray

1030 DELETE raml_ temp delete temporary file

The last program analyses the structure of any type of a saved array:

100 CLS:f$=EDITS$(36,DATADS) get filename
110 t=ATYP(f$):SELect ON t analyse type
120 =1:PRINT'Floating Point'

130 =2:PRINT'String'

140 =3:PRINT'Integer'

150 =REMAINDER:PRINT'No array':STOP

160 END SELect t

170 PRINT' (';:d=ADIM(£S$) get dimensions
180 FOR n=1 TO d

190 PRINT ADIMN(f$,n);

200 IF n=d:PRINT')':ELSE PRINT',';

210 END FOR n

9.2 Sorting Database Arrays

A database array has to be a 2 or 3-dimensional string array, the
latter having the usual field/record structure. These arrays could be
sorted in accending (SORT) or descending (SORT I) order.

A type 2 comparison is used to do the sorting, but empty records are
always sorted to the end of the array. Please refer to your QL User
Guide for further information about comparison types.

Parts of an array could be sorted using a subarray of the main
dimension. Nevertheless only string arrays can be sorted, these could
be filled with integer or floating point numbers in ASCII format. So
there is no need for any other array type.

When sorting 3-dimensional arrays the order field has to be specified
using it's index number.

Commands

SORT array$

SORT_I arrays$ sort 2-dimensional string array
SORT array$,field

SORT_I array$,field sort 3-dimensional string array by field
Example

This program sorts a 2-dimensional random character array in ascending
order. Only a subarray is sorted because record 0 is used as a header.

100 x=19:y=40

110 CLS#0:PRINT#0,'Setting up array...'
120 DIM a$(x,V)

130 a$(0)='SORT Test:'

140 FOR n=1 TO x

150 x$='""'":FOR m=1 TO y

160 x$=x$&CHR$ (RND(65 TO 90))

170 END FOR m

180 a$(n)=x$

190 END FOR n

200 CLS:PRINT a$

210 PRINT#0, 'Sorting...'

220 SORT a$(1 TO x):CLS#2:PRINT#2,a$

9.3 Searching Database Arrays

In order to make it possible to write advanced database applications
using SuperBasic, only one main operation is still missing.

The SEARCH function closes this gap and enables the user to search a
database array for a specified string. If a 3-dimensional string array
is used, the search field must be specified. The number of the record
to start the search from has to be specified in any case to allow a
repeated search, e.g. to find the next occurence of a string.

The SEARCH function returns either the number of the matching record
or -1 if the string cannot be found. The search is case independent.
Subarrays of the main dimension could be used.

Functions

SEARCH (array$,search$,start) search 2-dimensional string array
from start for search$

SEARCH (array$,search$,start,field) search 3-dimensional string array
from start for search$ using field

Examples
a=SEARCH(adr$, 'Miller',0,0) returns first occurence of 'Miller’
in field 0 of a 3-dimensional
string array adr$
a=SEARCH(adr$, 'Miller',a,0) returns next occurence
PRINT SEARCH(num$,PI,0) returns first occurence of PI in a

2-dimensional string array
filled with floating point numbers

The following program creates a 2-dimensional string array and fills
it with random integers. Then the numbers of all records containing
'10' are listed.

10 DIM num$(100,2) create array

20 FOR n=0 TO 100:num$(n)=RND(10) fill array

30 m=-1:REPeat loop loop to search array
40 m=SEARCH(num$,10,m+1) search

40 IF m<O0:EXIT loop no more matches?

50 PRINT'10 found in record ';m print record number
60 END REPeat loop end of loop

10. More Extensions to
SuperBasic

These extensions may be of very different value to different users,
because most of them could also be written in SuperBasic, but are
easier to use if present as resident extensions.

10.1 String operations

Four new functions are built in to read strings or characters from a
console and to handle them in some way.

EDITS$ could be seen as an advanced INPUT command, allowing a default
string and a maximum buffer length to be specified. If no buffer
length is specified, the length of the default string is used.

KEY$ scans the keyboard using a supplied 1list of characters, and
returns a character if it's part of the character list. When used
without any specified character 1list this function is equivalent to
INKEYS (#ch,-1).

ISINT and ISFLT check whether an entire string is convertable to
integer/float and return ERR.XP if not.

These functions are particularly useful to prevent from the annoying
'error in expression' when reading numbers using the INPUT command.
UPPER$ and LOWER$ convert a string to upper/lower case, including all
foreign characters.

Default channel for EDITS and KEYS is #1.

Functions
EDITS$ (#channel,buffer, string) edit a string with a buffer
KEY$ (#channel,keylist$) wait for a key of keylist$
ISINT (string) return ERR.XP if string is no integer
ISFLT (string) return ERR.XP if string is no float
UPPERS$ (string) convert string to upper case
LOWERS (string) convert string to lower case
Examples
a$=EDITS$ (10, 'Test"') allows to edit the default string 'Test’
using the default channel and a buffer
length of 10 characters
confirm$=KEYS$('YyNn'&CHRS$(27)) waits for a character of 'YyNn'
or ESC to be pressed
a$=UPPERS (EDITS$ (#2,36,DATADS)) reads a filename in channel #2

using a buffer of 36 characters
and the DATA device as the default string
and returns it converted to upper case

The following program demonstrates the testing of parameters:

100 WMON 4:nS$="'"

110 PRINT'Test FLOAT or INTEGER Input (F/I)? ';
120 CURSEN:S$=UPPER$(KEY$('FfIi')):CURDIS:PRINT s$
130 AT 2,0:IF sS$='F"

140 PRINT'Float: ';:n$=EDITS$(12,n$)

150 IF ISFLT(n$):BEEP 3000,1000:GO TO 130

160 ELSE

170 PRINT'Integer: ';:n$=EDITS$(12,n$)

180 IF ISINT(n$):BEEP 3000,1000:GO TO 130

190 END IF

200 PRINT\\'O.K.'

10.2 Other functions

Several new functions are built in to enhance or replace the standard
SuperBasic set of mathematical and binary functions.

SUCC and PRED return the successor/predecessor of an integer number or
character. They are particularly useful for use in REPeat loops.

SGN returns 1 for a positive number, 0 for zero and -1 for negative
numbers. The argument has to be an integer.

CINT converts a signed integer to an unsigned float, which could be
quite useful when reading integers from a file.

ODD simply tests whether an integer is odd or not. Please note that
'i=0DD(x)' is equivalent to 'i=x&&l'.

ROUND rounds a float to the nearest long integer, and FRAC returns the
fraction of a floating point number.

DIV L and MOD_L are intended to replace the QDOS operators 'DIV' and
'MOD', but work correctly with negative values and are able to handle
long integers.

AND L, OR_L and EOR L should replace the QDOS operators '&&', '||' and
'~*', but work with long integers, too.

Functions
SGN (integer) signum function
FRAC (float) return fraction of a float
ROUND (float) round to nearest long integer
CINT (integer) convert integer to unsigned float
ODD (integer) return 1 for odd value, 0 for even
PRED (integer) return predecessor of an integer
PRED (char$) return predecessor of a character
SUCC (integer) return successor of an integer
SUCC (char$) return successor of a character
DIV_L (integer,integer) longword integer division
MOD L (integer,integer) longword modulo function
AND L (integer,integer) binary AND for long integers
OR_L (integer,integer) binary OR for long integers
EOR L (integer,integer) binary XOR for long integers
Examples

PRINT PRED(100) 99

PRINT SUCC('a') b

PRINT SGN(-4) -1

PRINT CINT(-100) 65436

PRINT FRAC(PI) .141593

PRINT ROUND(10003.5) 10004

PRINT ODD(37) 1

PRINT DIV _L(131072,65000) 2

PRINT MOD L(131072,65000) 1072

PRINT EOR_L(100000,12345) 112281

The following (slow) program inverts the screen image:

10 FOR n=131072 TO 163839 STEP 4
20 POKE L n,EOR L(PEEK L(n),-1)
30 END FOR n

11. Extras

11.1 Linking the Extensions

To link all SuperBasic extensions and/or device driver extensions to
the system two commands are built in.

TK3_EXT inits all new SuperBasic commands and functions including
those from SuperToolkit TII if present, so TK2 EXT isn't needed any
longer.

DEVLINK 1links all additional directory devices to the extended device
driver system. Normally this is done at RESET time, but if any new
devices (e.g. RAMPRT from QJump) are loaded, this command must be used
to make them fully compatible to the new features. DEVLINK is executed
automatically whenever TK3 EXT is used.

During the linkage several commands are redefined for compatibility:
FLP_USE, FLP_TRACK, FLP_START, FLP_SEC, RAM USE and NFS_USE.

All wusers having had a FLP_OPT command before, must now use the new
FLP commands.

The 'WIN' device is not supported, because harddisks should have their
own advanced device drivers.

Commands
TK3_EXT init TOOLKIT III and TK2 if present
DEVLINK link all additional devices

11.2 System information

EXTRAS lists all resident extensions to SuperBasic, including their
type (PROCedure or FuNction) and their decimal start address.

The QDOSS$ function returns the internal code number of the used QDOS
version, e.g. 1.13 for MG or 1.10 for JS.

Commands

EXTRAS #channel list all extras linked to SuperBasic
Functions

QDOSS$ return QDOS version

12. Extended Device Drivers

All device drivers, which were present at RESET time or have been
linked by DEVLINK or TK3_EXT, are extended to make full support of the
SuperToolkit II subdirectory structures. Originally these are only
usable from SuperBasic, but TOOLKIT III extends them to work properly
at every access level, e.g. machine code, TRAPs etc.

Please refer to the SuperToolkit II manual (section 4) for a detailed
description about subdirectory structures and directory control.

The DATA device is used as the subdirectory name. It could be changed
by using one of the commands DATA USE, DUP, DDOWN, DNEXT or DIR USE.
The latter one is introduced by TOOLKIT III: DIR _USE sets the DATA and
PROG device, so it's an easy way to change them both.

The subdirectory structures work properly via NETwork using the NFS
device, which could be specified by executing the NFS_USE command.
Please refer to the SuperToolkit II manual for a detailed description.

A file from the root directory could be accessed from any directory
level by seperating the device name from the file name using a
backslash, e.g.: FLP1_\FULL NAME.

In SuperBasic this name has to be enclosed in quotes or apostrophes.

Please note that subordinate directories mustn't have the same name,
e.g. TEST TEST CODE is not allowed. This 1is neccesary because the
operating system must be able to distinguish the directory levels.
It's a good idea to give the start program of each subdirectory the
name 'BOOT', because it's possible then +to achive a 1list of all
subdirectories using a line similar to 'DIR flpl__boot'.

Example:

1. Supposed you want to copy all files from FLP2_ to a subdirectory
named 'GAME' on FLPl_, you could use the following line:

WCOPY flp2 ,flpl GAME and confirm with 'A' for ALL

2. To start the copied game using the BOOT program, the following
line could be used:

DDOWN game : LRUN flpl boot

13. The MEMory Device

It is possible now to access memory as a file using the 'MEM' device.
The file pointer position is used as an address. This address 1is
relative to a base address to allow operation with commands which
don't use the actual file pointer (e.g. SBYTES). If not specified this
base address is 0.

Syntax: MEM K B] where K*1024+B gives the base
address of the MEM device.

Examples:

The following program gets the current MODE of network station 2:

10 OPEN#3,N2_MEM open MEM device with base 0
20 BGET#3\163892,m get MC status register

30 PRINT m&&8 extract MODE and print it
40 CLOSE#3 close channel

This line transfers the current screen image to network station 1:
SBYTES N1_MEM 128,131072,32768 base address is 128K = 131072
The following program sets the user number of network station 3 to 7:
10 OPEN#3,N3_MEM 160 open MEM device with base 160K

20 BPUT#3\54,7 set user number to 7
30 CLOSE#3 close channel

14. Extensions to QDOS

In order to handle the new file attributes and the file access byte
directly via QDOS, some new TRAP #3 functions are introduced:

FS.SETRO D0 = $4C set READ ONLY status
FS.SETSS DO = $4D set SYSTEM status
FS.SETUS DO = S$S4E set USER number
FS.SETHO D0 = $4F set HOST ONLY status
Call parameters Return parameters

D1 D1 undefined
D2.W =0 reset or <>0 set D2 preserved

or user number

D3.W timeout D3 preserved
A0 channel ID A0 preserved
Al Al undefined
A2 A2 preserved
A3 A3 preserved

There are also a few new system variables:

SV.USER EQU $36 user number (byte)

*

SV.PROG EQU S$AC pointer to PROGDS$ (long)
SV.DATA EQU $BO pointer to DATADS$ (long)
SV.DEST EQU $B4 pointer to DESTD$ (long)

*
SV.QTK3 EQU $DC internal use only (long)

APPENDIX A

Saved arrays have a special header at the beginning of the file. This
header has the following structure:

Fileposition 0 --- ATK3 (string)
4 --- Array Type (word)
6 --- Offset to data (word)
8 --- No. of dimensions (word)
10 --- 1Index 1 (word)
12 --- Multiplier 1 (word)
XX --- 1Index X (word)
XX --- Multiplier x (word)
Offset --- Start of data

The following example program analyses the structure of a saved array.
It could also have been written wusing direct access to the special
header at the beginning of the file.

100 WMON 4

110 UNDER 1:PRINT'ARRAY ANALYSER':UNDER 0

120 PRINT\'Enter dev_name: ';

130 f$=EDIT$(36,DATAD$&'TEST_ARY')

140 dd=ADIM(f$):IF dd<0:PRINT\'Error: ';:REPORT#1,dd:STOP
150 st=FACC(\f$)&&128

160 PRINT\'File is ';

170 IF st=0:PRINT'READ/WRITE'\:ELSE PRINT'READ ONLY'\
180 PRINT\'Arraytype is ';

190 tt=ATYP(f$):SELect ON tt

200 =1:PRINT'String'\\:a$='arrays$"

210 =2:PRINT'Float'\\:a$='array’

220 =3:PRINT'Integer'\\:a$='array%'

230 =REMAINDER :PRINT' (Unknown)'\\

240 END SELect

250 PRINT'No of Dimensions:'!dd\\

260 DIM dms%(3)

270 FOR n=1 TO dd

280 dms%(n)=ADIMN(f$,n)

290 PRINT'Dimension'!n;':'!dms%(n)

300 END FOR n

310 com$='DIM '&aS$&' ("'

320 FOR n=1 TO dd

330 com$=com$&dms$ (n)

340 IF n<>dd:com$=com$&',"’

350 END FOR n

360 com$=com$&'):LARRAY f$,'&a$&' :PRINT#2,'&as$&' :CLS#0:CLEAR'&CHRS(10)
370 a$=INKEY$ (#0):er=QIN(com$):REPORT er

APPENDIX B

This nice 1little example program prints a complete directory listing
including all neccesary data on the current SPL printer device:

100 WMON 4:UNDER 1:PRINT'FULL DIRECTORY LIST':UNDER 0

110 PRINT\'Which device: ';:dd$=EDITS(5,DATADS)

120 OPEN#3,DESTDS:BPUT#3,27,78,4,15

130 WIDTH#3,120:STAT#3,dd$:PRINT#3

140 OPEN_DIR#4,dd$:count=0

150 REPeat loop

160 IF EOF(#4):EXIT loop

170 GET#4\count*64+14,a$:IF a$='"':G0 TO 280

180 PRINT#3,a$;

190 GET#4\count*64,high%,low%:length=high%*65536+CINT(low%)-64

200 PRINT#3,TO 40;length;

210 BGET#4\count*64+4,facb,type

220 IF facb&&128:a$='READ ONLY':ELSE a$='READ/WRITE':END IF
¢:PRINT#3,TO 50;a$;

230 IF facb&&64:a$='SYSTEM':ELSE a$='DIRECTORY':END IF
:PRINT#3,TO 64;a$;

240 PRINT#3,TO 78;'USER'!facb&&l5;TO 88;'TYPE' !type;

250 IF facb&&32:a$='HOST ONLY':ELSE a$='HOST/NET':END IF
:PRINT#3,TO 98;a$;

260 GET#4\count*64+52,high%,low%:a$=DATES$ (high%*65536+CINT (low%))

270 PRINT#3,TO 112;a$

280 BGET#4\count*64+64:count=count+1

290 END REPeat loop

300 CLOSE

Copyright Notice

SINCLAIR and SINCLAIR QL are Registred Trade Marks of Sinclair
Research Ltd.

QL Microdrive and SuperBasic are Trade Marks of Sinclair Research Ltd.
SuperToolkit II is Trade Mark of QJump Ltd. & Care Electronics.
TOOLKIT III and Documentation (c) 1988 by Ultrasoft.

Program and Documentation written by Martin Berndt.

This product is copyright material and may not be copied in whole or
in part for any purpose whatsoever without the permission of the
copyright owner.

